JOURNAL OF ALGORITHMS 6, 132-137 (1985)

Finding Approximate Patterns in Strings
Esko UKKONEN

Department of Computer Science, University of Helsinki, Tukholmankatu 2,
SF-00250 Helsinki 25, Finlund

Received October 14, 1983

Let p (the pattern) be a string and ¢ > 0 an integer. The problem of locating in
any string a substring whose edit distance from p is at most a given constant ¢ is
considered. An algorithm is presented to construct a deterministic finite-state
automaton that solves the problem. © 1985 Academic Press, Inc

1. INTRODUCTION

A classical paitern matching problem is, given strings p and x, to
determine whether the fext x contains an occurrence of the pattern p as a
substring, that is, whether x can be written as x = ypy’. This is a well-studied
question which can be solved, for example, by the Knuth-Morris-Pratt
algorithm or by the Boyer-Moore algorithm [1, 2]. Denoting with m the
length of p and with n the length of x, the Knuth—Morris—Pratt algorithm
runs in O(m + n) steps from which Q(m) steps are needed for pre-
processing p and O(n) steps are needed for the final scanning of x. On the
average, the Boyer—Moore algorithm is even faster.

In this paper we are interested in an approximate pattern maiching
problem whose instance is specified by giving strings p and x and an integer
t. Now one wishes to know whether x contains a substring p’ that resembles
p in the sense that the edit distance from p to p’ is at most ¢. To define the
edit distance, let the editing operations be insertion, deletion, and change,
defined as follows: Inserting a symbol b at position { of a string a,a, - -+ a,,
gives a, --- a;ba;,,, -+ a,, deleting the symbol a, at position i gives
a, -+ a; 1a;., ++* a, and changing the symbol a4, to another symbol b
gives a; - -+ a;_;ba,,, -+ a,. The edit distance from a string u to a string
v is defined as the minimum total number of such editing steps needed to
convert u into v, cf. [1, 4, 5].

132

0196-6774/85 $3.00
Copyright © 1985 by Academic Press, Inc.
All rights of reproduction in any form reserved.

APPROXIMATE PATTERNS 133

Sellers [4] describes an algorithm which can be used to solve the ap-
proximate pattern matching problem. The algorithm is as follows. Suppose
that p=a,---a, and x=5,--- b, Evaluate an (m+ 1) X (n + 1)
matrix (d;;). 0 < i < m, 0 <j < n, defined by the recursion

dy; =0, 0<j<n,
do=i, 0<igm, (1)

d;,

ij

min(if a, = b, thend,_, ; ,elsed, , ;, , +1,

diy;+1,d .+ 1}, otherwise.

Clearly, (d,;) can be evaluated row-by-row or column-by-column, starting
from the first row or from the first column, given directly by (1). After
evaluating (d,,) the algorithm looks at the values on the last row of (4,,).
From the results of Sellers {4, Theorem 1] it follows that some value, say
d_ ., on the last row is at most ¢ if and only if string x contains a substring

mj?
p’, ending at b, whose edit distance from p =a, --- a, is at most . In
fact, d,,; equals the edit distance between p and this substring of x. To

locate p’, note first that the dependencies between entries &, can be
illustrated by drawing a directed arc from 4, to d;; if and only if the
minimization step in (1) gives d,; from d,.;.. Moreover, there is directed arc
from a; |, toa, foralli=1,..., m. The resulting directed graph is called
the dependency graph. Now, substring p’ can be located by finding an
element d,, on the first row such that the dependency graph contains a
directed path from dg, to d,,;. Then we can choose p’ = b, ,, -+ b,

By evaluating (4,;) and checking its last row for entries that are at most ¢,
we can solve the approximate pattern matching problem. Obviously, the
algorithm needs time O(mn). The purpose of this paper is to further
develop this algorithm such that the computations are divided into two
phases: preprocessing the pattern p and scanning the text x. Although not
too efficient, the preprocessing can be useful in some applications since
after preprocessing, the scanning phase runs in time O(n).

2. PREPROCESSING ALGORITHM

Given the pattern p = a, -+ g, and the largest allowed edit distance ¢,
the preprocessing algorithm constructs a deterministic finite-state automa-
ton M, = (0, 2, h, gy, F) that scans any text x = b, --- b, in £* and
arrives at some final state in F if and only if x contains a substring whose
edit distance from p is at most f. Intuitively, each state of the automaton

corresponds to a possible column which may occur in matrix (d;;), defined

134 ESKO UKKONEN

by (1), when the text x varies. All such columns as well as all transitions
between adjacent columns for different symbols b, of the text can be
precomputed from p.

