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ABSTRACT
The Internet is overloading its users with excessive informa-
tion flows, so that effective content-based filtering becomes
crucial in improving user experience and work efficiency. We
build Kvasir, a semantic recommendation system, atop la-
tent semantic analysis and other state-of-art technologies
to seamlessly integrate an automated and proactive content
provision service into web browsing. We utilize the power
of Apache Spark to scale up Kvasir to a practical Internet
service. Herein we present the architecture of Kvasir, along
with our solutions to the technical challenges in the actual
system implementation.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—clustering, information filtering

Keywords
Information Retrieval; Content-based Filter; Web Browsing;
Latent Semantic Analysis; Random Projection; Big Data

1. INTRODUCTION
The Internet is overloading its users with excessive infor-

mation flows. Therefore, smart content provision and recom-
mendation become more and more crucial in improving user
experience and work efficiency. E.g., many users are most
likely to read several articles on the same topic while surf-
ing on the Web. Hence many news websites (e.g., The New
York Times, BBC News and Yahoo News) usually group
similar articles together and provide them on the same page
so that the users can avoid launching another search for the
topic. However, most of such services are constrained within
a single domain, and cross-domain content provision is usu-
ally achieved by manually linking to the relevant articles on
different sites. Meanwhile, companies like Google and Mi-
crosoft take advantage of their search engines and provide
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customizable keywords filters to aggregate related articles
across various domains for user to subscribe. However, to
subscribe a topic, a user needs to manually extract keywords
from an article, and then to switch between different search
services while browsing the web pages.

Seamless integration of intelligent content provision into
web browsing at user interface level remains an open re-
search question. No universally accepted optimal design ex-
ists. Herein we propose Kvasir1, a system built atop latent
semantic analysis (LSA). We show how Kvasir can be inte-
grated with existing state-of-art technologies (e.g., Apache
Spark, machine learning, etc.). Kvasir automatically looks
for the similar articles when a user is browsing a web page
and injects the search results in an easily accessible panel
within the browser view for seamless integration. By pre-
senting the architecture, we show how we tackle the scala-
bility challenges confronting Kvasir in building and indexing
high dimensional language database.

2. BACKGROUND AND RELATED WORK
There are several parallel efforts in integrating intelligent

content provision and recommendation in web browsing. They
differentiate between each other by the main technique used
to achieve the goal. The initial effort relies on the semantic
web stack proposed in [2], which requires adding explicit on-
tology information to all web pages so that ontology-based
applications (e.g., Piggy bank [9]) can utilize ontology rea-
soning to interconnect content semantically. Though se-
mantic web has a well-defined architecture, it suffers from
the fact that most web pages are unstructured or semi-
structured HTML files, and content providers lack of mo-
tivation to adopt this technology. Collaborative Filtering
(CF) [4, 11], which was first coined in Tapestry [7], is a
thriving research area and also the second alternative so-
lution. Recommenders built atop CF exploit the similari-
ties in users’ rankings to predict one user’s preference on a
specific content. CF attracts more research interest these
years due to the popularity of online shopping (e.g., Ama-
zon, eBay, Taobao, etc.) and video services (e.g., YouTube,
Vimeo, Dailymotion, etc.). However, recommender systems
need user behavior rather than content itself as explicit input
to bootstrap the service, and is usually constrained within
a single domain. Cross-domain recommenders [5, 12] have
made progress lately, but the complexity and scalability

1Kvasir is the acronym for Knowledge ViA Semantic Infor-
mation Retrieval, it is also the name of a Scandinavian god
in Norse mythology who travels around the world to teach
and spread knowledge and is considered extremely wise.
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need further investigation. Search engines can be consid-
ered as the third alternative though users need explicitly
extract keywords from a page then launch another search.
The ranking of the search results is based on link analysis
on the underlying graph structure of interconnected pages
(e.g., PageRank [14] and HITS [10]). Kvasir utilizes informa-
tion retrieval (IR) [6,13] which belongs to the content-based
filtering and emphasizes the semantics contained in unstruc-
tured web text. A text corpus is transformed to a suitable
representation depending on the specific math models (e.g.,
set-theoretic, algebraic, or probabilistic), based on which a
numeric score is calculated for ranking. Context awareness
is the most significant advantage in IR, which has been inte-
grated into Hummingbird, Google’s new search algorithm.

