HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

Branching

Teppo Niinimaki
<teppo.niinimaki@helsinki.fi>

October 11, 2011

University of Helsinki
Department of Computer Science

v'* Outline

Branching algorithms in general

The k-Satisfiabil b

The Maximum Independent Set problem

i Introduction

Given a problem of size n.
Two types of (polynomial time) rules:

n n reduction rules
n-s HA‘LT simplify the problem or
halt
branching rules
t; t tr recursively smaller
instances

Ln-ty] [n-tp] === [n-t |

‘ Search tree

Search tree
models the execution of

algorithm

exponential number of
nodes

Running time
polynomial factors ignored

O*(number of nodes) =
O*(number of leaves)

i Branching rules

For a branching rule b

branching vector t; ts t,
b:(t17t27"'?tf)
| n-ti] [n-tz] === [n-t-]

for max. number of
leaves T(n) holds:

TIM<T(h—H)+Th—b)+...+T(n—t)
solution: T(n) = o for some o > 1

branching factor 7(t, &, ..., t) = «

= running time O*(«") if only b used

i Branching factors

Common binary branching factors 7(i, j):

1 2 3 4 5 6
1 2.0000 1.6181 1.4656 1.3803 1.3248 1.2852
2 | 1.6181 1.4143 1.3248 1.2721 1.2366 1.2107
3 | 14656 1.3248 1.2560 1.2208 1.1939 1.1740
4 | 1.3803 1.2721 1.2208 1.1893 1.1674 1.1510
5] 13248 1.2366 1.1939 1.1674 1.1487 1.1348
6 | 1.2852 1.2107 1.1740 1.1510 1.1348 1.1225
Example: 7(2,3) ~ 1.3248
Generally forb = (1, b, ..., t):

the order of t;:s irrelevant
larger elements t; = smaller branching factor

‘ Multiple branching rules

General case:
branching rules by, b, .. ., by
branching factors a1, as, .. ., ak
running time O*(a) where o = max; «;

Addition of branching vectors:
Example: after b = (1,2)

left branch: b’ = (2, 3)

right branch: any rule

= combined branching
rule: (3,4,2)

v'* Outline

Branching algorithms in general

The k-Satisfiabil b

The Maximum Independent Set problem

i Maximum Independent Set

Given an undirected graph G = (V, E).

I C Vis independent set if no vertices
of I are adjacent.

The MAXIMUM INDEPENDENT SET problem:
"Find an independent set of maximum size.®

The size of the problem: n = | V|

‘i‘ Notation

Fornode v e V
N(v) neighborhood, N[v] closed neighborhood
N?(v) vertices at distance of 2 from v
G\ v subgraph with v removed

Fornodes S c V

G[S] subgraph induced by S

G\ S subgraph induced by V' \ S
For graph G

d(@G) minimum degree of G
A(G) maximum degree of G

‘ MI1s algorithm

Input: A graph G = (V, E).
Output: A maximum independent set of G.

if V = (then return ()

if)(G) =0then ...

if)(G) =1then ...

if)(G) =2then ...

if)(G) =3 then ...

if A(G) > 6then...

if G is disconnected then ...

if G is 4 or 5-regular then ...

if A(G) =5and 6(G) =4 then ...

vi Observations

Let v € V and mis(G) be some maximum
independent set of G.

Lemma (2.6). If no maximum independent set
contains v then every maximum independent set
contains at least two vertices from N(v).

Simplicial rule: If N[v] is a clique, then
{v} Umis(G\ N[v]) is a maximum independent set
of G.

i The running time

Worst case branching factors:

V=0 = reduction

0(G)=0 = reduction
0(G)=1 = reduction
(G =2 = «a<1.1939
(G =8 = a«a<1.2721

A(G)>6 = «<1.2445

Gis disconnected = « < 1.1893

Gis 4 or 5-regular = ignored
A(G)=5and§(G)=4 = «<1.2786

= The running time is 0*(1.2786").

‘ Conclusion

Branching algorithms:
Based on recursive division to smaller
subproblems
Running time might be much better for some
particular instances
Typically low (polynomial / linear) space
complexity

	General Framework
	Maximum Independent Set
	Conclusion