To give the precomputation algorithm, we denote with £ the transition
function of the finite automaton M,. We use § =(S,,...,S,) and §' =
(S35 - -+ S,,) for arbitrary states (i.e., columns of (d,;)) of the automaton.
The states are indexed by integers 0,1,... . The index of state S is denoted
as INDEX(S). In particular, the initial state ¢, is {0,1,...,m) and IN-
DEX(0,1,...,m) = 0. The alphabet of strings p and x is denoted by Z.
Besides £, the algorithm also computes-the set F of the final states.

(1 §=(0,1,...,m);

(2) INDEX(S)=0; i = 0;

(3) NEW = (S}; STATES = {S§);

(4) F=if t = m then {0} else &;

(5) while NEW # @ do

(6) & = some element of NEW; (2)
)] NEW = NEW — {§};

(8) for each b € Z do

(9 57 = NEXT-COLUMN(S, b);
10) if S’¢ STATES then
(11) NEW = NEW U {S'};

STATES = STATES v {S’'};
12) i=i+1; INDEX{(S") =i
(13) if S, <t then F= FU {INDEX(S")} endif;
endif’;
(14) A(INDEX(S), b) = INDEX(S");
endfor;
endwhile,

The procedure next-column, called on line (9), is

procedure NEXT-COLUMN(S, &):
(1) S§ = 0;
(2) for i =1,...,m do
3 S/ =min(if a,=b then S; else S; | +1,5 ,+ 15 +1)
endfor;
(4) return (Sg, ..., S,).
Algorithm (2) constructs finite-state automaton M.v =({0,..., k},
=, h,0, F), where k denotes the final value of i in (2).

APPROXIMATE PATTERNS 135

Suppose that states § = (5;.,....S,,)and §" = (S;,...,S,,) are such that
whenever S, # S, then 5, S/ > r. Then § and S’ are equivalent states of
our finite-state automaton, that is, the languages accepted from § and S’
are identical. This is because the values 4;; on any directed path of the
dependency graph of (d,;) form a nondecreasing sequence. Hence if d, ; is
> ¢, it cannot belong to a path leading to an entry on the last row of (d,;)
which is < r. This means that the exact values of the entries of a column §
of (d,,) (i.e., a state of our automaton) which are > ¢, have no influence on
whether or not the last entry of the columns reachable from s is < 1. In
other words, S and S’ are equivalent.

This observation reduces the number of the states of the automaton and
can be implemented by adding the following sentence into procedure
NEXT-COLUMN after line (3).

@BHif S/ >+ 1then § =1+ 1;

In finding a natural data structure for the states of M, in algorithm (2) as
well as in analyzing the complexity of the algorithm, the following lemma is
useful.

LEMMAa 1. Ler §=(S,, Sl, . ,,,) be a state of M,. Then S, - S, ,
equals —1,0, orl, fori=1,...

Proof. Stated another way, Lemma 1 says that in matrix (d,)), 4, ;=
i—1,; always equals =1, 0, or 1. From (1) it immediately follows that

iy — d; 1,; < 1. Since all values 4, are integers, the proof is complete if we
show that 4, - d,_; ;> —1. Thls is proved by induction on the column
index j. For 4 = 0 the claim is 1mmedlately true by (1). For a general
J >0, assume that d,,—d,_, ;< —2. Since d;, |, , 15 >d,_,;— 1by
(1), and since d; _1 i$ =d;_,; , — 1 by the induction hypothesis, we get
from (1), that d mm(d, vyovdia,thd, 1)z mindd,_; ;-
1d,11+1d,“ I)=d;,_; ;— 1 Hence d,; — d —1. We have
a contradiction which completes the proof. O

d,

rlj

As regards detailed implementation of algorithm (2), we comment on
lines (7), (10), and (11). Line (10) of the algorithm tests whether a generated
state S’ has been found earlier. The states found so far are represented as
set STATES. Lemma 1 suggests a convenient implementation for STATES
as a ternary tree; also any other balanced search tree could be used, of
course. In such a tree, there are at most three edges leaving each internal
node. One of the edges is labeled with —1, one with 0, and one with +1.
The address of a node in the tree is the concatenation of the labels of edges
on the path from the root to the node. State S = (S,,..., S,,) of M, can be
represenied by the leaf of the tree whose address is (S, — SU, S -
S5 8, — S,_1). The method also works when all values S, larger than
t + 1 are replaced by 7 + 1 (step (33) of procedure NEXT-COLUMN).

