Overcomplete models & Lateral interactions and Feedback

Teppo Niinimäki

April 22, 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Overcomplete models

- Overcomplete basis
- Energy based models

2 Lateral interaction and feedback

- Feedback and Bayesian inference
- End-stopping
- Predictive coding

Overcomplete models

- Overcomplete basis
- Energy based models

Lateral interaction and feedback

- Feedback and Bayesian inference
- End-stopping
- Predictive coding

So far

- Sparse coding models: feature detector weights orthogonal
- Generative models: A invertible ⇒ square matrix
- \Rightarrow no. of features \leq no. of dimensions in data \leq no. of pixels

Why more features?

- processing location independent
 - \Rightarrow same set of features for every location
- no. of simple cells in V1 ≫ no. of retinal gaglion cells (≈ 25 times)

Generative model:

$$I(x,y) = \sum_{i=1}^{m} A_i(x,y) s_i$$

- basis vectors: A_i
- features: s_i
- no. of features: m > |I| (or m > dimension of data)

Generative model:

$$I(x,y) = \sum_{i=1}^{m} A_i(x,y) s_i + N(x,y)$$

- basis vectors: A_i
- features: s_i
- no. of features: m > |I| (or m > dimension of data)
- Gaussian noise: N(x, y)
 - \Rightarrow simplifies computations

Overcomplete basis: Computation of features

$$I(x,y) = \sum_{i=1}^{m} A_i(x,y)s_i + N(x,y)$$

How to compute the coefficients s_i for *I*?

- A not invertible
- more unknowns than equations
 - \Rightarrow many (infinite number of) different solutions

Find the sparsest solution (most s_i are close to 0):

- assume sparse distribution for s_i
- find the most probable values for s_i

Aim: Find **s** which maximizes $p(\mathbf{s}|I)$. By Bayes' rule we get

$$p(\mathbf{s}|I) = rac{p(I|\mathbf{s})p(\mathbf{s})}{p(I)}$$

Ignore constant p(I) and maximize logarithm instead:

1

$$\log p(\mathbf{s}|l) = \log p(l|\mathbf{s}) + \log p(\mathbf{s}) + \text{const.}$$

For prior distribution $p(\mathbf{s})$ assume sparsity and independence \Rightarrow

$$\log p(\mathbf{s}) = \sum_{i=1}^m G(s_i)$$

Overcomplete basis: Computation of features

Next compute $\log p(I|\mathbf{s})$.

Probability of I(x, y) given **s** is Gaussian pdf of

$$l(x,y) = \sum_{i=1}^{m} A_i(x,y)s_i + N(x,y)$$
$$\log p(\mathbf{s}|I) = \log p(I|\mathbf{s}) + \log p(\mathbf{s}) + \text{const.}$$

$$N(x,y) = I(x,y) - \sum_{i=1}^{m} A_i(x,y)s_i.$$

Insert above into

$$p(N(x,y)) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2}N(x,y)^2\right)$$

to get

$$\log p(I(x,y)|\mathbf{s}) = -\frac{1}{2\sigma^2} \left[I(x,y) - \sum_{i=1}^m A_i(x,y) s_i \right]^2 - \frac{1}{2} \log 2\pi.$$

Overcomplete basis: Computation of features

Because the noise is independent in pixels, we can sum over x, y to get the pdf for whole image

$$\log p(I|\mathbf{s}) = -\frac{1}{2\sigma^2} \sum_{x,y} \left[I(x,y) - \sum_{i=1}^m A_i(x,y) s_i \right]^2 - \frac{n}{2} \log 2\pi.$$

Combining above: Find **s** that maximizes

$$\log p(\mathbf{s}|I) = -\frac{1}{2\sigma^2} \sum_{x,y} \left[I(x,y) - \sum_{i=1}^m A_i(x,y) s_i \right]^2 + \sum_{i=1}^m G(s_i) + \text{const.}$$

 \Rightarrow numerical optimization

 \Rightarrow non-linear cell activities s_i

How about learning A_i?

