
Branching

Teppo Niinimäki

Helsinki October 14, 2011

Seminar: Exact Exponential Algorithms

UNIVERSITY OF HELSINKI

Department of Computer Science

1

For a large number of important computational problems no polynomial-time algo-

rithm is known. The family of NP-complete problems is the best known family of

such problems. Every combinatorial problem can be solved by using a brute force

search that explicitly tests all possible solutions, but often better alternatives are

available.

Branching is one of the basic techniques for designing faster exponential algorithms

for such problems. It is based on dividing the problem recursively into smaller sub-

problems. This strategy has led to significant improvements over trivial brute force

algorithms in computational complexity for problems such as k-Satisfiability or

Maximum Independent Set. The ideal behind branching is simple and intuitive

and has been invented multiple times under alternative names such as branch and

reduce, splitting, backtracking or pruning search tree.

The rest of this paper is organized as follows: In section 1 the general structure and

principles of branching algorithms are described. In section 2 a branching algorithm

for the k-Satisfiability problem is presented and analysed. Finally in section 3

we look very briefly into how branching can be used to build fast algorithms for the

Maximum Independent Set problem. The material in this paper is based on the

Chapter 2 of the book Exact Exponential Algorithms by Fomin and Kratsch (2010).

1 General Framework

Let n be the size of the problem such as the number of nodes in a graph. Note,

that n does not need to be the size of the actual input, but instead it can be

chosen quite freely. In general, any branching algorithm consists of two kinds of

rules: Branching rules convert the problem to two or more smaller problems which

are then solved recursively, and reduction rules simplify the problem or halt the

algorithm. Recursive application of branching rules results in a tree structure which

is called search tree. The root of the search tree represents the original problem and

other nodes represent smaller instances obtained by the use of branching rules. The

time spend in one node is assumed to be polynomial in the size of the problem, which

also includes the time spent in applying possible reduction rules. Thus the running

time of the algorithm is a polynomial times the number of nodes of the search tree,

which is normally O∗(αn) for some constant α > 1. Since we are not interested in

polynomial factors, we only need to concentrate on branching rules when analysing

the running time and reduction rules can generally be ignored.

2

1 2 3 4 5 6

1 2.0000 1.6181 1.4656 1.3803 1.3248 1.2852

2 1.6181 1.4143 1.3248 1.2721 1.2366 1.2107

3 1.4656 1.3248 1.2560 1.2208 1.1939 1.1740

4 1.3803 1.2721 1.2208 1.1893 1.1674 1.1510

5 1.3248 1.2366 1.1939 1.1674 1.1487 1.1348

6 1.2852 1.2107 1.1740 1.1510 1.1348 1.1225

Table 1: Branching factors for binary branching vectors, rounded up.

As no general method for determining the worst-case running time of branching

algorithm is known, an upper bound for α is normally searched. Since the number

of leaves in any search tree is always at least half of the number of all nodes we can

concentrate on finding an upper bound for the number of leafs.

Let b be a branching rule that divides a problem of size n into r ≥ 2 smaller

problems of sizes n− t1, n− t2, . . . , n− tr, where ti > 0 for all i = 1, 2, . . . , r. Then

b = (t1, t2, . . . , tr) is called the branching vector of branching rule b. Let T (n) be

the maximum number of leaves in a search tree of an input problem of size n. We

get the following linear recurrence:

T (n) ≤ T (n− t1) + T (n− t2) + · · ·+ T (n− tr).

It is known that the solution of this linear recurrence is of the form T (n) = αn where

α can be obtained by finding the unique positive real root of the corresponding

equation xn − xn−t1 − xn−t2 − · · · − xn−tr = 0. This constant, denoted by α =

τ(t1, t2, . . . , tr), is called the branching factor of branching vector b. As a result the

running time of an algorithm which uses only branching rule b is O∗(αn).

Branching vectors with two elements are called binary. Table 1 contains the branch-

ing factors for some common binary branching vectors.

There are some important properties concerning branching factors. First, it is easy

to see that the order of elements in branching vector does not affect the branching

factor. In addition the following two properties hold:

• If t1 > t′1, then τ(t1, t2, . . . , tr) < τ(t′1, t2, . . . , tr). In this case it is said that

the latter branching vector dominates the former.

• If 0 < a < b, then τ(a+ε, b−ε) < τ(a, b) for all 0 < ε < (b−a)/2. So intuitively

it is beneficial to make the branching vector as balanced as possible.

