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PREFACE

The Seventh Workshop on Information Theoretic Methods in Science and Engineering
(WITMSE 2014) took place on July 5–8, 2014, in Honolulu (HA), USA. The workshop
was organized jointly by the University of Helsinki, the Helsinki Institute for Information
Technology HIIT, and the University of Hawaii. This was the seventh workshop in the
series which started in 2008. The first one, as well as the following two organized in 2009
and 2010, respectively, took place in Tampere, Finland. The following workshops, in 2011
through 2013, were held in Helsinki, Amsterdam, and Tokyo, respectively. In 2014, for
the first time, the workshop was co-located with the annual IEEE Information Theory
Symposium which took place during the week prior to WITMSE in Honolulu.

As the title of the workshop suggests, WITMSE seeks speakers from a variety of
disciplines with emphasis on both theory and applications of information and coding theory
with special interest in modeling. Since the beginning our plan has been, and still is, to
keep the number of the participants small and to ensure the highest possible quality, which
has been accomplished by inviting distinguished scholars as speakers.

The workshop was opened by Jorma Rissanen’s keynote talk on “Entropy and Es-
timation of Random Maximum Likelihood Models”. Plenary talks were given by Venkat
Anantharam (UC Berkeley) “Entropy Power Inequalities: Results and Speculation” and
Wojciech Szpankowski (Purdue) “Structural Information”. The rest of the technical pro-
gramme consisted of nineteen talks on various aspects of information theory and its appli-
cations.

Outside the technical sessions the program included a welcoming reception next to
the wonderful beaches of Waikiki and a banquet dinner.

We would like to thank all the participants to our workshop. Some of the speakers
kindly submitted written contributions or abstracts to these proceedings, for which we are
particularly grateful. We also want to thank the NSF Science and Technology Center for
Science of Information for sponsoring the workshop.

December 30, 2014
Helsinki, San Jose, and Honolulu

Workshop Co-Chairs

Jorma Rissanen,
Petri Myllymäki,

Teemu Roos,
& Narayanan P. Santhanam
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ENTROPY POWER INEQUALITIES: RESULTS AND SPECULATION

Venkat Anantharam

University of California, Berkeley

ABSTRACT

Shannon’s entropy power inequality characterizes the min-
imum differential entropy achievable by the sum of two
independent random variables with fixed differential en-
tropies. Since the pioneering work of Shannon, there has
been a steady stream of results over the years, trying to
understand the structure of Shannon’s entropy power in-
equality, as well as trying to develop similar entropy power
inequalities in other scenarios, such as for discrete random
variables. We will discuss some aspects of this landscape
in this talk. We will present old results, new results, and
share some speculation about how to prove new kinds of
entropy power inequalities.
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STRUCTURAL INFORMATION

Wojciech Szpankowski

Purdue University

ABSTRACT

F. Brooks argued in his 2003 JACM paper on the chal-
lenges of computer sciences that there is “no theory that
gives us a metric for the information embodied in struc-
ture”. C. Shannon himself noticed this fifty years ear-
lier in his 1953 paper. More generally, we lack an in-
formation theory of data structures (e.g., graphs, sets, so-
cial networks, chemical structures, biological networks).
In this talk, we present some recent research results on
structural information. We first propose some fundamen-
tal limits of information content for a wide range of data
structures with correlated labels and then propose asymp-
totically optimal lossless compression algorithms achiev-
ing these limits for unlabeled graphs. Then we move to
Markov fields and try to understand structural properties
of large systems with local mutual dependencies and in-
teraction. In particular, we focus on enumerating Markov
field and universal types. Finally, we study capacity of
a sequence to structure channel arising in protein folding
applications. The channel itself is characterized by the
Boltzmann distribution with a free parameter correspond-
ing to temperature. Interestingly, capacity of such a chan-
nel exhibits an unusual phase transition with respect to
temperature. We tackle most of these problems by com-
plex analysis methods, thus within the realm of analytic
information theory.
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ON THE APPLICABILITY OF WAIC AND WBIC IN THE
GAUSSIAN PROCESS FRAMEWORK

Tommi Mononen

Department of Information and Computer Science & O.V. Lounasmaa Laboratory,
Aalto University School of Science, P.O. Box 15400, FI-00076 Aalto, FINLAND,

tommi.j.mononen@aalto.fi

ABSTRACT

Many Gaussian process models are not analytically tract-
able but the computations have to be carried out using
the slow sampling approach or using some approximative
method (e.g. expectation propagation or Laplace approx-
imation). In order to make reliable computation faster,
we investigate the applicability of the singular informa-
tion criteria WAIC and WBIC in the Gaussian process
framework. Although the theoretical basis behind these
criteria is parametric, the formulas themselves seem to be
intuitively reasonable even in the non-parametric setting.
The predictive model selection criterion WAIC approxi-
mates leave-one-out score and this kind of well perform-
ing method would be highly desirable from the Gaussian
process viewpoint. The spin-offs of the log marginal like-
lihood approximation WBIC, could make sampling based
methods faster. In this talk, we highlight and explain the
cases where these criteria fail to perform well.

Part of this talk is based on [1].

1. REFERENCES

[1] T. Mononen, “A case study of the widely applica-
ble bayesian information criterion and its optimal-
ity,” Statistics and Computing, Apr. 2014, DOI:
10.1007/s11222-014-9463-3.
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LOCAL SCORING RULES AND STATISTICAL INFERENCE IN UNNORMALIZED
MODELS

Matthew Parry1

1Dept of Mathematics & Statistics, University of Otago,
P.O.Box 56, Dunedin 9054, NEW ZEALAND, mparry@maths.otago.ac.nz

ABSTRACT

A scoring rule is a principled way to assess probabilis-
tic forecasts. Associated with every scoring rule is a di-
vergence and a concave entropy. Conversely, every scor-
ing rule can be generated by a concave entropy. Scoring
rules can also be straightforwardly adapted to statistical
inference. The resulting estimating equations are unbiased
but typically entail some loss of efficiency. Local scoring
rules are a class of scoring rules with the remarkable prop-
erty that they do not depend on the normalization of the
quoted probability distribution. Consequently, they allow
inference in unnormalized statistical models, i.e. models
in which the normalization is either difficult or impossible
to compute. Local scoring rules provide a unifying frame-
work in which to understand existing approaches to such
intractable problems, for example pseudolikelihood, score
matching and ratio matching.

1. INTRODUCTION

Scoring rules have long been used to evaluate probabilis-
tic forecasts [1, 2]. If Q stands for the forecaster’s distri-
bution – Q is used to denote quote – then S(x,Q) is the
score given to the forecaster when outcome x is observed.
Scoring rules fit into standard statistical decision theory: a
scoring rule is a loss function where the action is to quote
a probability distribution [3].

A key feature of scoring rules is that they can be crafted
to elicit a forecaster’s honestly held belief. Such a scoring
rule is said to be proper. We can usefully overload the def-
inition of a scoring rule by defining a forecaster’s expected
score when X∼P as S(P,Q). A proper scoring rule has
the property that S(P,Q) ≥ S(P, P ) for Q 6= P . In other
words, if a forecaster thinks X ∼ P , they will minimize
their expected score by quoting P .

Scoring rules connect naturally to information theory.
Every proper scoring rules gives rise to a divergence

d(P,Q) := S(P,Q)−H(P ), (1)

where H(P ) := S(P, P ) is the (concave) entropy associ-
ated with the scoring rule. As we will see, we can prof-
itably reverse this connection and use a concave entropy
function to generate a scoring rule.

2. STATISTICAL INFERENCE

Although scoring rules are formulated to evaluate predic-
tions, they can be easily turned to the task of estimation.
Given a parametric model Qθ, we have the obvious esti-
mator

θ̂(x) = argmin
θ
S(x,Qθ). (2)

Typically, this amounts to solving the estimating equation
∂S(x,Qθ)/∂θ = 0. When the scoring rule is proper,
the estimating equation is unbiased [4] since at θ = θ0,
0 = ∂S(Qθ0 , Qθ)/∂θ = Eθ0∂S(X,Qθ)/∂θ. As a result,
inference via scoring rules fits into the established theory
of unbiased estimating equations. An important conse-
quence is that typically there will be a loss of efficiency.
If we define D := Eθ ∂2S/∂θ2 and J := Eθ (∂S/∂θ)2,
then the Godambe or sandwich information G cannot ex-
ceed the Fisher information F [5]:

G := DJ−1D ≤ F. (3)

3. LOCAL SCORING RULES

The logarithmic scoring rule or log score is the simplest
example of a scoring rule:

S(x,Q) = − log q(x). (4)

It is straightforward to see that using this for statistical in-
ference amounts to maximum likelihood estimation. Fur-
thermore, the divergence and entropy associated with the
log score are simply the Kullback-Leibler divergence and
Shannon entropy, respectively. It is also possible to show
that the log score is the only scoring rule that depends on
the value of the quoted probability distribution at the ob-
served outcome x and no other (counterfactual) outcome.

