

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Branching

Teppo Niinimäki <teppo.niinimaki@helsinki.fi> October 11, 2011

University of Helsinki Department of Computer Science

- 1. Branching algorithms in general
- 2. The k-Satisfiability problem
- 3. The Maximum Independent Set problem

Given a problem of size *n*. Two types of (polynomial time) rules:

reduction rules

simplify the problem or
 halt

 branching rules
 recursively smaller instances

Search tree

- models the execution of algorithm
- exponential number of nodes

Running time

- polynomial factors ignored
- \$\mathcal{O}^*\$ (number of nodes) =
 \$\mathcal{O}^*\$ (number of leaves)

For a branching rule b

branching vector $\mathbf{b} = (t_1, t_2, \dots, t_r)$

for max. number of leaves T(n) holds:

$$T(n) \leq T(n-t_1) + T(n-t_2) + \ldots + T(n-t_r)$$

solution: $T(n) = \alpha^n$ for some $\alpha > 1$

branching factor $\tau(t_1, t_2, \ldots, t_r) = \alpha$

 \Rightarrow running time $\mathcal{O}^*(\alpha^n)$ if only *b* used

Common binary branching factors $\tau(i, j)$:

	1	2	3	4	5	6
1	2.0000	1.6181	1.4656	1.3803	1.3248	1.2852
2	1.6181	1.4143	1.3248	1.2721	1.2366	1.2107
3	1.4656	1.3248	1.2560	1.2208	1.1939	1.1740
4	1.3803	1.2721	1.2208	1.1893	1.1674	1.1510
5	1.3248	1.2366	1.1939	1.1674	1.1487	1.1348
6	1.2852	1.2107	1.1740	1.1510	1.1348	1.1225

Example: τ (2,3) \approx 1.3248

Generally for **b** = $(t_1, t_2, ..., t_r)$:

the order of t_i:s irrelevant

Iarger elements $t_i \Rightarrow$ smaller branching factor

Multiple branching rules

General case:

- branching rules b_1, b_2, \ldots, b_k
- branching factors $\alpha_1, \alpha_2, \ldots, \alpha_k$
- running time $\mathcal{O}^*(\alpha^n)$ where $\alpha = \max_i \alpha_i$

Addition of branching vectors:

- Example: after **b** = (1, 2)
 - left branch: **b**′ = (2,3)
 - right branch: any rule
 - \Rightarrow combined branching rule: (3, 4, 2)

- 1. Branching algorithms in general
- 2. The k-Satisfiability problem
- 3. The Maximum Independent Set problem

Maximum Independent Set

Given an undirected graph G = (V, E).

I ⊆ V is independent set if no vertices of I are adjacent.

The MAXIMUM INDEPENDENT SET problem: "Find an independent set of maximum size."

The size of the problem: n = |V|

For node $v \in V$

- N(v) neighborhood, N[v] closed neighborhood
- $N^2(v)$ vertices at distance of 2 from v

• $G \setminus v$ subgraph with v removed

For nodes $S \subset V$

- *G*[*S*] subgraph induced by *S*
- $G \setminus S$ subgraph induced by $V \setminus S$

For graph G

- $\delta(G)$ minimum degree of G
- $\Delta(G) maximum degree of G$

Input: A graph G = (V, E). **Output:** A maximum independent set of *G*.

• if $V = \emptyset$ then return \emptyset

• if $\delta(G) = 0$ then ...

• if $\delta(G) = 1$ then ...

• if $\delta(G) = 2$ then ...

if $\delta(G) = 3$ then ...

- if $\Delta(G) \ge 6$ then ...
- **if** *G* is disconnected **then**
- **if** *G* is 4 or 5-regular **then**
- if $\Delta(G) = 5$ and $\delta(G) = 4$ then ...

Let $v \in V$ and mis(G) be some maximum independent set of *G*.

Lemma (2.6). If no maximum independent set contains v then every maximum independent set contains at least two vertices from N(v).

Simplicial rule: If N[v] is a clique, then $\{v\} \cup \min(G \setminus N[v])$ is a maximum independent set of *G*.

Worst case branching factors:

 $\begin{array}{lll} V = \emptyset & \Rightarrow & \text{reduction} \\ \delta(G) = 0 & \Rightarrow & \text{reduction} \\ \delta(G) = 1 & \Rightarrow & \text{reduction} \\ \delta(G) = 2 & \Rightarrow & \alpha < 1.1939 \\ \delta(G) = 3 & \Rightarrow & \alpha < 1.2721 \\ \Delta(G) \geq 6 & \Rightarrow & \alpha < 1.2445 \\ \hline G \text{ is disconnected} & \Rightarrow & \alpha < 1.1893 \\ \hline G \text{ is 4 or 5-regular} & \Rightarrow & \text{ignored} \\ \hline \Delta(G) = 5 \text{ and } \delta(G) = 4 & \Rightarrow & \alpha < 1.2786 \end{array}$

 \Rightarrow The running time is $\mathcal{O}^*(1.2786^n)$.

Branching algorithms:

- Based on recursive division to smaller subproblems
- Running time might be much better for some particular instances
- Typically low (polynomial / linear) space complexity