3. KVASIR ARCHITECTURE
Kvasir implements an LSA-based index and search ser-

vice, and its architecture can be divided into frontend and
backend. Figure 1 illustrates the workflow and innards of
the system. The frontend is implemented as an extension
in Chrome browser. The browser extension only sends the
page URL back to the KServer whenever a new tab/window
is created. The KServer running at the backend retrieves
the content of the given URL then responds with the most
relevant documents in a database. The results are returned
in JSON strings. The browser extension presents the results
on the page being browsed. From the user’s perspective, a
user only interacts with the frontend by checking the list
of recommended articles that may interest him. The back-
end uses one simple REST API as below to connect the
frontend, which gives flexibility to all possible frontend im-
plementations and makes it easy to mash-up new services
atop Kvasir. Line 1 gives an example request while line 2-6
give an example response containing the metainfo of a file.

1 POST https://api.kvasir/query?info=url

2 {"results": [

3 {"title": document title,

4 "similarity": similarity metric,

5 "page_url": link to the document,

6 "timestamp": document create date} ]}

The backend system implements indexing and searching
functionality which consist of five components: Crawler,
Cleaner, DLSA, PANNS and KServer. Three components
(i.e., Cleaner, DLSA and PANNS) are wrapped into one
Spark library.

Crawler collects raw documents from the Web then com-
piles into two data sets. One is the English Wikipedia dump
containing about 4 million articles, and another is com-
piled from over 300 news feeds of the high-quality content
providers containing about 330 000 articles. Multiple in-
stances of the Crawler run in parallel on different machines.

Cleaner cleans the unstructured text and converts the
corpus into term frequency-inverse document frequency (TF-
IDF) model. We clean the text by removing HTML tags
and stopwords, deaccenting, tokenization, etc. The dictio-
nary refers to the vocabulary of a language model, its qual-
ity directly impacts the model performance. To build the
dictionary, we exclude both extremely rare and extremely
common terms, and keep 105 most popular ones as features.

DLSA builds up an LSA-based model from the previously
constructed TF-IDF model. The operations involve large

matrix multiplications and time-consuming SVD. Since ML-
lib is unable to perform SVD on a data set of 105 features
with limited RAM, we implemented our own stochastic SVD
on Spark using rank-revealing technique in Section 4.1.

PANNS indexes an LSA model to enable fast k-NN search
in high dimensional spaces. Though dimensionality has been
reduced from 105 (TF-IDF) to 103 (LSA), k-NN search in a
103-dimension space is still a great challenge. Naive linear
search using one CPU takes over 6 seconds to finish in a
database of 4 million entries, which is unacceptably long for
any realistic services. PANNS implements a parallel RP-tree
algorithm which makes a reasonable tradeoff between accu-
racy and efficiency. Section 4.2 presents PANNS in details.

KServer runs within a web server, processes the users re-
quests and replies with a list of similar documents. KServer
uses the index built by PANNS to perform fast search in
the database. The ranking of the search results is based on
the cosine similarity metric. We deployed multiple KServer
instances on different machines and implemented a simple
round-robin mechanism to balance the request loads.

4. PROPOSED ALGORITHMS
The source code and the demo videos can be found in [1].

4.1 Distributed Stochastic SVD
The vector space model belongs to algebraic language

models, where each document is represented with a row vec-
tor. Each element in the vector represents the weight of a
term in the dictionary calculated in a specific way. E.g.,
it can be simply calculated as the frequency of a term in a
document, or slightly more complicated TF-IDF. The length
of the vector is determined by the size of the dictionary
(i.e., number of features). A text corpus containing m doc-
uments and a dictionary of n terms will be converted to a
A = m × n row-based matrix. LSA utilizes SVD to reduce
n by only keeping a small number of linear combinations of
the original features. To perform SVD, we need calculate
the covariance matrix C = AT ×A, which is a n× n matrix
and is usually much smaller than A.

Though we can parallelize the calculation of C by dividing
A into k smaller chunks of size [m

k
] × n, then aggregate the

partial results as C = AT × A =
∑k

i=1A
T
i × Ai. However,

C might still be too big to fit into memory. Our solution is
using rank-revealing QR [8] to approximate A with a thinner
matrix B, which essentially leads to a stochastic SVD and
is able to process much larger matrix than native MLlib.

4.2 Parallel Randomized Partition Tree
Finding the most relevant documents in an LSA model is

equivalent to finding the nearest neighbors for a given point.
The distance is usually measured with the cosine similarity
of two vectors. However, neither naive linear search nor con-
ventional k-d tree is capable of searching efficiently in such
high dimensional spaces even though the dimensionality has
already been reduced from 105 to 103 by LSA. The gain in
speed is usually achieved by sacrificing some accuracy.