For this reason, we call the log score strongly local.
The main idea of this paper is the concept of a local scor-
ing rule. A local scoring rule is a rule that depends on the
quoted distribution at x and on a “neighbourhood” of x. It
turns out that local scoring rules are of the form [6]

S(x,Q) = −λ log q(x) + S0(x,Q), (5)

where λ ≥ 0 and S0(x,Q) is a 0-homogeneous function
ofQ. Consequently, when λ = 0, we obtain a scoring rule
that does not depend on the normalization of the quoted
probability distribution.
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4. ENTROPY AND SCORING RULES

Under mild regularity conditions, it can be shown [2, 7, 8]
that S(x,Q) is a scoring rule if and only if there exists a
concave function H(Q) such that

S(x,Q) = H(Q) +H?(x,Q)−H?(Q,Q), (6)

where H?(·, Q) is a subgradient of H at x. Furthermore,
H(Q) is the entropy associated with the scoring rule. In
practice, H?(·, Q) is often the gradient, in which case the
scoring rule is uniquely defined by H(Q).

The idea of locality amounts to requiring H(Q) −
H?(Q,Q) = λ, where λ is a Q-independent constant.
This essentially requires H(Q) to be of the form
H(Q) = −λ q(x) log q(x) +H1(Q), where H1(Q) is a
1-homogeneous function of Q. Eq. (5) then follows, with
λ ≥ 0 required for propriety.

4.1. Continuous outcome spaces

Let q(x) be a sufficiently differentiable and strictly pos-
itive probability density on a continuous outcome space
and let φ be a 1-homogeneous concave function of
{q(x), q′(x), . . . , q(k)(x)} for all x. Then

H(Q) =

∫
dxφ

(
x, q(x), q′(x), . . . , q(k)(x)

)
(7)

is 1-homogeneous and generates a local scoring rule of
order 2k in the derivatives of q(x). In this case, the neigh-
bourhood of x is an infinitesimal neighbourhood about x.

We expect only rules of order 2 and 4 to be of practical
use. Second order rules take the form [6, 9]

S(x,Q) =

(
− d

dx
∂

∂q′
+

∂

∂q

)
φ[q], (8)

where φ[q] = φ(x, q, q′). The simplest case, which oc-
curs when φ[q] = − 1

2
q′2

q , was discovered by Almeida &
Gidas [10] and by Hyvärinen [11], who dubbed it score
matching:

S(x,Q) =
q′′(x)
q(x)

− 1
2

(
q′(x)
q(x)

)2

. (9)

4.2. Discrete outcome spaces

On a discrete outcome space, the neighbourhood is de-
fined by an undirected graph G, i.e. y is in the neighbour-
hood of x if y is in the connection set of x. This rela-
tionship is also symmetric. Local scoring rules are then
generated by the entropies of the form [12]

H(Q) =
∑

K∈M
φK(QK), (10)

whereM is the set of maximal cliques, φK is
1-homogeneous and concave, and QK is the quoted dis-
tribution restricted to clique K. Specifically,

S(x,Q) =
∑

K∈Mx

∂

∂qx
φK(QK), (11)

whereMx are the maximal cliques containing x, and qx :=
q(x). Note that decomposition of the entropy into func-
tions over cliques is directly analogous to the Hammersley-
Clifford theorem for the factorization of a joint probabilty
distribution on a graph [13].

5. EXAMPLES

5.1. Pseudolikelihood

Suppose x = (x1, . . . , xN ) is an outcome from a product
space. Let x\i := {xk|k 6= i}. Then the pseudolikelihood
[14] is

PL(P ;X = x) :=
∏

i

P (Xi = xi|X\i = x\i). (12)

Defining y ∈ nhd(x) if and only if y\i = x\i for some
i, then for each i and y\i, Ki,y\i = {x|x\i = y\i} is
a clique. Simplifying our notation so that φK(QK) =
φi(QK),

S(x,Q) =
∑

i

Si

(
xi, Q(·|X\i = x\i)

)
(13)

is a scoring rule, where the Si are individual scoring rules
for a single variable. Using the log score for each Si jus-
tifies the use of the pseudolikelihood for inference:

SPL(x,Q) := − lnPL(Q;X = x) =
∑

i

ln
qx\i

qx
. (14)

In the case of binary data outcomes, using the Brier score,
S(x,Q) = (x−Q(X = 1))2, for each Si gives Hyvärinen’s
ratio matching method [15]. See [16] for a spatial mod-
elling application.

5.2. Overdispersion

Overdispersion is the observation that statistical models
do not always capture the amount of variation seen in the
data. In many cases, overdispersion is due to the fact
that there are unknown or unrecorded predictor variables.
More subtly, overdispersion may indicate a breakdown
of the assumption of independent observations. A phe-
nomenological solution that is sometimes appropriate is to
introduce a dispersion parameter φ to quantify the “anoma-
lous” variation, namely varY → φ varY , where we ex-
pect φ > 1.

The estimating equation for φ is often ad hoc. An ob-
vious approach, however, is to suppose the effective num-
ber of observations is n/φ, leading to the updated proba-
bility model:

q(y)→ q(y|φ) = q(y)1/φ

Z(φ)
. (15)

Since the normalization Z(φ) will typically be impossible
to compute, the usual methods of estimation will come up
short. The local scoring rule in eq. (9), however, gives a
delightfully simple expression:

φ̂ = −`(y)
2

`′(y)
, (16)

where `(y) := q′(y)/q(y).
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5.3. Sequential prediction

We end with a speculative application of local scoring
rules. Suppose we observe (x1, . . . , xn) iid outcomes and
wish to make a probabilistic prediction for xn+1. Given
a parametric model Qθ, if θ̂n is a consistent estimator for
θ, then we would quote Qn := Qθ̂n for xn+1. When we
are in the model, the desired result is Eθ KL(P,Qn) →
1
2n
−1, where KL is the Kullback-Leibler divergence.
Normalized maximum likelihood gives the optimal se-

quential prediction [17]:

q(xn+1) =
q(xn+1|θ̂n+1(x1:n, xn+1))∑

y q(y|θ̂n+1(x1:n, y))
, (17)

where θ̂n+1 is the maximum likelihood estimate. Unfor-
tunately, however, the denominator is often infinite. One
might hope that there exists an appropriate local scoring
rule that gives rise to a different estimator θ̂ and a di-
vergence which does not depend on normalization of the
prediction. Admittedly, the loss of efficiency detailed in
eq. (3) means we can expect only kn−1 convergence with
k ≥ 1

2 , but this may be an acceptable price to pay for
tractability.

6. CONCLUSION

In addition to evaluating predictions, scoring rules provide
a useful approach to statistical estimation. The require-
ment that a scoring rule be local gives rise to a surpris-
ing class of scoring rules that do not depend on the nor-
malization of the quoted probability distribution. Conse-
quently, inference can be carried out in models for which
the normalization is either difficult or impossible to com-
pute. Local scoring rules also appear to provide a unifying
framework in which to understand existing approaches to
such intractable problems. It would be interesting to see
whether local scoring rules could be adapted to so called
doubly intractable problems in Bayesian inference.
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LOSSY IS LAZY

Susanne Still

Information and Computer Sciences, University of Hawaii at Mānoa,
1680 East-West Road, Honolulu, HI 96822, USA, sstill@hawaii.edu

ABSTRACT

Shannon’s rate-distortion curve characterizes optimal lossy
compression. I show here that the optimization principle
that has to be solved to compute the rate-distortion func-
tion can be derived from a least effort principle: minimiz-
ing required thermodynamic effort necessitates the mini-
mization of information (compatible with a given fidelity).
Retaining less information costs less physical effort. In
that sense, lossy compression is energy efficient, in other
words, lossy is lazy.

1. INTRODUCTION

Rate distortion theory [1, 2, 3, 4] underlies much prac-
tical work in signal processing. It quantifies the rate at
which data can be transmitted, given a tolerable level of
fidelity. Shannon considered [1] “the set of messages of
a long duration, say T seconds. The source is described
by giving the probability density, in the associated space,
that the source will select the message in question [p(x)].
A given communication system is described (from the ex-
ternal point of view) by giving the conditional probability
[p(y|x)] that if the message x is produced by the source
the recovered message at the receiving point will be y.”

Input messages, or input data, x, are then compressed
into a representation, y, such that a certain desired level
of fidelity is achieved, rather than perfect reconstruction.
In other words, information is lost. In this process, some
average distortion, D[X,Y ] := 〈d(x, y)〉p(x,y) is encoun-
tered. The most efficient encoding compatible with a given
quality of reproduction minimizes the mutual information1

I[X,Y ] :=
〈

ln
[

p(x,y)
p(x)p(y)

]〉
p(x,y)

under the constraint of

fixed average distortion, D.
Shannon thus defined the rate,R(D), of generating in-

formation compatible with a given distortion as the mini-
mum of the mutual information under this constraint: 2

R(D) := min
p(y|x)

I[X,Y ] (1)

s.t. D[X,Y ] = D.

1For simplicity, we measure information in units of the natural log-
arithm (nats). The shorthand 〈·〉p denotes the average taken over the
distribution p.

2Notation uses the convention in [4]: capital letters X and Y de-
note random variables. For visual clarity, all optimization problems ap-
pear without the constraints that ensure normalization and positivity of
p(y|x).

The minimum is taken over all possible communication
systems, i.e. probabilistic assignments p(y|x). The opti-
mal rate is achievable, and algorithms exist for computing
the rate-distortion function [3, 4].

This problem has a simple physical motivation, which
I will now develop.

2. EFFORT OF CODING

Output messages are distributed according to p(y).3 How-
ever, when a specific input message, x, is given, then the
corresponding code messages are distributed according to
p(y|x). Imagine a physical system which is changed from
a state described by the distribution p(y) to one described
by p(y|x). This change requires effort. How much effort?