3

Above we saw how to analyse an algorithm with only one branching rule. Typically

a branching algorithm consists of multiple branching rules and in each node of the

search tree one of these rules is selected to be applied based on various criteria. In

the case of multiple branching rules the upper bound for the running time is O∗(αn)

where α is the maximum of the branching factors of individual branching rules.

While in a general case the rule with the highest branching factor determines the

worst case running time, it is not unusual that the analysis can be tightened. If it

is known that a branching rule with a high branching factor is always followed by

another rule with a low branching factor, an analysis technique called the addition

of branching vectors can be used. For example, suppose that after branching with

branching vector (i, j) in the left branch (corresponding to i) a branching rule with

a branching vector (k, l) is always immediately applied. In this case we can treat

these two branching rules as one with a combined branching vector (i+ k, i+ l, j).

2 k-Satisfiability

This section describes a classical branching algorithm by Monien and Speckenmeyer

for the k-Satisfiability problem. The algorithm is best known for the fact that it

solves the 3-Satisfiability problem in time O∗(1.6181n).

Let {x1, x2, . . . , xn} be a set Boolean variables. A clause c = (l1 ∨ l2 ∨ · · · ∨ lt) is a

disjunction of literals where each literal l is a Boolean variable x or its negation x̄.

A Boolean formula F = (c1 ∧ c2 ∧ · · · ∧ cr) which is a conjunction of clauses is said

to be in conjunctive normal form (CNF). If every cause contains at most k literals

the formula is a k-CNF formula. We represent a clause c by the set of its literals

{l1, l2, . . . , lt} and a formula F by the set of its clauses {c1, c2, . . . , cm}.

F is said to be satisfiable if there is a truth assignment of variables such that F eval-

uates to true. For a CNF formula this means that every clause must contain at least

one true literal. An empty formula is always true and thus satisfiable. On the other

hand, empty clause is always false and makes the formula unsatisfiable. The prob-

lem of deciding whether a given formula is satisfiable is called the Satisfiability

problem (SAT). If the input is in k-CNF form the problem is called k-Satisfiability

(k-SAT). From now on we only handle k-SAT and thus any formula F is assumed to

be in k-CNF form.

Let now k be fixed and n be the number of variable. The size of the formula is

4

denoted by n. Because there are at most 2n different literals, the number of different

clauses in F is at most m ≤
∑k

i=0

(
2n
i

)
and is thus upper bounded by a polynomial.

It is known that 2-SAT is solvable in linear time but for k ≥ 3 the k-SAT problem

is NP-complete. Any k-SAT can be solved by a trivial brute force algorithm that

separately examines every possible truth assignment. Since there are 2n different

truth assignments and evaluating for one truth assignment takes polynomial number

of steps, the brute force algorithm requires O∗(2n) time.

We now describe a branching algorithm, that solves the k-SAT problem by recursively

making partial truth assignments. In a partial truth assignment the truth values

of some of the variables are fixed. When a partial truth assignment is applied to

formula F , a new simplified formula F ′ is obtained by removing all clauses that

contain a true literal and removing all false literals from the remaining clauses.

The algorithm now works as follows: Let F be the input formula. If F is empty,

it is satisfiable and the algorithm returns true. If F contains an empty clause, the

algorithm returns false. Otherwise, one clause is selected and a branching rule is

applied. Let (l1 ∨ l2 ∨ · · · ∨ lq) be the selected clause. The algorithm branches into q

simplified cases F1, F2, . . . , Fq corresponding the following partial truth assignment:

F1 : l1 = true

F2 : l1 = false, l2 = true
...

Fq : l1 = false, l2 = false, . . . , lq−1 = false, lq = true

It is obvious that F is satisfiable if and only if at least one of the resulting simplified

formulas is satisfiable. If the selected clause contains only one literal this is actually

a reduction rule. Otherwise, we get a branching vector (1, 2, . . . , q).

For the given branching rules the branching factors βq = τ(1, 2, . . . , q) for first few

clause sizes are β2 < 1.6181, β3 < 1.8393 and β4 < 1.9276 (rounded up). Because for

a k-CNF formula the results of the branching and reduction rules are also k-CNF

formulas, the branching factor is always at most βk and the running time of the

algorithm is O∗(βn
k). For the 3-SAT problem this is O∗(1.8393n).

There is relatively simple way to improve the above algorithm. It is based on the

observation, that if we were able to guarantee that the branching always (except

possibly the very first branching) happens on a clause of size at most k − 1, the

worst case branching factor would be βk−1.