136 ESKO UKKONEN

So all elements of STATES can be represented by the leaves of a ternary
tree of height . The tree requires space O(mk), where k denotes the total
number of states, and each membership test and each insertion can be
performed in O(m) steps. Moreover, set NEW is easily implemented as a
queue of pointers to appropriate leaves of the tree for STATES. The queue
needs space O(k), and each insertion and deletion on lines (7) and (11)
needs a constant time. Noting in addition, that each call of NEXT-
COLUMN takes time O(m), a straightforward calculation shows that the
running time of algorithm (2) is O(m - |Z| - k). Moreover function h can be
represented as an array of size O(|Z|- k). The total space complexity is
therefore O((|Z] + m) - k).

To finally estimate &, the ternary tree representation of STATES im-
mediately implies that & = O(3™). This is, however, a rough bound which
omits the dependency of k on ¢ and |Z|. To derive an improved bound,
recall that k actually denotes the number of different columns of matrix
(d;;) when p is fixed but x may vary, and all entries d;; that would be
> 1+ 1 are represented as 7 + 1. We partition all such columns § =
(Sy,---,S,,) into disjoint classes. Class m contains all columns § such that
S,<t, and class i, i <m, contains all columns S such that S; = and
§;=t+1 for j>i As already mentioned, if matrix (d,;) contains a
column S in class m (or equivalently, M, enters a state in class m) then the
text x contains a substring p’, ending at this column, whose edit distance
from p is at most ¢ It is easy to show that p’ uniquely determines S.
Hence, by counting the number of different edit operation sequences of
length at most ¢, that are applicable on p, we see that class m contains at
most (|£] + 1) - (2n + 1) elements. Similarly, the size of class / is bounded
by the number of different strings p” whose edit distance from a, - - a; is
t. We get a bound (|| + 1)’ - (2 + 1)". This means that k = O(2'- 2] -
m'*1). We have shown

TuEOREM 1. Given a paitern p = a, -+ a,, in alphabet 2 and a maxi-
mum edit distance t, the preprocessing algorithm (2) constructs an approxi-
mate pattern matching automaton M, in time O(m - |Z| - K) and in space
OW(|Z| + m) - K), where K = min(3",2"- |2 - m'*"). The size of M, is
O(Z] - K).

3. PracTicAL IMPROVEMENTS

When m and k are not quite small, the large time and space requirements
may limit the applicability of algorithm (2). We can, however, further
develop the idea of preprocessing, based on the next lemma; the proof is
similar to that of Lemma 1.

APPROXIMATE PATTERNS 137

LEMMA 2. In matrix (d;;), d;; 2 di—y -1

Hence the values on each diagonal of (d;;) form a nondecreasing se-
quence. This leads to the following improved procedure for evaluating (d,):
Evaluate (d,;) from (1), column-by-column. During evaluation, maintain a
pointer to the last entry of the column that is < ¢. If the pointer has value i
for the current column (the possible values of i are 0,1,...,m), then in
evaluating the next column, it suffices to explicitly compute only entries
0,...,i + 1. The remaining entries are known to have value larger than 1,
that is, they have the default value 1 + 1.

It should be quite obvious, that for random pattern and text, the expected
value of the pointer is O(¢). Hence the procedure can be used to solve the
approximate pattern matching problem in expected time O(1n), instead of
time O(mn) of the straightforward method.

The O(tn) method also suggests that it is wasteful to preprocess the
transitions between entire columns of (d,;). A pattern matching machine
which is almost as fast as M, can be constructed by preprocessing the
transitions between, say, the first 3 - ¢ entries of each column of (d,;). The
resulting machine is as M, but it must also explicitly maintain the entries
on the column that are < ¢ and do not belong to the preprocessed area; we
omit the details. On the average, such extra entries do not occur, hence the
machine scans the text x in expected time O(n).

REFERENCES

1. R. S. BOYER AND). S. MOORE, A fast string matching algorithm, Comm. ACM 20 (1977),
262-272.

2 D. E. KNUTH, I. H. MoRRis, AND V. R. PRATT, Fast pattern matching in strings, STAM J.
Comput. 6 (1977), 323-350.

3. V. [LEVENSHTEIN, Binary codes capable of correcting deletions, insertions and reversals.
Soviet Phys. Dokl. 10 (1966), 707-710.

4. P. H. SELLERS, The theory and computation of evolutionary distances: Pattern recognition.
J. Algerithms 1 (1980), 359-373.

5 R. WAGNER AND M. FIsCHER, The string-to-string correction problem, J. Assoc. Comput.
Mach. 21 (1974), 168-178.