The second law of thermodynamics tells us that we
need to put in at least as much work as the resulting free
energy difference, which is, on average over input x,

∆F [X,Y ] := 〈F [p(y|x)]〉p(x) − F [p(y)] , (2)

where F [p] denotes the generalized, or nonequilibrium
free energy, F [p] = 〈E〉p+kBT 〈ln[p]〉p,4 which has been
used by a number of authors to describe nonequilibrium
systems (see e.g. [5, 6, 7, 8, 9, 10, 11, 12, 13, 14], and ref-
erences therein). It reduces to the thermodynamic equilib-
rium free energy when evaluated on the equilibrium dis-
tribution.

3. LEAST EFFORT PRINCIPLE

Typically, a representation of a quantity of interest is pro-
duced for some purpose, e.g. communication and repro-
duction of the original source data [1, 2, 4], or work ex-
traction from a physical system [15, 16]. Let us define
the function u(x, y) to measure the general usefulness of a
specific data representation. Its average value,U [X,Y ] :=
〈u(x, y)〉p(x,y) then quantifies the utility of the represen-
tation.

We are now in a position to state a least effort principle
demanding that input data should be represented in such a
way that the average free energy change (which is a lower
bound on the effort) is minimized. Define the least effort,

3Keep in mind that p(y) = 〈p(y|x)〉p(x).
4kB is the Boltzmann constant, and T the temperature of a heat bath

surrounding the system. The assumption is that the system exchanges
only heat with the surroundings, and that the heat bath is large compared
to the system which may be driven arbitrarily far from equilibrium by a
change in external parameters. These parameter changes allow for doing
work on and extracting work from the system.
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L(U), involved in representing x as y by the minimum
free energy change compatible with utility U :

L(U) := min
p(y|x)

∆F [X,Y ] (3)

s.t. U [X,Y ] = U.

The least effort function quantifies how conservative one
can be with the expenditure of energy while achieving the
intended utility. In other words, it measures how lazy one
can afford to be.

Observations related to least effort coding have previ-
ously come up in the context of language [17, 18]. The
effort of the speaker was modeled as the entropy of the
code signals, while the effort for the listener was modeled
as conditional entropy of the objects of reference, given
the signal [18]. The combined effort was minimized, and
the relative importance of the two terms was controlled
by a parameter. At a critical value, Zipf’s law [17] was
retrieved at a phase transition [18]. While related in gen-
eral spirit, the measure used in [18] is not the same as the
physical effort discussed here.5

4. RATE-DISTORTION CURVE IS A LEAST
EFFORT FUNCTION

Let a physical system that is in a state described by p(y)
have internal energy E(y), and let the energy associated
with the state described by p(y|x) be denoted by Ex(y).
Write the difference as E(x, y) := Ex(y) − E(y), and
denote its average by E[X,Y ] := 〈E(x, y)〉p(x,y). Then
the least effort involved in the change p(y) → p(y|x),
averaged over all x, is given by

∆F [X,Y ] = 〈Ex(y)〉p(y|x)p(x) − kBTH[Y |X]

−〈E(y)〉p(y) + kBTH[Y ] (4)
= E[X,Y ] + kBTI[X,Y ] . (5)

Now consider the case that the average energy does not
change, i.e. 〈Ex(y)〉p(y|x)p(x) = 〈E(y)〉p(y), in other
words, E[X,Y ] = 0. A simple example is given by a par-
ticle in a double well potential. For simplicity of the ex-
position, make the potential rectangular, having an energy
barrier of infinite energy between two wells of identical
width and identical energy, E0. Coarse grain the position
of the particle so that y = 0 (y = 1) denotes the particle in
the left (right) well. Then E(y = 0) = E(y = 1) = E0,
and hence 〈E(y)〉p(y) = E0. The particle can be forced
into either well by deformation of the potential. Let x ∈
R, and let the protocol that achieves this preparation of y
depend on x, so that, at the end of the protocol, y = θ(x).
Let, e.g.,

Ex(y) =

{
E0 if y = θ(x)
∞ else

, (6)

5Written in the notation used here, the effort in [18] was quan-
tified by λH[X|Y ] + (1 − λ)H[Y ], where the parameter λ
weights how much listener and speaker contribute to the total effort.
H[Y ] = −〈log[p(y)]〉p(y) denotes Shannon entropy, and H[X|Y ] =
−〈log[p(x|y)]〉p(x,y) conditional entropy.

and

p(y|x) =

{
1 if y = θ(x)
0 else

. (7)

Then 〈Ex(y)〉p(y|x) = E0, which is independent of x, and
therefore 〈Ex(y)〉p(y|x)p(x) = E0, for any p(x).

For classical systems and measurements, things can
often be set up in such a way that the assumptionE[X,Y ] =
0 is valid. It could, however be violated by quantum entan-
glement, and also possibly in living, metabolizing agents.
Both of these areas are outside the scope of this paper.

Under the assumption that the average energy does not
change, the free energy change is proportional to mutual
information:

∆F [X,Y ] = kBTI[X,Y ] . (8)

The least effort principle thus dictates minimization of
mutual information.

The optimization problem in Eq. (3) can be solved us-
ing the method of Lagrange multipliers. The constraint
is added to the objective function, with a Lagrange multi-
plier that effectively controls the trade-off between mini-
mal effort and achieved utility. For data compression, util-
ity is related to fidelity and can be identified with negative
distortion.

A least effort data compression then has to solve

min
p(y|x)

(
∆F [X,Y ] + λD[X,Y ]

)
. (9)

Comparison with Eq. (8) reveals that this is equivalent to
minp(y|x)

(
I[X,Y ] + λD̄[X,Y ]

)
, where D̄ = D/kBT is

the distortion measured in units of kBT . The solution to
this problem lies on the rate-distortion curve,R(D̄), as we
can see from comparison with the optimization problem in
Eq. (1). This shows that the rate-distortion curve is a least
effort function.

This finding is similar, but not identical to the formal
mapping of the rate-distortion function onto free energy
minimization in multiphase chemical equilibrium [3], and
to the statements in [19, 20], where large deviations the-
ory was used to show a formal analogy between the rate-
distortion function and the free energy of a chain of par-
ticles, i.e. the minimum amount of work needed to com-
press the chain. These formal analogies are based on iden-
tifying the distortion function with physical aspects of a
corresponding system, e.g. its energy. It was pointed out
in [20] that these formal analogies have some interpreta-
tional freedom. Specifically, the interpretation of the La-
grange multiplier that effectively controls the trade-off be-
tween distortion and compression depends on the details
of the analogy. In the mechanical analogy, it can be inter-
preted either as inverse temperature [19], or as a conjugate
force [20]. In contrast, the derivation given above retains
explicitly the distortion constraint and shows that physi-
cal temperature adjusts the units by rescaling the distor-
tion measure, or, alternatively, by rescaling the trade-off
parameter.
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5. CHANNEL CAPACITY

The output messages y can also be interpreted as mea-
surement outcomes. If the measurement is useful, then
the observer learns something about x when given y. In
the absence of y, the observer’s best guess about x is ex-
pressed by the prior probability p(x), but when the mea-
surement is received, this changes to the posterior dis-
tribution p(x|y) = p(y|x)p(x)/p(y) (Bayes’ rule) [21].
Changing of the observer’s knowledge state from prior to
posterior comes at a cost; it takes a certain amount of ef-
fort to implement this change. By the same arguments
as above, the minimum amount of work that has to be
done (on average) is given by the free energy difference
〈F [p(x|y)]〉p(y) − F [p(x)].

This quantity also determines the maximum amount of
work that can be extracted from a physical system which
is (partially) described by x, by exploiting knowledge of
y. By convention, energy flowing into the system is pos-
itive, while energy flowing out of the system has a nega-
tive sign. Hence, at most F [p(x)] − 〈F [p(x|y)]〉p(y) can
be extracted as work. Assuming once again no change in
average energy, i.e. 〈E(x)〉p(x) = 〈Ey(x)〉p(x|y)p(y), we
have

F [p(x)]− 〈F [p(x|y)]〉p(y) = −kBTI[X,Y ] . (10)

Therefore, maximization of extractable work motivates max-
imization of mutual information.6

A simple example in which the condition 〈E(x)〉p(x) =
〈Ey(x)〉p(x|y)p(y) holds is that of measuring the x-position
of a particle in a box connected to a heat bath at tempera-
ture T . Let the length of the box be L. Then p(x) = 1/L
inside the box and zero outside. The energy of the particle
does not depend on its x-position within the box, where it
is given by the particle’s kinetic energy, EK , but the walls
of the box pose an infinite energy barrier. Thus we may
write:

E(x) =

{
EK ∀x ∈ [0, L]
∞ ∀x /∈ [0, L]

. (11)

The average energy is 〈E(x)〉p(x) = EK .
Knowing that the particle is confined e.g. to the left

side of the box results in a posterior of p(x|y = “LEFT”) =
2/L for x between 0 and L/2, and zero outside that range
(similarly for y = “RIGHT”). This distribution describes
a particle in a box of half of the length, but otherwise the
same as the original box. The particle’s energy is thenEK

inside the range of the smaller box, and infinite outside
that range:

Ey=“LEFT”(x) =

{
EK ∀x ∈ [0, L/2]
∞ ∀x /∈ [0, L/2]

, (12)

and

Ey=“RIGHT”(x) =

{
EK ∀x ∈ (L/2, L]
∞ ∀x /∈ (L/2, L]

, (13)

6Be reminded of the sign. I[X,Y ] is a non-negative quantity. Ex-
tracted work comes with a negative sign. Thus, more work can be ex-
tracted when I[X,Y ] is larger.

with an expected value of 〈Ey(x)〉p(x|y)p(y) = EK .7

Now, assume that the distribution p(y|x), which de-
scribes the data representation method, or, alternatively,
the measurement apparatus, be fixed. Then ask for the
physical system that best matches the measurement appa-
ratus in the sense that it allows for maximum work extrac-
tion, given the measurement (on average). Eq. (10) tells
us that the answer is given by Shannon’s channel capacity:

C = max
p(x)

I[X,Y ] . (14)

For a fixed channel, one chooses the source which would
allow for exploiting the knowledge obtained from the mes-
sages y towards maximum work extraction.

