Branching

Teppo Niinimäki
‘teppo.niinimaki@helsinki.fi»
October 11, 2011

University of Helsinki

Department of Computer Science

Outline

1. Branching algorithms in general
2. The k Satisfiability problem
3. The Maximum Independent Set problem

Introduction

Given a problem of size n.
Two types of (polynomial time) rules:

- reduction rules
- simplify the problem or
- halt

- branching rules
- recursively smaller instances

Search tree

Search tree
models the execution of algorithm

- exponential number of nodes

Running time

\square polynomial factors ignored
$\square \mathcal{O}^{*}($ number of nodes $)=$
\mathcal{O}^{*} (number of leaves)

Branching rules

For a branching rule b

- branching vector

$$
\mathbf{b}=\left(t_{1}, t_{2}, \ldots, t_{r}\right)
$$

- for max. number of leaves $T(n)$ holds:

$$
T(n) \leq T\left(n-t_{1}\right)+T\left(n-t_{2}\right)+\ldots+T\left(n-t_{r}\right)
$$

solution: $T(n)=\alpha^{n}$ for some $\alpha>1$

- branching factor $\tau\left(t_{1}, t_{2}, \ldots, t_{r}\right)=\alpha$
\Rightarrow running time $\mathcal{O}^{*}\left(\alpha^{n}\right)$ if only b used

Branching factors

Common binary branching factors $\tau(i, j)$:

	1	2	3	4	5	6
1	2.0000	1.6181	1.4656	1.3803	1.3248	1.2852
2	1.6181	1.4143	1.3248	1.2721	1.2366	1.2107
3	1.4656	1.3248	1.2560	1.2208	1.1939	1.1740
4	1.3803	1.2721	1.2208	1.1893	1.1674	1.1510
5	1.3248	1.2366	1.1939	1.1674	1.1487	1.1348
6	1.2852	1.2107	1.1740	1.1510	1.1348	1.1225

Example: $\tau(2,3) \approx 1.3248$
Generally for $\mathbf{b}=\left(t_{1}, t_{2}, \ldots, t_{r}\right)$:

- the order of $t_{i}: \mathrm{s}$ irrelevant
- larger elements $t_{i} \Rightarrow$ smaller branching factor

Multiple branching rules

General case:
■ branching rules $b_{1}, b_{2}, \ldots, b_{k}$
■ branching factors $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$
\square running time $\mathcal{O}^{*}\left(\alpha^{n}\right)$ where $\alpha=\max _{i} \alpha_{i}$
Addition of branching vectors:

- Example: after $\mathbf{b}=(1,2)$
- left branch: $\mathbf{b}^{\prime}=(2,3)$
- right branch: any rule
\Rightarrow combined branching rule: $(3,4,2)$

Outline

1. Branching algorithms in general
2. The k Satisfiability problem
3. The Maximum Independent Set problem

Maximum Independent Set

Given an undirected graph $G=(V, E)$.
$\square I \subseteq V$ is independent set if no vertices of I are adjacent.

The Maximum Independent Set problem:
"Find an independent set of maximum size."

The size of the problem: $n=|V|$

Notation

For node $v \in V$

- $N(v)$ neighborhood, $N[v]$ closed neighborhood
- $N^{2}(v)$ vertices at distance of 2 from v
$■ G \backslash v$ subgraph with v removed
For nodes $S \subset V$
$\square G[S]$ subgraph induced by S
- $G \backslash S$ subgraph induced by $V \backslash S$

For graph G

- $\delta(G)$ minimum degree of G
$\square \Delta(G)$ maximum degree of G

MIS algorithm

Input: A graph $G=(V, E)$.
Output: A maximum independent set of G.

- if $V=\emptyset$ then return \emptyset
- if $\delta(G)=0$ then \ldots
- if $\delta(G)=1$ then \ldots
- if $\delta(G)=2$ then \ldots
- if $\delta(G)=3$ then ...
- if $\Delta(G) \geq 6$ then ...
- if G is disconnected then ...
- if G is 4 or 5 -regular then ...
- if $\Delta(G)=5$ and $\delta(G)=4$ then \ldots

Observations

Let $v \in V$ and $\operatorname{mis}(G)$ be some maximum independent set of G.

Lemma (2.6). If no maximum independent set contains v then every maximum independent set contains at least two vertices from $N(v)$.

Simplicial rule: If $N[v]$ is a clique, then $\{v\} \cup \operatorname{mis}(G \backslash N[v])$ is a maximum independent set of G.

The running time

Worst case branching factors:

- $V=\emptyset \quad \Rightarrow$ reduction
$\square \delta(G)=0 \Rightarrow$ reduction
$\square \delta(G)=1 \quad \Rightarrow \quad$ reduction
$\square \delta(G)=2 \quad \Rightarrow \quad \alpha<1.1939$
- $\delta(G)=3 \quad \Rightarrow \quad \alpha<1.2721$
$\Delta(G) \geq 6 \quad \Rightarrow \quad \alpha<1.2445$
- G is disconnected $\Rightarrow \quad \alpha<1.1893$
- G is 4 or 5 -regular \Rightarrow ignored
$\Delta(G)=5$ and $\delta(G)=4 \quad \Rightarrow \quad \alpha<1.2786$
\Rightarrow The running time is $\mathcal{O}^{*}\left(1.2786^{n}\right)$.

Conclusion

Branching algorithms:

- Based on recursive division to smaller subproblems
- Running time might be much better for some particular instances
- Typically low (polynomial / linear) space complexity