Technically, we use RP-tree algorithm to cluster the points
by partitioning the space into smaller subspaces recursively.
Since RP-tree requires generating and storing huge amount
of random vectors for index building and searching, it poses
a significant challenge on both reducing the index size and
parallelizing RP-tree algorithm. To address this challenge,
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Figure 1: Kvasir architecture – there are five major components in the backend system, and they are numbered based on their
order in the workflow. The frontend is implemented in a Chrome browser, and connects the backend with a RESTful API.

we propose to use a pseudo random seed in building and
storing search index. Instead of maintaining a pool of pre-
generated random vectors, we just need a random seed for
each RP-tree. The computation node can build all the ran-
dom vectors on the fly from the given random seed.

4.3 Caching to Scale Up
The index will eventually become too big to fit into a mem-

ory. One engineering solution is using MMAP provided in
operating systems which maps a file from hard-disk to mem-
ory space without actually loading it into a physical mem-
ory. The loading only happens whenever there is a cache
miss. Search performance may degrade if the access pattern
is truly random on a huge index. In practice, this is highly
unlikely since the pattern of user requests follows a clear
Zipf-like distribution, which indicates only a small part of
the index trees is frequently accessed at any given time.

5. PRELIMINARY EVALUATION
Because scalability is the main challenge in Kvasir, the

preliminary evaluation revolves around: (i) how fast we can
build a database from scratch using the library we developed
for Apache Spark; (ii) how fast the search function in Kvasir
can serve users’ requests. The evaluation is performed on a
testbed of 10 Dell PowerEdge M610 nodes. Each node has 2
quad-core CPUs, 32GB memory, and is connected to a 10-
Gbit network. All the nodes run Ubuntu SMP with a 3.2.0
kernel with ATLAS (Automatically Tuned Linear Algebra
System) installed to support fast linear algebra operations.
We only report the results on using Wikipedia data set since
News data set leads to consistently better performance.

5.1 Database Building Time
To evaluate the efficiency of our Spark library in the back-

end, we first perform a sequential execution with one CPU to
obtain a benchmark. Using one CPU takes over 35 hours to
process the Wikipedia data set. Using 5 CPUs to parallelize
the computation, it takes about 9 hours which is almost
three times faster. Table 1 shows that the total building
speed is improved sublinearly. Because the overhead from
I/O and network operations eventually replace CPU over-

# of CPUs Cleaner DLSA PANNS Total
1 1.32 20.23 13.99 35.54
5 0.29 6.14 2.86 9.29
10 0.19 4.22 1.44 5.85
15 0.17 3.14 0.98 4.29
20 0.16 2.61 0.77 3.54

Table 1: The time needed (in hours) for building an LSA-
based database. The time is decomposed to component-wise
level. Search index uses 128 RP-trees with cluster size of 20.

head and become the main bottleneck in the system.
By zooming in the component-wise overhead, DSLA con-

tributes most of the computation time while Cleaner con-
tributes the least. Cleaner’s tasks are easy to parallelize due
to its straightforward structure, but there are only marginal
improvements after 10 CPUs since most of the time is spent
in I/O operations and job scheduling. For DLSA, the par-
allelism is achieved by dividing a matrix into chunks then
distributing the computations on multiple nodes. The par-
tial results need to be exchanged among the nodes for aggre-
gation, and therefore the penalty of the increased network
traffic will eventually overrun the benefit of parallelism. Fur-
ther investigation reveals that the percent of time in trans-
mitting data increases from 10.5% to 37.2% (from 5 CPUs
to 20 CPUs). On the other hand, indexing scales very well
by using more computation nodes because PANNS does not
require exchanging too much data among the nodes.

