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The subject of the seminar was natural image statistics and the aim was to
explore a theory of early human vision and image processing. The focus was
on modeling the statistical structure of natural images and learning features,
properties which can be used to describe images.

A useful tool in the analysis of image processing systems is frequency-
based representation, that is, representing an image as a weighted sum of
phase-shifted sine (or cosine) waves with predefined frequencies. So instead of
storing intensities for individual pixels we store the phases and the amplitudes
of different frequencies present in the image. Related useful tools are Gabor
functions, which are sort of spatially localized sinusoids.

Most information processing in the brain is done by cells called neurons.
They communicate by changins the firing rate of short electrical impulses,
which they are continuously sending each others. We mostly want to model
cells in the primary visual cortex which is the area performing early stage
visual processing. There are two interesting types of neurons in that area:
simple cells and complex cells. Simple cells respond roughly linearly to local-
ized lighting pattern of the image and those can quite acceptably be modeled
using Gabor functions. Complex cells are otherwise quite similar but, un-
like the simple cells, they are relatively invariant to the spatial phase of the
stimulus. Complex cells are typically modeled by energy model, where the
response is computed as a square sum of responses of two Gabor functions
(or simple cells) with 90 degree phase shift.

When dealing with image processing, it’s useful to understand some ba-
sic multivariate probabilistics and statistics. We represent the image as a
vector of random variables, each of typically corresponds to one pixel. In-
stead of using whole images we normally use small patches from images. We
assume that the image vector has some underlying multivariate probability
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distribution, which we would like to model – the more accurately, the better.
Typically there are strong non-trivial dependencies between the elements of
the image vector. Some of those dependencies can be represented as the
covariance matrix of the vector.

Principal component analysis (PCA) is a classical method of analyzing
multi-dimensional data. Finding principal components can be seen as select-
ing variance-maximizing features. The first principal component of a vector
z is the feature s1 = w · z that has maximum variance with the constraint
||w|| = 1. Further principal components (s2, s3, . . .) do also maximize vari-
ance, but with the additional restriction that they must be orthogonal to
the previous ones. The features found by PCA are typically not interesting
by themselves. Instead PCA is normally used as a preprocessing tool. Main
uses are dimension reduction (reducing the number of elements in image vec-
tors), whitening (transforming image pixels to uncorrelated variables with
unit variance) and anti-aliasing (alleviating aliasing problems by removing
the highest frequencies).

Models for simple cells

Random variable is said to be sparse if it’s most of the time very close to
zero and gets clearly non-zero values only occasionally. We measure the
sparseness of feature s by E[h(s2)], where h(u) is some convex function (for
instance −

√
u). Sparseness is completely unrelated to variance and thus

measures different aspects of the variable. We can learn features maximising
their sparseness while restricting them to be uncorrelated and to have unit
variance. In the case of natural images, there are two types of sparseness: A
single feature is sparse if it’s active only in few images and a representation is
sparse if given image is represented by only a small number of active features.
Luckily, the two give approximately the same function to maximize. More
interestingly, learning linear features by maximising sparseness yields results
that resemble closely receptive fields of simple cells.

The requirement of sparseness leads to a new data analyzing method,
independent component analysis (ICA). The ICA is based on a generative
model, which says that image patches are generated as a linear superposition
of some features Ai, or in matrix notation I = As, where A is a square matrix
containing the features, s is a vector of feature weights and I is a resulting
image. The idea can be reversed to calculate the feature weights for given
image, s = WI where W = A−1. It’s also assumed that the feature weights
are non-Gaussianly distributed and independent. Under these assumptions,
finding the most likely features Ai for natural images leads to sparse features
which are very similar to those obtained by maximising sparseness.
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Regardless of the name and the assumption, the estimated independent
components are not really statistically independent. This paradox is a re-
sult from the fact that real data from natural images can’t be completely
described by the simple ICA model. However, a large propotion of this de-
pendency between the components can be explained by the concept of a global
variance variable which controls the overall activity level of the components
on given image patch. Normalization of this variance, and thereby weak-
ening the dependencies between independent components, leads to contrast
gain control. An intuitive physical interpretation for this could be canceling
the effect of changing lighting conditions. Instead of one global variance one
could also have more variance variables, one for each independent component.
The resulting nonlinear model is an elementwise product of two simpler sub-
models, each of which follow an ICA model. This can be seen for example as
modeling the process of combining illumination and reflection information.

Models for complex cells and higher levels

Complex cells pool the information from simple cells. Similar to ICA for
simple cells, a corresponding method for complex cells is independent subspace
analysis (ISA). In ISA simple linear features are organized into equally sized
groups or subspaces which are treated as second order non-linear features.
The strength of the subspace feature is choosed to be the square root of the
sum of the squares of the simple features in that subspace which, in essence,
is combined energy of those features. This corresponds to the way complex
cells pool outputs of simple cells. Features can then be learned by maximizing
sparseness of these energy detector features. Unlike in ICA, in ISA model the
components in the same subspace are not independent (although restricted
to be uncorrelated). For natural images this approach results in subspace
features that are phase-invariant but still selective for frequency, orientation
and location.

While ISA pools feature into distinct subspaces, another approach to
organize simple features is to arrange them topographically. In the visual
cortex the cells have indeed a very specific spatial organization, in which
cells with similar receptive fields are close to each others. In topographic
ICA model the linear features are arranged on a two-dimensional grid where
features that are far away from each others are independent. On the other
hand the features in local neighbourhoods are dependent and correspond to
subspaces in ISA. Again these overlapping neighbourhoods are considered as
higher order features (corresponding complex cells) which pool local energies
from simple features. Estimation of topographic ICA leads to emergence of
topography where adjacent features have similar orientation, frequency and
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location, just like observed in human brain.
A simple way to try to predict what happens after complex cells, is to fix

the model for simple and complex cells and to add a third layer of cells which
take the output of complex cells as input. The features for the third layer are
then learned by doing a simple ICA of the complex cells outputs. On natural
images this leads to higher-order features, which group together collinear
complex cells forming a longer contour. In addition to collinearity, they also
pool cells for different frequencies. One result from this pooling could be a
more realistic edge representation, and thus a better edge detection.

Typically, for instance in ICA, the number of features is limited by the
number of pixels in image patch. However, physiologically the number of
simple cells is much greater than the number of cells in retina. This problem
can be addressed by using either linear generative model with overcomplete
basis or simpler energy base model, both of which are extensions of ICA model
where the number of features is not limited.

In addition to feedforward processing where signals travel from lower
levers to higher leves, there are top-down feedback connections and even
lateral connections inside single layers in the brain. The Bayesian inference
on generative models is a solution to model these phenomena. Updating lower
level features according to the feedback leads to tresholding which inhibits
the activity of lone features not fitting well into the big picture. And using
of a certain type of overcomplete basis produces results results similar to
end-stopping, a phenomenon related to lateral interaction.

Conclusions

The theory of early human visual processing is evolving rapidly. Today, the
basic behavior of simple cells and complex cells of the V1 area in the vi-
sual cortex is understood to some extent and can be modeled satisfyingly.
Many interesting results also exist for some types of interactions and other
known slightly more complicated phenomena. However, the simple and com-
plex cells are only the very first step in sophisticated processing occuring
in visual cortex. There are a lot of open questions concerning higher levels
and multilayer modeling, which would naturally be one of the next steps in
understanding more deeply the visual processing taking place in the brain.
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