Overcomplete basis: Basis estimation

Assume flat prior for the A_i \Rightarrow above $p(\mathbf{s}|l)$ is actually $p(\mathbf{s}, \mathbf{A}|l)$.

Maximize the probability (likelihood) of A_i over independent image samples I_1, I_2, \ldots, I_3 :

$$\sum_{t=1}^{T} \log p(\mathbf{s}(t), \mathbf{A} | I_t) = -\frac{1}{2\sigma^2} \sum_{t=1}^{T} \sum_{x, y} \left[I_t(x, y) - \sum_{i=1}^{m} A_i(x, y) s_i \right]^2 + \sum_{t=1}^{T} \sum_{i=1}^{m} G(s_i(t)) + \text{const.}$$

At the same time we compute

- basis vectors A_i
- cell outputs $s_i(t)$.

Another approach:

- no generative model
- instead relax ICA to add more linear feature detectors W_i
- \Rightarrow not basis, but overcomplete representation

In ICA we maximized:

$$\log L(\mathbf{v}_1,\ldots,\mathbf{v}_m;\mathbf{z}_1,\ldots,\mathbf{z}_T) = T \log |\det(\mathbf{V})| + \sum_{i=1}^m \sum_{t=1}^T G_i(\mathbf{v}_i^T \mathbf{z}_t)$$

Recall $\mathbf{z}_t \sim I_t$, $\mathbf{v}_i \sim W_i$, m = n and $G_i(u) = \log p_i(u)$.

If m > n then $\log |\det(\mathbf{V})|$ is not defined.

Actually $\log |\det(\mathbf{V})|$ is a normalization constant. Replace it and instead maximize:

$$\log L(\mathbf{v}_1,\ldots,\mathbf{v}_m;\mathbf{z}_1,\ldots,\mathbf{z}_T) = -T\log|Z(\mathbf{V})| + \sum_{i=1}^m \sum_{t=1}^T G_i(\mathbf{v}_i^T \mathbf{z}_t)$$

where

$$Z(\mathbf{V}) = \int \prod_{i=1}^{n} \exp(G_i(\mathbf{v}_i^T \mathbf{z})) d\mathbf{z}.$$

Above integral extremely difficult to evaluate. However

- it can be estimated or
- the model can be estimated directly: score matching and contrastive divergence

Energy based models: results

Estimated overcomplete representation with energy based model

- $G_i(u) = \alpha_i \log \cosh(u)$
- score matching
- patches of 16 x 16 = 256 pixels
- preprocessing \Rightarrow n = 128
- m = 512 receptive fields

(Fig 13.1: Random sample of W_i.)

Overcomplete models

- Overcomplete basis
- Energy based models

2 Lateral interaction and feedback

- Feedback and Bayesian inference
- End-stopping
- Predictive coding

So far considered

• "bottom-up" or feedforward frameworks

In reality there are also

- "top-down" connections \Rightarrow feedback
- lateral (horizontal) interactions

How to model them too?

 \Rightarrow using Bayesian inference!

Why feedback connections?

- to enhance responses consistent with the broader visual context
- to reduce noise (activity inconsistent with the model)

 \Rightarrow combine bottom-up sensory information with top-down priors

Example: contour cells and complex cells

Define generative model:

$$c_k = \sum_{i=1}^K a_{ki} s_i + n_k$$

where n_k is Gaussian noise.

Feedback as Bayesian inference: contour integrator

$$c_k = \sum_{i=1}^K a_{ki} s_i + n_k$$

Now we just model the feedback!

First calculate **s** for given image:

- compute c normally (feedforward)
- ind s = ŝ that maximizes log p(s|c)
 ⇒ should be non-linear in c (why?)