5.2 Accuracy and Scalability of Searching
Service time represents the amount of time to process a

request, which is arguably the most important metric to
measure the service scalability. We test the service time
of KServer by using one web server in the aforementioned
testbed. We model the content popularity with a Zipf distri-
bution, whose probability mass function is f(x) = 1

xα
∑n
i=1 i−α ,

where x is the content index, n is the number of content, and
α controls the skewness of the distribution. Smaller values
of α lead to more uniform distributions while large α val-
ues assign more mass to elements with small i. It has been
empirically demonstrated that in real-world data following
a power-law, the α values typically range between 0.9 and
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(c, t) (20,16) (20,32) (20,64) (20,128) (20,256) (80,16) (80,32) (80,64) (80,128) (80,256)
Index (MB) 361 721 1445 2891 5782 258 519 1039 2078 4155

Precision (%) 68.5 75.2 84.7 89.4 94.9 71.3 83.6 91.2 95.6 99.2
α1 = 1.0 ms 2.2 3.7 5.1 5.9 6.8 4.6 7.9 11.2 13.7 16.1
α2 = 0.9 ms 3.4 4.3 6.0 6.8 7.6 7.2 9.5 14.9 15.3 17.1
α3 = 0.8 ms 4.3 4.9 6.7 7.9 8.4 9.1 11.7 15.2 17.4 17.9
α4 = 0.7 ms 5.5 6.3 7.4 8.5 9.3 11.6 13.4 16.1 17.7 18.5
α5 = 0.6 ms 6.1 6.7 7.9 8.8 9.8 13.9 16.0 18.5 19.8 21.1
α6 = 0.5 ms 6.7 7.3 8.2 9.0 10.3 16.6 17.8 19.9 20.4 23.1

Table 2: Scalability test on KServer with different index configurations and request patterns. (c, t) in the first row, c represents
the maximum cluster size, and t represents the number of RP-trees. Zipf-(α, n) is used to model the content popularity.

1.0. We plug in different α to generate the request stream.
The next request is sent out as soon as the results of the pre-
vious one is successfully received. Round trip time (RTT)
depends on network conditions and is irrelevant to the effi-
ciency of the backend, hence is excluded from total service
time in Table 2. We also experiment with various index
configurations to understand how index impacts the server
performance. The index is configured with two parameters:
the maximum cluster size c and the number of search trees
t. Note c determines how many random vectors contained in
a RP-tree, which further impacts the search precision. The
first row in Table 2 lists all the configurations. For a realistic
α = 0.9 and index (20, 256), the throughput can reach over
1052 requests per second on a node of 8 CPUs.

Table 2 shows that including more RP-trees improves the
search accuracy but increases the index size. Since we only
store a random seed for all random vectors, the growth of
index is due to storing tree structures. The search over-
head also grows sublinearly with more trees. However, since
searching in different trees are independent thus can be eas-
ily parallelized, the performance can be further improved by
using more CPUs. Given a specific index configuration, the
service time increases as α decreases, which attests our ar-
guments in Section 4.3. Namely, we can exploit the highly
skewed popularity to scale up Kvasir. As mentioned, in-
creasing cluster size is equivalent to reducing the number of
random projections and vice versa. We increase the max-
imum cluster size from 20 to 80 and present the result in
the right half of Table 2. Contrary to the intuition that the
precision might deteriorate with less random projections, we
notice that the precision is improved. The reason is two-fold:
first, large cluster size reduces the probability of misclassifi-
cation for those projections close to the split point. Second,
since we perform linear search within a cluster, larger clus-
ter enables us explore more neighbors which leads to higher
probability to find actual nearest ones. Nonetheless, also
due to the linear search in larger clusters, the gain in the
accuracy is at the price of inflated searching time.

6. DISCUSSIONS & FUTURE WORK
We can improve Kvasir in many ways. Firstly, we need

not rebuild everything from scratch whenever new content
arrives. LSA space can be incrementally updated [3], then
new points can be added to the corresponding clusters in
a RP-tree. Secondly, finer-grained re-ranking can be imple-
mented by taking both a user’s long-term and short-term
interest into account. Such function can be achieved by
extending one-class SVM. Thirdly, the frontend is not con-
strained within a browser but can be implemented in various
ways on different platforms. Content providers can also inte-

grate Kvasir service on their website to enhance user experi-
ence by automatically providing similar articles on the same
page. Fourthly, Kvasir does not yet support full-fledged se-
curity and privacy. For security, DDoS attacks are difficult
to defend against in general. For privacy, a user may not
want Kvasir track their behavior for personalized results,
thus a fine-grained privacy policy is needed in the future.

7. CONCLUSION
In this paper, we presented Kvasir which provides seam-

less integration of LSA-based content provision into web
browsing. We proposed a parallel RP-tree algorithm and
implemented stochastic SVD on Spark to tackle the scal-
ability challenges. The proposed solutions were evaluated
on the testbed and scaled well on multiple CPUs. The key
components of Kvasir are implemented as an Apache Spark
library, and the source code is publicly accessible on Github.
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