
HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

Branching

Teppo Niinimäki
‹teppo.niinimaki@helsinki.fi›

October 11, 2011

University of Helsinki
Department of Computer Science

Outline

1. Branching algorithms in general

2. The k -Satisfiability problem

3. The Maximum Independent Set problem

Introduction

Given a problem of size n.
Two types of (polynomial time) rules:

n

n–s

n

HALT

n

n–t1 n–t2 n–tr

t1 t2 tr

reduction rules
simplify the problem or
halt

branching rules
recursively smaller
instances

Search tree

Search tree
models the execution of
algorithm
exponential number of
nodes

Running time
polynomial factors ignored
O∗(number of nodes) =
O∗(number of leaves)

Branching rules

n

n–t1 n–t2 n–tr

t1 t2 tr

For a branching rule b

branching vector
b = (t1, t2, . . . , tr)

for max. number of
leaves T (n) holds:

T (n) ≤ T (n − t1) + T (n − t2) + . . .+ T (n − tr)

solution: T (n) = αn for some α > 1

branching factor τ(t1, t2, . . . , tr) = α

⇒ running time O∗(αn) if only b used

Branching factors

Common binary branching factors τ(i , j):

1 2 3 4 5 6
1 2.0000 1.6181 1.4656 1.3803 1.3248 1.2852
2 1.6181 1.4143 1.3248 1.2721 1.2366 1.2107
3 1.4656 1.3248 1.2560 1.2208 1.1939 1.1740
4 1.3803 1.2721 1.2208 1.1893 1.1674 1.1510
5 1.3248 1.2366 1.1939 1.1674 1.1487 1.1348
6 1.2852 1.2107 1.1740 1.1510 1.1348 1.1225

Example: τ(2,3) ≈ 1.3248

Generally for b = (t1, t2, . . . , tr):
the order of ti :s irrelevant
larger elements ti ⇒ smaller branching factor

Multiple branching rules

General case:
branching rules b1,b2, . . . ,bk

branching factors α1, α2, . . . , αk

running time O∗(αn) where α = maxi αi

Addition of branching vectors:
Example: after b = (1,2)

left branch: b′ = (2,3)
right branch: any rule

⇒ combined branching
rule: (3,4,2) n–3 n–4

2 3

n–1 n–2

1 2

n

Outline

1. Branching algorithms in general

2. The k -Satisfiability problem

3. The Maximum Independent Set problem

Maximum Independent Set

Given an undirected graph G = (V ,E).
I ⊆ V is independent set if no vertices
of I are adjacent.

The MAXIMUM INDEPENDENT SET problem:
”Find an independent set of maximum size.“

The size of the problem: n = |V |

Notation

For node v ∈ V
N(v) neighborhood, N[v] closed neighborhood
N2(v) vertices at distance of 2 from v
G \ v subgraph with v removed

For nodes S ⊂ V
G[S] subgraph induced by S
G \ S subgraph induced by V \ S

For graph G
δ(G) minimum degree of G
∆(G) maximum degree of G

MIS algorithm

Input: A graph G = (V ,E).
Output: A maximum independent set of G.

if V = ∅ then return ∅
if δ(G) = 0 then . . .

if δ(G) = 1 then . . .

if δ(G) = 2 then . . .

if δ(G) = 3 then . . .

if ∆(G) ≥ 6 then . . .

if G is disconnected then . . .

if G is 4 or 5-regular then . . .

if ∆(G) = 5 and δ(G) = 4 then . . .

Observations

Let v ∈ V and mis(G) be some maximum
independent set of G.

Lemma (2.6). If no maximum independent set
contains v then every maximum independent set
contains at least two vertices from N(v).

Simplicial rule: If N[v] is a clique, then
{v} ∪mis(G \ N[v]) is a maximum independent set
of G.

The running time

Worst case branching factors:

V = ∅ ⇒ reduction
δ(G) = 0 ⇒ reduction
δ(G) = 1 ⇒ reduction
δ(G) = 2 ⇒ α < 1.1939
δ(G) = 3 ⇒ α < 1.2721
∆(G) ≥ 6 ⇒ α < 1.2445
G is disconnected ⇒ α < 1.1893
G is 4 or 5-regular ⇒ ignored
∆(G) = 5 and δ(G) = 4 ⇒ α < 1.2786

⇒ The running time is O∗(1.2786n).

Conclusion

Branching algorithms:
Based on recursive division to smaller
subproblems
Running time might be much better for some
particular instances
Typically low (polynomial / linear) space
complexity

	General Framework
	Maximum Independent Set
	Conclusion