Then reconstruct complex cell outputs using the linear generative model, but ignoring the noise:

$$\hat{c}_k = \sum_{i=1}^{K} a_{ki} \hat{s}_i$$

(for instance by sending feedback signal $u_{ki} = \left[\sum_{i=1}^{K} a_{ki} \hat{s}_i\right] - c_k$)

(Fig. 14.1)

Example results:

- left: patches with random Gabor functions (three collienar in upper case)
- middle: c_k
- right: ĉ_k (based on contour-coding unit activities s_i)
- \Rightarrow noise reduction empasizes collinear activations but suppresses others

Feedback as Bayesian inference: higher-order activities

How to estimate higher order activities $\hat{\mathbf{s}} = \arg \max_{\mathbf{s}} p(\mathbf{s} | \mathbf{c})$?

Like before, using Bayes' rule we get

$$\log p(\mathbf{s}|\mathbf{c}) = \log p(\mathbf{c}|\mathbf{s}) + \log p(\mathbf{s}) + \text{const.}$$

Again we assume that $\log p(\mathbf{s})$ is sparse. Analogously to overcomplete basis:

$$\log p(\mathbf{s}|\mathbf{c}) = -\frac{1}{2\sigma^2}\sum_{k=1}^{K}\left[c_k - \sum_{i=1}^{m}a_{ki}s_i\right]^2 + \sum_{i=1}^{m}G(s_i) + \text{const.}$$

Next assume **A** is invertible and orthogonal \Rightarrow multiplying **c** - **As** by **A**^T in above square sum $\|\mathbf{c} - \mathbf{As}\|$ we get $\|\mathbf{A}^T \mathbf{c} - \mathbf{s}\|$ without changing the norm:

$$\log p(\mathbf{s}|\mathbf{c}) = -\frac{1}{2\sigma^2} \sum_{i=1}^m \left[\sum_{k=1}^K a_{ki} c_k - s_i \right]^2 + \sum_{i=1}^m G(s_i) + \text{const.}$$

Maximize separately each:

$$\log p(s_i | \mathbf{c}) = -\frac{1}{2\sigma^2} \left[\sum_{k=1}^{K} a_{ki}c_k - s_i \right]^2 + G(s_i) + \text{const.}$$

Maximum point can be represented as

$$\hat{s}_i = f\left(\sum_{k=1}^{K} a_{ki} c_k\right)$$

where *f* depends on $G = \log p(s_i)$.

ex. for Laplacian distribution $f(y) = \operatorname{sign}(y) \max(|y| - \sqrt{2\sigma^2}, 0)$.

Sparseness leads to shrinkage/tresholding.

Left image: f for

- Laplacian distribution (solid line)
- highly sparse distribution [7.22 in the book] (dash-dotted line)

 \Rightarrow cell activities considered noise are lowered to zero

Generative model applicable to any two cell groups.

Example: category variables

● *s*_i ∈ {0, 1}

• value = 1 if the object in visual field in certain category

 \Rightarrow jumpy behaviour

Receptive fields

End-stopping: some (simple) cells reduce firing rate if Gabor stimulus is elongated \Rightarrow receptive fields not linear?

(Fig. 14.4)

How to model?

- overcomplete basis and bayesian inference
- \Rightarrow competition between overlapping cells

Predictive coding

- upper level predicts activity in the lower level
- lower level sends errors back to the upper level

In noisy generative model, the prediction is implicit. \Rightarrow estimating noisy generative model \approx minimization of prediction error

To infer the most likely s_i repeat above steps and update the model using gradient method with

$$rac{\partial \log p(\mathbf{s}|\mathbf{c})}{\partial s_i} = rac{1}{\sigma^2} \sum_k a_{ki} \left[c_k - \sum_{i=1}^m a_k i s_i
ight] + G'(s_i).$$

Overcomplete models:

- overcomplete basis
- energy based models

Interactions:

- noisy model and Bayesian inference \Rightarrow feedback
- overcomplete basis \Rightarrow end-stopping
- predictive coding

Teppo Niinimäki ()

<ロ> (四) (四) (三) (三) (三)