These are two sides of a coin: communicating more
information costs more effort, but the more informative a
measurement is about the state of a physical system, the
more work that can be extracted from the system given the
measurement outcome.

6. LEAST EFFORT MAXIMUM WORK
EXTRACTION

Imagine two correlated systems, X and Z with mutual
information I[X,Z]. An observer measures x, and repre-
sents it by y, which is obtained with probability p(y|x).
This representation, or measurement, can then be used to
extract work from system Z .

Knowledge of system Z , given y, is expressed by the
probability distribution p(z|y). By the same arguments as
above, the maximum amount of extractable work (aver-
aged over all measurements) is given by the free energy
difference F [p(z)]− 〈F [p(z|y)]〉p(y). Under the assump-
tion that the average energy does not change, this is given
by −kBTI[Y,Z].

The least effort data representation method which max-
imizes extractable work thus solves

min
p(y|x)

(I[X,Y ]− αI[Y, Z]) , (15)

The Lagrange multiplier α controls the trade-off between
work extractable from systemZ (which one wants to max-
imize) and necessary effort to represent system X (which
one wants to minimize). We recognize Eq. (15) as the
Information Bottleneck (IB) method [22], hereby lending
IB a new thermodynamic motivation: it finds the least ef-
fort representation of system X that allows for maximum
work extraction from a correlated system Z .

If X and Z are kept at two different temperatures, TX
and TZ , then α can be interpreted as the ratio TZ/TX : the
larger the temperature difference, the more beneficial it is
to keep relevant information, as it can be traded off for
more extractable work.

7. SUMMARY

Least effort coding leads to data representations that lie
on the rate distortion curve. Least effort is measured by

7This holds for all p(y), because 〈Ey(x)〉p(x|y) = EK , which is
independent of y.
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the average free energy difference, quantifying the least
amount of physical work necessary to change a system de-
scribed by the average output distribution to one described
by the specific output distribution necessary to produce
output messages when the input is known. Information
loss has to do with thermodynamic efficiency: least effort
is proportional to mutual information (under the assump-
tion that there is no average energy change). Codes that
are efficient in a rate-distortion sense are also energeti-
cally efficient. In that sense, lossy compression is lazy
compression, because it minimizes physical effort.

Channel capacity, on the other hand, represents the
maximum amount of work that could be extracted from a
source (on average) given the channel’s output messages.
In contrast to the above, where the source is fixed and the
optimization is over encoding schemes, here the channel
is given. The maximum is then taken over all possible
sources, thus optimizing over physical systems for the best
match in terms of possible work extraction.

The Information Bottleneck method provides the means
of finding a minimum effort compression (or data repre-
sentation) that allows for maximum work extraction from
another system by exploiting correlations.
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ABSTRACT

Explicit evaluation of the rate-distortion function has rarely
been achieved when it is strictly greater than its Shan-
non lower bound. In this paper, we consider the rate-
distortion function for the distortion measure defined by
an ε-insensitive loss function. We first present the Shan-
non lower bound for this distortion measure and provide a
necessary condition for its tightness. Then, focusing on
the Laplacian and Gaussian sources, we prove that the
rate-distortion functions of these sources are strictly greater
than their Shannon lower bounds and obtain analytic up-
per bounds for the rate-distortion functions. Small dis-
tortion limits of the bounds and approximate computation
of the rate-distortion function suggest that the Shannon
lower bound provides a good approximation to the rate-
distortion function for the ε-insensitive distortion mea-
sure.

1. INTRODUCTION

In source coding, the rate-distortion function R(D) of a
source shows the minimum information rate required to
reconstruct the source outputs with average distortion not
exceeding D. Rate-distortion functions have been explic-
itly evaluated for various sources and distortion measures.
The Shannon lower bound (SLB) RL(D) plays an impor-
tant role in the explicit evaluation of rate-distortion func-
tions of difference distortion measures. A common ap-
proach is to derive RL(D) and examine the condition for
R(D) to coincide with RL(D) [1, 2]. There have been,
however, only several results when R(D) > RL(D) for
all D. In this case, direct explicit evaluation of R(D) has
been achieved only in limited cases such as discrete mem-
oryless finite-alphabet sources [2] and a class of sources
under an absolute-magnitude distortion measure [3, 4, 5].
There have also been indirect approaches. Rose proposed
a deterministic annealing algorithm to generate R(D) based
on the fact that under the squared distortion measure, the
optimal reconstruction is purely discrete when R(D) >
RL(D) [6]. Buzo et al. obtained upper and lower bounds
for R(D) under the Itakura-Saito distortion measure [7].

In this paper, we focus on the ε-insensitive loss func-
tion as a distortion measure, which was introduced to sup-
port vector machines for regression [8]. We obtain the
SLB for this difference distortion measure, which is ana-
lytically evaluable for arbitrary sources with finite differ-
ential entropy. Then, we examine the condition for the

rate-distortion function to coincide with the SLB. Taking
the Laplacian and Gaussian sources as specific examples,
we prove that the rate-distortion functions of these sources
lie strictly above their SLBs for all D when ε > 0 and
derive analytic upper bounds for the rate-distortion func-
tions. Investigation of small distortion limit of these upper
bounds shows that the SLB has the accuracy of O(ε2) as
D → 0 in both sources. We then apply the learning al-
gorithm of the finite mixture of ε-insensitive component
distributions developed in [9] and approximately compute
the rate-distortion function. The approximate computa-
tion also suggests that the SLB provides a good approxi-
mation to the rate-distortion function.

2. RATE-DISTORTION FUNCTION FOR THE
ε-INSENSITIVE DISTORTION MEASURE

2.1. Rate-Distortion Function

Let X and Y be random variables on R and d(x, y) be the
non-negative distortion measure between x and y. The
rate-distortion function R(D) of the source X ∼ p(x)
with respect to the distortion d is defined by

R(D) = inf
q(y|x):E[d(X,Y )]≤D

I(q), (1)

where

I(q) =

∫ ∫
q(y|x)p(x) log

q(y|x)∫
q(y|x)p(x)dx

dxdy

is the mutual information and E denotes the expectation
with respect to q(y|x)p(x). R(D) shows the minimum
achievable rate for the i.i.d. source with the density p(x)
under the given distortion measure d [2, 1].

The above minimization problem can be reformulated
as a minimization problem over the reproduction density
q(y),

inf
q(y)

[
−

∫
p(x) log

∫
exp(sd(x, y))q(y)dydx

]
, (2)

where s ≤ 0 is a parameter [2, 10]. Then, if there ex-
ists qs(y) that achieves the infimum in Eq. (2), R(D) is
parametrically given by

R(Ds) = −
∫

p(x) log

∫
exp(sd(x, y))qs(y)dydx + sDs,

Ds =

∫ ∫
p(x)qs(y|x)d(x, y)dxdy, (3)
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where the optimal conditional density of reconstruction,
qs(y|x) is defined by

qs(y|x) =
qs(y) exp(sd(x, y))∫
qs(y) exp(sd(x, y))dy

. (4)

In Eq. (3), R(D) is parameterized by s ≤ 0, which corre-
sponds to the slope of the tangent of R(D) at (Ds, R(Ds))
and hence is referred to as the slope parameter [2].

From the properties of the rate-distortion function R(D),
we know that R(D) > 0 for 0 < D < Dmax, where

Dmax = inf
y

∫
p(x)d(x, y)dx, (5)

and R(D) = 0 for D ≥ Dmax [2, p. 90].

2.2. ε-Insensitive Loss Function

In this paper, we focus on the following difference dis-
tortion measure defined by the ε-insensitive loss function
ρε,

d(x, y) = ρε(x − y), (6)

where

ρε(z) =

{
|z| − ε, (|z| ≥ ε),
0, (|z| < ε).

This loss function with ε > 0 was introduced to sup-
port vector regression in order to provide a sparsity in-
ducing mechanism [8, 11]. We denote the rate-distortion
function for this distortion measure by R(ε)(D) and the
maximum distortion Dmax in Eq. (5) by D

(ε)
max.