Let again F be the input formula. In partial truth assignment all clauses contain-

5

ing fixed true literals and the remaining fixed false literals are removed from the

resulting formula F ′. If any of the remaining clauses contains a fixed literal then

the literal must be false and the size of that clause is dropped by at least one and

thus on the next branching step we can choose a clause of size at most k − 1 from

F ′. Unfortunately this is not always the case. However, if none of the remaining

clauses contains a fixed literal, then we know how to satisfy the removed clauses

independently of the remaining clauses and thus F is satisfiable if and only if F ′ is

satisfiable. This latter kind of partial truth assignment for F is called autark.

Based on the above observations we make the following modification the the previous

algorithm. Instead of any clause, a clause of minimum size is always selected for

branching. Before actually performing the branching the algorithm checks whether

any of the partial truth assignments is an autark. If this is the case, no branching is

done and instead a reduction to the corresponding simplified formula F ′ is performed.

This is a reduction rule. If none of the partial truth assignments is autark, the

algorithm branches normally.

In the case of normal branching every subformula F1, F2, . . . , Fq contains a clause

of size at most k − 1 and thus the branching factors of the subsequent branchings

are at most βk−1. On the other hand, after the autark reduction it is possible that

the resulting formula F ′ contains only clauses of size k leading to branching vector

(1, 2, . . . , k). But because the size of the formula is decreased by at least one in the

reduction step, the branching vector actually becomes at least (2, 3, . . . , k + 1) if

we consider F as an input instead of F ′. It can be shown that τ(2, 3 . . . , k + 1) <

τ(1, 2, . . . , k − 1) and thus βk−1 = τ(1, 2, . . . , k − 1) is the dominating branching

factor. We conclude that the modified algorithm solves k-SAT in time O∗(βn
k−1). In

particular, for 3-SAT the running time is O∗(1.6181n).

3 Maximum Independent Set

In this section we make a short look on how to use branching to develop a reasonably

fast exponential algorithm for the Maximum Independent Set problem. We

do not describe the whole algorithm in detail, but just the general reduction and

branching rules behind the algorithm.

Let G = (V,E) be an undirected graph. A set I ⊂ V of vertices is an independent

set if none of the pairs of vertices from I is adjacent in G. We denote by α(G) the

maximum size of an independent set of G. In the Maximum Independent Set

6

problem (MIS) the task is to find an independent set of maximum size.

We use the following notations: Let v ∈ V be a vertex. The neighborhood of v is

N(v) = {u ∈ V : (v, u) ∈ E} and the open neighborhood of v is N [v] = N(v) ∪ {v}.
Respectively, the set of vertices at distance 2 from v, that is, the set the set of

neighbors of the neighbors of v, is denoted by N2(v). For a subset S ⊆ V of vertices

G[S] is a subgraph of G that has S as a vertex set and those edges from E that have

both endpoints in S. The subgraph G[V \ S] is denoted by G \ S and G \ {v} for

a vertex v can be shortened to G \ v. The closed neigborhood of S is denoted by

N [S] =
⋃

v∈S N [v].

Let G be an input graph. For the MIS problem the following reduction rules can be

applied:

1. (domination rule) If v and w are adjacent vertices and N [v] ⊆ N [w], then

α(G) = α(G \ w).

2. (simplicial rule) If v is a vertex and N [v] is a clique, then

α(G) = 1 + α(G \N [v]).

In addition to the two reduction rules above the following branching rules can be

derived:

3. (standard branching) If v is a vertex, then

α(G) = max(1 + α(G \N [v]), α(G \ v)).

4. (mirror branching) If v is a vertex, then

α(G) = max(1 + α(G \N [v]), α(G \ (M(v) ∪ {v})),

where M(v) = {w ∈ N2(v) : N(v) \N(w) is a clique}.

5. (separator branching) If S ⊆ V and G \ S is disconnected, then

α(G) = max
A∈I(S)

|A|+ α(G \ (S ∪N [A])),

where I(S) contains the subsets of S which are independent sets of G.

6. If G is disconnected and C ⊆ V is a connected component of G, then

α(G) = α(G[C]) + α(G \ C).

7

Using the above reduction and branching rules it is possible to construct a relatively

fast exponential algorithm for the Maximum Independent Set problem. The

basic idea is to select on each step a rule from above based on the minimum and

maximum degree of the input graph. Such algorithm with running time O∗(1.2786n)

as well as the proofs of the above rules are described in more detail in (Fomin and

Kratsch, 2010).

References

Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms, chapter 2.

Branching, pages 13–30. Springer, 2010.