2.3. Shannon Lower Bound

Generally for difference distortion measures, Shannon ob-
tained a lower bound to R(D), which is referred to as
the Shannon lower bound (SLB) [2, p. 92]. For the ε-
insensitive distortion measure, it is parametrically expressed
as

R(ε)(Ds) ≥ R
(ε)
L (Ds) = h(p) − h(gs), (7)

Ds =

∫
ρε(x)gs(x)dx, (8)

where h(p) = −
∫

p(x) log p(x)dx is the differential en-
tropy of the probability density p and gs is the probability
density function defined by1

gs(x) =
esρε(x)

∫
esρε(z)dz

. (9)

We explicitly evaluate h(gs) to obtain the SLB. The
density gs is explicitly given by

gs(x) =

{ 1
Cs

, (|x| < ε),
1

Cs
es(|x|−ε), (|x| ≥ ε),

(10)

where

Cs = 2
1 + |s|ε

|s| . (11)

1We omit the dependency on ε in notations unless we put ε = 0.

Its differential entropy is evaluated as,

h(gs) = log

(
2
1 + |s|ε

|s|

)
+

1

1 + |s|ε . (12)

The slope parameter s is related to the average distortion
Ds by Eq. (8), which is rewritten as,

Ds =
1

(1 + ε|s|)|s| . (13)

Solving this for |s| yields |s| =
−Ds+

√
D2

s+4Dsε

2Dsε . Putting
this back into Eq. (12), from Eq. (7), we obtain the follow-
ing theorem.

Theorem 1 The rate-distortion function for the ε-insensitive
distortion measure in Eq. (6) satisfies R(ε)(D) ≥ R

(ε)
L (D)

for all D, where

R
(ε)
L (D) = h(p) − log

(
1 + D̃ +

√
D̃2 + 2D̃

)

− log(2ε) + D̃ −
√

D̃2 + 2D̃,

D̃ = D
2ε and h(p) is the differential entropy of the source

density.

2.4. Condition for R(ε)(D) = R
(ε)
L (D)

For any negative value of the slope parameter s, the lower
bound R

(ε)
L (Ds) coincides with R(ε)(Ds) if and only if

the condition

p(x) =

∫
q(y)gs(x − y)dy, (14)

holds for all x and a valid density function q(y) [2, p. 94].
The condition in Eq. (14) is equivalent to

P (ω) = Q(ω)Gs(ω), (15)

where P , Q and Gs are the Fourier transforms (character-
istic functions) of p, q and gs respectively.

The Fourier transform of gs is specifically given by

Gs(ω) =
s2

s2 + ω2
· ε|s| sin(ωε)

ωε + cos(ωε)

1 + |s|ε
≡ L|s|(ω) · M

(ε)
|s| (ω). (16)

Here, the first factor, defined as L|s|(ω) = s2

s2+ω2 , is the
characteristic function of the Laplace distribution with pa-
rameter |s| whose density function is l|s|(x) = |s|

2 es|x|.

The second factor, M
(ε)
|s| (ω) =

ε|s| sin(ωε)
ωε +cos(ωε)

1+|s|ε , is the
characteristic function of the mixture of the delta distri-
butions (on −ε and ε with equal weight) and the uni-
form distribution on [−ε, ε] mixed with the proportion 1 :

ε|s|. More specifically, the density function m
(ε)
|s| (x) of

this mixture is expressed as

1

1 + ε|s|
δ(x − ε) + δ(x + ε)

2
+

ε|s|
1 + ε|s|u[−ε,ε](x),
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where δ is the Dirac delta function and u[−ε,ε] is the den-
sity function of the uniform distribution on [−ε, ε]. Hence,
Eq. (16) means that the density gs is given by the convo-
lution l|s| ∗ m

(ε)
|s| of l|s| and m

(ε)
|s| . Summarizing Eqs. (15)

and (16), we see that for the ε-insensitive distortion mea-
sure, the condition for R

(ε)
L (D) to coincide with R(ε)(D)

is the existence of a valid characteristic function Q(ω) sat-
isfying

P (ω) = Q(ω)L|s|(ω)M
(ε)
|s| (ω), (17)

for the characteristic function P (ω) of the source distribu-
tion.

The above condition leads to a necessary condition for
R(ε)(Ds) = R

(ε)
L (Ds).

Lemma 1 Given any s ≤ 0, if R(ε)(Ds) = R
(ε)
L (Ds)

then R(0)(Ds) = R
(0)
L (Ds), that is, the SLB coincides

with the rate-distortion function under the absolute dis-
tortion measure.

2.5. General Upper Bound

Let us turn to upper bounds for R(ε)(D). Since ρε(x) ≤
ρ0(x) = |x|, we have a trivial upper bound,

R(ε)(D) ≤ R(0)(D),

where R(0)(D) is the rate-distortion function for the absolute-
magnitude distortion measure, d(x, y) = |x − y|.

Another more informative upper bound is obtained by
taking q(y|x) = gs(y−x), where gs is defined by Eq. (9),
in the original rate-distortion problem in Eq. (1) [2, p. 103].
This yields the following upper bound,

R(ε)(Ds) ≤ R
(ε)
U (Ds) = h(rs) − h(gs), (18)

where

rs(y) = (gs ∗ p)(y) =

∫
gs(y − x)p(x)dx (19)

and Ds is given by Eq. (8) and further by Eq. (13). Note
in Eq. (18) that the term h(gs) is common to the SLB and
is specifically given by Eq. (12).

Since gs is defined by ρε as in Eq. (9), h(rs) is ana-
lytically intractable for many sources. Hence, we create a
further upper bound which is analytically obtained for any
sources with finite variance.

Let vp ≡
∫

x2p(x)dx −
(∫

xp(x)dx
)2

and v
(ε)
s ≡∫

x2gs(x)dx, which is specifically evaluated as,

v(ε)
s =

2

Cs

{
ε3

3
+

1

|s|

(
ε2 +

2

|s|ε +
2

|s|2
)}

.

Then, the maximum entropy principle of the Gaussian dis-
tribution yields the following upper bound to R

(ε)
U (D),

which is referred to as the Gaussian entropy bound.

Lemma 2 For s ≤ 0, R(ε)(Ds) ≤ R
(ε)
U (Ds) ≤ R

(ε)
GE(Ds),

where

R
(ε)
GE(Ds) =

1

2
log

(
2πe(vp + v(ε)

s )
)

− h(gs). (20)

In the next sections, we will evaluate these upper bounds
for the Laplacian and Gaussian sources to examine the
tightness of the general lower bound obtained in Theorem
1.

3. LAPLACIAN AND GAUSSIAN SOURCES

3.1. Laplacian Source

In this subsection, we consider the Laplacian source with
parameter α,

p(x) = lα(x) =
α

2
e−α|x|. (21)

The SLB for this source is given by Theorem 1 with the
differential entropy, h(p) = 1 − log α

2 . The maximum
distortion in Eq. (5) is

D(ε)
max =

∫
ρε(x)p(x)dx =

1

α
e−αε. (22)

For the absolute-magnitude distortion measure (ε = 0),

R(0)(D) = R
(0)
L (D) = − log(αD), (0 ≤ D ≤ 1/α),

(23)
holds [2, p. 95, Example 4.3.2.1] because the condition in
Eq. (17) is satisfied by M

(0)
|s| (ω) = 1 and Q(ω) = α2

|s|2 +(
1 − α2

|s|2
)

α2

α2+ω2 , which is the Fourier transform of the

valid probability density, q(y) = α2

|s|2 δ(y)+
(
1 − α2

|s|2
)

lα(y).

For ε > 0, however, R(ε)(D) is strictly greater than R
(ε)
L (D)

for all D [12].
To obtain an analytic upper bound for R(ε)(D), we

evaluate h(rs) in Eq. (18). Since the differential entropy
of rs(y) is not analytically simplified any more, we evalu-
ate it from above to obtain an upper bound for R(ε)(Ds).

Let us define Bs ≡ s
α−s

1
αe−2αε + s2(α−s)−2α3

(α2−s2)sα and

Es ≡ s
α−s

1+αε
α2 e−2αε + s

s+α
1+αε

α2 + 2α2

α2−s2
1−sε

s2 . Then,
we have the further upper bound, which we will refer to
as the analytic upper bound in Section 4 [12].

Theorem 2 For the Laplacian source density in Eq. (21),
R

(ε)
L (Ds) < R(ε)(Ds) ≤ R

(ε)
U (Ds) ≤ R

(ε)
AU (Ds), where

R
(ε)
AU (Ds) ≡ − log

cs

2Cs
− αε

Cs
Bs +

α

Cs
Es −h(gs). (24)

In the low distortion limit, D → 0 and |s| → ∞, we
have ([12]),

R
(ε)
L (0) < R(ε)(0) ≤ R

(ε)
L (0) +

(αε)2

2
+ O(ε3).

3.2. Gaussian Source

In this subsection, we consider the Gaussian source with
mean zero and variance σ2,

p(x) =

√
1

2πσ2
e−

x2

2σ2 . (25)

The differential entropy of this source is h(p) = 1
2{1 +

log(2πσ2)}. Since R(0)(D) > R
(0)
L (D) holds for all D

[3], Lemma 1 and Lemma 2 lead to the following theorem.
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Figure 1. Rate-distortion bounds for the Laplacian source.

Theorem 3 For the Gaussian source density in Eq. (25),
R

(ε)
L (Ds) < R(ε)(Ds) ≤ R

(ε)
U (Ds) ≤ R

(ε)
GE(Ds), where

R
(ε)
GE(Ds) =

1

2
log

(
2πe(σ2 + v(ε)

s )
)

− h(gs). (26)

In the limit, |s| → ∞, v
(ε)
s → ε2/3. This means that the

SLB given by Theorem 1 provides an approximation to
R(ε)(D) with accuracy ε2

6σ2 as D → 0.

4. NUMERICAL EVALUATION

Figure 1 depicts the functions R
(ε)
L (D) and R

(ε)
AU (D) for

the Laplacian source in Eq. (21) with α =
√

2 when
ε = 0.1. It also shows R

(ε)
GE(D) in Eq. (20) with vp =

2/α2 = 1 and the trivial upper bound R(0)(D) given by
Eq. (23). It is observed that the analytic upper bound
and the SLB are very close to each other for small dis-
tortion (D < 0.01). The analytic upper bound becomes
looser than the Gaussian entropy bound for large distor-
tion (0.05 < D) while the trivial upper bound is relatively
more informative about R(ε)(D) in the vicinity of D

(ε)
max

when combined with the SLB.
Then, restricting the reconstruction distribution to be a

discrete distribution with finite mass points, we estimated
the parameters {ak; ak ≥ 0, k = 1, · · · , K,

∑K
k=1 ak =

1} and {yk ∈ R; k = 1, · · · , K} of the finite mixture
model,

∑K
k=1 akgs(x−yk), by the learning algorithm de-

veloped in [9], and approximately computed the 6 points
on the rate-distortion function corresponding to |s| = 1.25,
2.5, 5, 10, 20, and 40. The obtained approximations are
very close to the SLB (Fig.1).

5. CONCLUSION

In this extended abstract, we have shown upper and lower
bounds for the rate-distortion function of the ε-insensitive
distortion measure. We derived the SLB, which is ap-
plicable to any source densities. Focusing on the Lapla-
cian and Gaussian sources, we have proved that the rate-
distortion functions for these sources are strictly greater
than the corresponding SLBs for all D and provided upper
bounds for the rate-distortion functions, which are proved

to have accuracy of O(ε2) in the small distortion limit.
We have demonstrated through numerical evaluation that
the SLB is very accurate in the small distortion region
while it also provides a good approximation to R(ε)(D)
for the high distortion region as the approximate compu-
tation suggests.
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ABSTRACT

Many learning machines which have hidden variables or
hierarchical structures contain singularities in parameter
spaces. The likelihood function near singularities can not
be approximated by any Gaussian function. At a regular
point which is in a neighborhood of a singularity, the non-
Gaussian likelihood function becomes to be Gaussian as
the number of training samples increases. In many statis-
tical models, a singularity corresponds to a smaller model,
hence the transition of the likelihood function from non-
Gaussian to Gaussian represents the discovery process of
the structure of a true distribution. The conventional infor-
mation criteria AIC and DIC are made on the assumption
that the likelihood function is Gaussian, resulting that they
can not be applied to observation of discovery process.
Recently, a new information criterion WAIC was devised
based on singular learning theory which holds for both
Gaussian and non-Gaussian likelihood functions. In this
paper, we experimentally compare AIC, DIC with WAIC
in discovery process, and show that the generalization loss
can be estimated by WAIC but not by either AIC or DIC.

1. INTRODUCTION

Many learning machines which have hidden variables or
hierarchical structures are not regular statistical models.
In fact, they have a lot of parameters whose Fisher in-
formation matrices are not invertible. Such a parameter
is called a singularity and a statistical model which con-
tains a singularity is called a singular model. One might
think a singular model is special or exceptional, however,
in fact, almost all learning machines are singular. Arti-
ficial neural networks, normal mixtures, hidden Markov
models, Boltzmann machines, and Bayesian networks are
main examples. Deep learning of such machines utilizes
singularities.

In a regular statistical model, a parameter that rep-
resents a smaller model is a regular point of the larger
model. On the other hand, in a singular model, it is not.
In this paper, we study a singular model and analyze a
case when a true parameter is a regular point in the neigh-
borhood of a singularity. Then, if the number of training
samples is small, the estimated parameter seems to be sin-
gular, whereas, if it becomes large, the true and regular
parameter can be distinguished from singularities. We call
such statistical event a discovery phenomenon.

It is well known that the generalization loss of a regu-

lar statistical model can be estimated by AIC[1] or DIC[2,
3]. However, in the discovery phenomenon, neither AIC
nor DIC is applicable. Recently, a new information crite-
rion, WAIC[4, 5], was devised based on singular learning
theory, and it was proved that WAIC can be used to es-
timate the generalization loss even if a statistical model
is singular or even if a true distribution is not realizable
by a statistical model. Researches of applying WAIC to
hierarchical Bayesian modelling are reported [6, 7, 8].

In this paper, we experimentally compare AIC, DIC,
and WAIC in a discovery phenomenon and quantitatively
show that WAIC can estimate changing of the generaliza-
tion loss, where as either AIC or DIC not.

2. INFORMATION CRITERIA

Let q(x) be a probability density function of x ∈ RN , and
X1, X2, ..., Xn be random variables which are indepen-
dently taken from q(x). A statistical model and a prior are
respectively denoted by p(x|w) and φ(w), where w is a
parameter contained in Rd. Note that, in this research, we
study the case when the parameter space has finite dimen-
sion and the training samples are independent and identi-
cal. The set of training samples is denoted by

Xn = (X1, X2, ..., Xn).

The posterior distribution is defined by

p(w|Xn) =
1

Z
φ(w)

n∏

i=1

p(Xi|w),

where Z is the normalizing constant. The average and
variance with respect to the posterior distribution are re-
spectively denoted by Ew[ ] and Vw[ ]. The predictive
distribution is defined by

p(x|Xn) = Ew[p(x|w)].

The generalization and training losses are respectively de-
fined by

G = −EX [log p(X|Xn)],

T = − 1

n

n∑

i=1

log p(Xi|Xn).

Both G and T are random variables because they are func-
tions of Xn. The minus log likelihood function is defined
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by

Ln(w) = − 1

n

n∑

i=1

log p(Xi|w).

The entropy and the empirical entropy are respectively de-
fined by

S = −EX [log q(X)],

Sn = − 1

n

n∑

i=1

log q(Xi).

In this paper, we mainly study information criteria which
estimate the generalization loss. AIC, DIC, and WAIC are
respectively defined by

AIC = T +
d

n
,

DIC = Ln(w) + 2{Ew[Ln(w)] − Ln(w)},

WAIC = T +
1

n

n∑

i=1

Vw[log p(Xi|w)],

where w = Ew[w]. If a true distribution is realizable by a
statistical model, that is to say, if there exists a parameter
w0 such that q(x) = p(x|w0), and if Fisher information
matrix at w0 is positive definite, then

E[G] =
d

2n
+ o(

1

n
),

E[AIC] = E[G] + o(
1

n
),

E[DIC] = E[G] + o(
1

n
).

Even if a true distribution is not realizable by or even if
the regularity condition is not satsified,

E[G] =
λ

n
+ o(

1

n
),

E[WAIC] = E[G] + O(
1

n2
),

where λ is the real log canonical threshold [4]. From
the mathematical point of view, information criteria AIC,
DIC, and WAIC are all based on asymptotic theory, hence
they require the sufficiently large number of training sam-
ples. However, both AIC and DIC are based on the as-
sumption that the posterior distribution can be approxi-
mated by some normal distribution, whereas WAIC is not.
In this paper, we experimentally study whether such dif-
ferent assumptions affect their performance as unbiased
estimators of the generalization loss or not.

3. AN EXPERIMENT

In this paper, we study a discovery phenomenon in a nor-
mal mixture model. Let g(x1, x2) be a normal distribution
of (x1, x2) ∈ R2 whose mean is equal to zero and whose
covariance matrix is the identity matrix.

A normal mixture model is defined by

p(x1, x2|w) = (1 − a)g(x1, x2)

+ag(x1 − b1, x2 − b2),
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Figure 1. n=80, Training samples
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Figure 2. n=80, Posterior distribution

where w = (a, b1, b2) is a parameter which satisfies

0 ≤ a ≤ 1, (b1, b2) ∈ R2.

For a prior distribution, we employ

φ(a, b1, b2) =
1

2πσ2
exp

(
− 1

2σ2
(b2

1 + b2
2)

)
,

where σ = 10. If 0 < a ≤ 1 and b = (b1, b2) ̸= 0,
then Fisher information matrix at w is positive definite,
hence the posterior distribution can be approximated by
a normal distribution if the number of training samples is
sufficiently large. On the other hand,

W0 = {(a, b1, b2) ; a = 0 or b1 = b2 = 0}.

is the set of singularities. In this paper, we study a case
when a true parameter is a regular point which is in a
neighborhood of W0,

q(x) = p(x|0.5, 0.3, 0.3).

In this case, q(x) consists of two normal distributions whose
centers are (0, 0) and (0.3, 0.3). They are different distri-
butions, however, almost overlap each other. If the num-
ber of training samples is not sufficiently large, then the
estimated distribution seems to be made of one normal
distribution.

For a given set of training samples, parameters were
taken from the posterior distribution using the conven-
tional Metropolis method. The initial parameter was set
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as the true parameter (0.5, 0.3, 0.3). After the 5000 burn-
in sampling steps, 2000 parameters were taken every 25
Metropolis steps. One trial step was given by a normal
distribution such that the acceptance probabilities were
between 0.1 and 0.8.

Then the set of training samples and the posterior dis-
tribution for n = 80 are respectively shown in Fig.1 and
Fig.2. In Fig.2, parameters are shown on two dimensional
space (a, b1) which are extracted from the three dimen-
sional space (a, b1, b2). In the case n = 80, the training
samples seem to be taken from one normal distribution.
The posterior distribution is made of neighborhoods of a
set of singularities, W0.

The set of training samples and posterior distribution
for n = 2560 are respectively shown in Fig.3 and Fig.4.
In this case, the posterior distribution is in a neighborhood
of the true parameter (05, 0.3, 0.3). The change of the
posterior distribution from singular Fig.2 to regular Fig.4
is called phase transition in statistical physics.

In Fig.5, experimental results for AIC, DIC, and WAIC
are shown. The horizontal line shows the numbers of
training samples,

n = 20, 40, 80, 160, 320, 640, 1280, 2560.

For each number of training samples, the vertical line shows
average values of
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are shown in the figure, where average values were cal-
culated using 200 independent sets of training samples.
Since the true parameter is a regular point, when n tends
to infinity,

nE[AIC − Sn] → d/2,

nE[WAIC − Sn] → d/2,

nE[G − S] → d/2,

nE[DIC − Sn] → d/2,

where d = 3 is the dimension of a parameter. If the true
parameter would be contained in a set of singularities W0,
then λ = 1/2, resulting that

nE[AIC − Sn] → 1/2,

nE[WAIC − Sn] → 1/2,

nE[G − S] → 1/2,

nE[DIC − Sn] → 1/2.

For cases n = 20, 40, 80, 160, AICs were larger than
G, DICs were smaller than G, and WAICs could estimate
G. For cases n = 320, 640, 1280, 2560, AICs, DICs, and
WAICs could estimate G. It seems that a critical point of
discovery was between n = 160 and 320.

4. DISCUSSION

Let us discuss information criteria in discovery phenomenon
from three viewpoints.

Firstly, we compared the ranges of applicability of in-
formation criteria. In this experiment, the true distribu-
tion is regular for and realizable by a statistical model,
although the true parameter is in the neighborhood of sin-
gularities. It was experimentally shown that WAIC can be
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used for n ≥ 40, whereas AIC and DIC n ≥ 320. This
result suggests that WAIC is applicable more widely than
AIC and DIC. In the more complex and deeper learning
machines used in practical applications, parameter regions
near singularities have more important roles, where WAIC
will be more useful.

Secondly, the leave-one-out cross validation (LOOCV)
is an alternative method how to estimate the generaliza-
tion loss. LOOCV requires n different posterior distri-
butions, which needs huge computational costs. The im-
portance sampling LOOCV (ISLOOCV) was introduced
whose computational cost is same as WAIC. It was proved
that WAIC, LOOCV, ISLOOCV are asymptotically equiv-
alent to each other [5]. In using ISLOOCV, a divergence
problem of the posterior importance was pointed out [9,
6]. It is the future study to compare WAIC, LOOCV, and
ISLOOCV.

And thirdly, for the mathematical proofs of WAIC and
WBIC, we need the assumption that the dimension of the
parameter space is finite and that the training samples are
independent and identical. Numerical study for the real
log canonical threshold of RBF network was reported [10].
The inifnite dimensional case was studied by using Gaus-
sian process case [11]. It is important to clarify the nece-
sarry and sufficient condition for the use of WAIC and
WBIC is the important problem for the future study.

5. CONCLUSION

In a discovery phenomenon, information criteria AIC, DIC,
and WAIC were compared as the unbiased estimator of the
generalization loss. Neither AIC nor DIC estimated the
generalization loss if the true parameter was in the neigh-
borhood of singularities, whereas WAIC did.
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ABSTRACT

This paper considers coding and predicting sequences
of random variables generated from a large alphabet. We
start by proposing a simple coding distribution formulated
by a product of tilted Poisson maximized likelihood dis-
tributions which achieves close to optimal performance.
Then we extend to Markov models, and in particular, tree
sources. A context tree based algorithm is designed which
seeks for the greatest savings in codelength when con-
structing the tree.

1. INTRODUCTION

Non-vanishing per symbol redundancy renders large al-
phabet compression mission impossible. However, distri-
butions living on large alphabets usually display a decay-
ing trend. For example, in Chinese, a subset of 964 char-
acters covers 90% inputs in Chinese[1] though the vocab-
ulary size is more than 100,000 in total.

Coding and prediction of strings of random variables
generated from an i.i.d model have been considered for
the large alphabet setting with the restriction that the or-
dered count list rapidly decreasing [3], or satisfies an en-
velope class property [4][5]. Although this i.i.d model is
not the best for compression or prediction when there is
dependence between successive characters, it serves as an
analytical tool that more complicated models can be based
on, and helps understand the behavior of coding and pre-
dictive distributions.

Suppose a string of random variablesX=(X1, . . ., XN)
is generated independently from a discrete alphabet A of
size m. Here the string length N can be random. Then X
is a member of the set X ∗ of all finite length strings

X ∗ =
∞⋃

n=0

{xn=(x1, . . . , xn) : xi ∈ A, i = 1, . . . , n}.

Our goal is to code/predict the string X .
Now suppose given N , each random variable Xi is

generated independently according to a probability mass
function in a parametric family PΘ = {Pθ(x) : θ ∈ Θ ⊂
Rm} on A. That is

Pθ(X1, . . . , XN |N = n) =
n∏

i=1

Pθ(Xi),

for n = 1, 2, . . . We are interested in the class of all dis-
tributions with Pθ(j) = θj parameterized by the simplex
Θ={θ=(θ1, . . ., θm) : θj≥0,

∑m
j=1θj=1, j=1, . . .,m}.

Let N = (N1, . . . , Nm) denote the vector of counts
for symbol 1, . . . ,m. The observed sample size N is the
sum of the counts N =

∑m
j=1Nj . Then Pθ(X) have

factorizations based on the distribution of the counts

Pθ(X) = P (X|N)Pθ(N).

The first factor is the uniform distribution on the set of
strings with given counts. The vector of counts N forms
a sufficient statistic for θ. In the particular case of all i.i.d.
distributions parameterized by the simplex, the distribu-
tion Pθ(N |N=n) is the multinomial(n, θ) distribution.

In the above, there is a need for a distribution of the to-
tal count N . Of particular interest is the case that the total
count is taken to be Poisson, because then the resulting
distribution of individual counts are independent.

Poisson sampling is a standard technique to simplify
analysis [6][7]. Here we consider the target family PmΛ =
{Pλ(N) : λj ≥ 0, j = 1, . . . ,m}, in which Pλ(N) is the
product of Poisson(λj) distribution forNj , j=1, . . . ,m.
It makes the total countN ∼ Poisson(λsum) with λsum =∑m
j=1 λj and yields the multinomial(n, θ) distribution

by conditioning on N = n, where θj = λj/λsum. And
the induced distribution on X is

Pλ(X) = P (X|N)Pλ(N).

Adopting the conventional definition for regret, we have

R(Q,Pλ̂, X) = log
1

Q(X)
− log

1

Pλ̂(X)
,

where Pλ̂(X) = maxλ∈Λ(Pλ(X)), and log is logarithm
base 2.

Here we can construct Q by choosing a probability
distribution for the counts and then use the uniform dis-
tribution for the distribution of strings given the counts,
written as Punif (X|N). Then the regret becomes

R(Q,Pλ̂, X) = log
Pλ̂(N)

Q(N)
.
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And the problem becomes: given the family PmΛ , how
to choose Q to minimize the maximized regret

min
Q

max
X

R(Q,Pλ̂, X) = min
Q

max
N

log
Pλ̂(N)

Q(N)
.

For the regret, the maximum can be restricted to a set
of counts instead of the whole space. A traditional choice
being Sm,n = {(N1, . . . , Nm) :

∑m
j=1Nj = n,Nj ≥

0, j = 1, . . . ,m} associated with a given sample size n,
in which case the minimax regret is

min
Q

max
N∈Sm,n

log
Pλ̂(N)

Q(N)
.

As is familiar in universal coding [8][9], the normal-
ized maximum likelihood (NML) distribution

Qnml(N) =
Pλ̂(N)

C(Sm,n)

is the unique pointwise minimax strategy whenC(Sm,n) =∑
N∈Sm,n

Pλ̂(N) is finite, and logC(Sm,n) is the mini-
max value. When m is large, the NML distribution can be
unwieldy to compute for compression or prediction. In-
stead we will introduce a slightly suboptimal coding dis-
tribution that makes the counts independent and show that
it is nearly optimal for every Sm,n′ with n′ not too differ-
ent from a target n. Indeed, we advocate that our simple
coding distribution is preferable to use computationally
when m is large even if the sample size n were known
in advance.

To produce our desired coding distribution we make
use of two basic principles. One is that the multinomial
family of distributions on counts matches the conditional
distribution ofN1, . . . , Nm given the sumN when uncon-
ditionally the counts are independent Poisson. Another is
the information theory principle [10][11][12] that the con-
ditional distribution given a sum (or average) of a large
number of independent random variables is approximately
a product distribution, each of which is the one closest in
relative entropy to the unconditional distribution subject to
an expectation constraint. This minimum relative entropy
distribution is an exponential tilting of the unconditional
distribution.

In the Poisson family with distribution λNj

j e−λj/Nj !,
exponential tilting (multiplying by the factor e−aNj ) pre-
serves the Poisson family (with the parameter scaled to
λje
−a). Those distributions continue to correspond to the

multinomial distribution (with parameters θj = λj/λsum)
when conditioning on the sum of counts N . A particu-
lar choice of a = ln(λsum/N) provides the product of
Poisson distributions closest to the multinomial in regret.
Here for universal coding, we find the tilting of individ-
ual maximized likelihood that makes the product of such
closest to the Shtarkov’s NML distribution. This greatly
simplifies the task of approximate optimal universal com-
pression and the analysis of its regret.

Indeed, applying the maximum likelihood step to a
Poisson count k produces a maximized likelihood value

of M(k) = kke−k/k!. We call this maximized likelihood
the Stirling ratio, as it is the quantity that Stirling’s ap-
proximation shows near (2πk)−1/2 for k not too small.
We find that this M(k) plays a distinguished role in uni-
versal large alphabet compression, even for sequences with
small counts k. Although M has an infinite sum by itself,
it is normalizable when tilted for every positive a. The
tilted Stirling ratio distribution is

Pa(Nj) =
N
Nj

j e−Nj

Nj !

e−aNj

Ca
, (1)

with the normalizer Ca =
∑∞
k=0 k

ke−(1+a)k/k!.
The coding distribution we propose and analyze is sim-

ply the product of those tilted one-dimensional maximized
Poisson likelihood distributions for a properly chosen a

Qa(N) = Pma (N) = Pa(N1) · · ·Pa(Nm).

If it is known that the total count is n, then the regret is
a simple function of n and the normalizer Ca. The choice
of the tilting parameter a∗ given by the moment condition
EQa

∑m
j=1Nj = n minimizes the regret over all positive

a. Moreover, value of a∗ depends only on the ratio be-
tween the size of the alphabet and the total count m/n.
Details about finding a∗ can be found in [3].

As compared to i.i.d class, Markov sources are richer
and more realistic. Suppose given N , each random vari-
ableXi is generated according to a probability mass func-
tion depending on its context (string of symbols preced-
ing it). Following Willems et al’ notations in [13], a tree
source can be determined by a context set S. Elements
of S are strings of symbols from A or concatenation of
“others” and suffixes of the existing contexts. “others”
represents complements of the contexts in S with a com-
mon parent. The collection of distributions is PΘS =
{Pθs(x) : θs ∈ ΘS , s ∈ S}, where ΘS is the parame-
ter set defined later. For simplicity, we require the order
of the model no larger than T ∈ {0, 1, 2, . . .}, so S ∈ CT ,
where CT is the class of tree sources with order T or less.

For each context s ∈ S with a given S, let θsx denote
the probability of symbol x ∈ A showing up after s, for
all x ∈ A. Then θs· = (θs1, . . . , θsm) lies in the set

ΘS ={θs·=(θs1, . . . , θsm) :x ∈ A, θsx≥0,
∑

x∈A
θsx=1}.

Again, we could take advantage of factorizations based
on the distribution of the counts NS = (Ns·)s∈S , where
Ns· = (Ns1, . . . , Nsm) is the count for all symbols given
context s ∈ S, and Pick the distribution for the total count
to be Poisson. It leads to the target family P |S|mΛ =
{Pλ(NS) : λsj ≥ 0, j = 1, . . . ,m, s ∈ S}, in which
Pλ(NS) is the product of Poisson(λsj) distribution for
Nsj , j=1, . . . ,m and s ∈ S.

There are two sources of costs involved in using a tree
model. One is the coding cost for the string given the
tree. The other is the description costD(S) for describing
the tree. Overall, we want to find Q which uses shorter
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Figure 1. An example context tree with A = {a, b, c, d}
where • represents “others”.

codelength for sequences generated from an unknown tree
source S ∈ CT . That is, to minimize

min
S∈CT

(log 1/Q(X|S) +D(S)) .

We use the same coding distribution as given in equa-
tion (1) for count variables conditional on each given con-
text s. The coding distribution for the counts given s is
simply the product

Qas(Ns·) = Pmas (Ns·) = Pas(Ns1) · · ·Pas(Nsm), (2)

with a properly chosen as for each context s ∈ S . Using
the product of tilted distribution Pas as a coding distribu-
tion, the regret is simply a sum of the individual regrets.

To construct the tree, we adopt a method similar to
Rissanen’s approach in [14]. Using the total codelength
to evaluate the performance of different models and cod-
ing distributions, we adopt a greedy algorithm to build the
context tree with details discussed in Section 3.3. An il-
lustrative example tree is given in Fig.1.

2. I.I.D CLASS

Theorem 1. The regret of using a product of tilted Ster-
ling Ratio distributions Qa for a given vector of counts
N = (N1, . . . , Nm) is

R (Qa,PmΛ , N) = aN log e+m logCa.

Let Sm,n be the set of count vectors with total count n be
defined as before, then

max
N∈Sm,n

R (Qa,PmΛ , N) = an log e+m logCa. (3)

Let a∗ be the choice of a satisfying the following mo-
ment condition

EPa

m∑

j=1

Nj = mEPa
N1 = n. (4)

Then a∗ is the minimizer of the regret in expression (3).
Write Rm,n = minaR(Qa,PmΛ , Sm,n).

When m = o(n), the Rm,n is near m
2 log ne

m with

−d1
m

2
log e ≤ Rm,n −

m

2
log

ne

m

≤ m log(1 +

√
m

n
),

where d1 = O
(
(mn )1/3

)
.

When n = o(m), theRm,n is near n log m
ne as follows.

m log
(

1 + (1− d2)
n

m

)
≤ Rm,n − n log

m

ne

≤ m log
(

1 +
n

m
+ d3

)

where d2 = O( nm ), and d3 = 1
2
√
π

n2e2

m(m−ne) .
When n = bm, the Rm,n = cm, where the constant

c = a∗b log e+ logCa∗ , and a∗ is such that EPa
N1 = b.

Proof. Details of proof can be found in [3].

Remark 1: The regret depends only on the number of
parameters m, the total counts n and the tilting parame-
ter a. The optimal tilting parameter is given by a simple
moment condition in equation (4).

Remark 2: The regret Rm,n is close to the minimax
level in all three cases listed in Theorem 1. The main
terms in the m = o(n) and n = o(m) cases are the same
as the minimax regret given in [15] except the multiplier
for log(ne/m) here is m/2 instead of (m − 1)/2 for the
small m scenario. For the n = bm case, the Rm,n is close
to the minimax regret in [15] numerically.

3. TREE SOURCE

3.1. Coding cost

The coding distribution for a given tree is the product of
all the Qas(Ns·), i.e.

QSa (NS) =
∏

s∈S
Qas(Ns·).

Let Sm,n,S = {NS :
∑
s∈S

∑m
j=1Nsj =n,Nsj ≥ 0, j=

1, . . . ,m, s ∈ S}.

Corollary 1. Using independent tilted Stirling ratio dis-
tributionQSa to code the counts in Sm,n,S , the regret equals

max
NS∈Sm,n,S

R(P |S|mΛ , QSa,NS)=
∑

s∈S
(asNslog e+mlogCas) .

This can be easily seen by applying the definition.

3.2. Description cost

To describe a given context set S, we use the following
rule

D(S) = 1 +Nbranches (1 + log |A|) ,
where Nbranches is the number of “labeled” branches in
the tree. Here “labeled” means having a specified sym-
bol in the alphabet. For instance, Nbranches = 5 in the
example tree.

The first bit is used to describe if the model is non-
degenerate (i.i.d or Markov). For each branch other than
“others”, we first use 1 bit to say if it is nondegenerate,
and then logm bits to convey which symbol it is. Our
example tree uses 1 + 5(1 + log 4) = 16 bits.
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Figure 2. Context tree for Fortress Beseiged.

3.3. Using codelength to construct the tree

Here we use the example in Fig.1 to illustrate how we con-
struct the tree. Starting from a null tree (the i.i.d model),
we first choose the single symbol (c) that produces the
most savings (if any) in codelength. Next, we consider
two possible leaves: one is another symbol in the first level
(a) that achieves the most savings; the other is to extend
to the second level based on the symbols just found. After
calculating possible savings produced by these two can-
didates, we pick again the one with larger savings. Con-
tinue in this fashion until no more savings is available or
the maximum number of symbols to condition on (T ) is
reached, the context tree is built. “others” represents con-
texts with the same parent that are not picked up. It in-
cludes b and d in the first level in the example tree.

4. A REAL EXAMPLE

We apply the proposed method to a contemporary Chinese
novel translated as Fortress Besieged. The book contains
216,601 characters encoded in GB18030, the largest offi-
cial Chinese character set which contains 70,244 charac-
ters.

The i.i.d model uses 1,954,777 bits. For the tree model,
the first single character to condition on saves 12,631. We
restrict the order of the Markov model to be no larger
than 5, but it turns out no context exceeding two charac-
ters shows up. There are 342 branches in the tree, among
which 95 are in the first level, and 5 of them extends to
the second level. In fact, second level branches are picked
up only after most first level ones are chosen. A small
part of the tree is displayed in Fig.2. The dots on the right
stand for the rest of the model that cannot be shown. And
the blank cell in the middle of the first level is the space
symbol. The total savings amount to 401,922 bits (about
20.56%) as compared to the i.i.d model.

5. CONCLUSION

We consider a compression and prediction problem under
both large alphabet i.i.d model and bounded tree models,
and design a method to construct the context tree. Com-
bining this method with tilted Stirling ratio distribution,
we have a convenient and efficient way for compression
and prediction.
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