
Two algorithms for approximate
matching in static texts *

(Extended Abstract)

string

Petteri :lokinen EskoUkkonen

Department of Computer Science, University of Helsinki
Teollisuuskatu 23, SF-00510 Helsinki, Finland

Abstrac t . The problem of finding all approximate occurrences P~ of a pattern string P in a
text string T such that the edit distance between P and pr is _< k is considered. We concentrate
on a scheme in which T is first preprocessed to make the subsequent searches with different P
fast. Two preprocessing methods and the corresponding search algorithms are described. The
first is based suffix automata and is applicable for edit distances with general edit operation
costs. The second is a special design for unit cost edit distance and is based on q-gram lists.
The preprocessing needs in both cases time and space O(IT]). The search algorithms run in the
worst case in time O(IPtlTI) or O(ktTt), and in the best case in time O(IPI).

I n t r o d u c t i o n

The approximate string matching problem is to find, given a pattern string P and a
text string T, the approximate occurrences of P in T. Typically one wants to find all
occurrences that are good enough in some measure of the approximation quality.

There are several situations where it is necessary to allow for approximate matches
instead of exact ones. Some natural variation in the occurrences of P (e.g. due to
morphological variation of the same base word in natural languages) sometimes takes
place. In other cases, P or T or both may have been slightly distorted through noisy
communication channels or through different types of errors (measurement error, typing
error).

We concentrate on the important special case where T stays unchanged for searches
with numerous different P, and we have the whole T available before the searches. Such a
static T can first be preprocessed into a suitable form (an index for approximate searches)
that makes the subsequent searches faster. Hence we want to find a preprocessing of
T and the associated algorithm to search for approximate occurrences of P using the
preprocessed T.

The edit distance will be used as the measure for the approximation quality.

Def in i t ion . Let P and P~ be strings in alphabet E. The edit distance form P to P~ is
the minimum possible total cost of a sequence of editing steps that convert P~ to P. Each

*Research supported by the Academy of Finland and by the Alexander yon Humboldt Foundation
(Germany). The work of the second author was in part carried out when visiting Institut fuer Informatik,
University of Freiburg, Germany.

241

editing step is a rewriting step of the form a --* e (a deletion), ~ --, a (an insertion), or
a ~ b (a change), where a, b in ~ are any symbols, a ~ b, and e is the empty string.
Each editing operation x ~ y has a cost c(z ~ y) > 0. In the conversion from P to
P' rewriting of each symbol is allowed only at most once; this makes it possible to use
dynamic programming algorithms for edit distances. The special case where e(x --* y) = 1
for all edit operations x ~ y is called the unit cost model of the edit distance.

Definit ion (approximate string matching problem). Given two strings, text T = t l t2 . . , t ,
and pattern P = pip2. . , p,, in alphabet Y:, and a threshold value k > 0, find the end
locations j of all substrings P' of T such that the edit distance from P to P' is at most
k. If the unit cost model is used, the problem is called the k differences problem.

The on-line version of the problem in which no preprocessing of T is allowed has
recently received lot of attention [5, 6]. Standard solution is by dynamic programming in
time O(mn). For the k differences problem fast special methods are possible, including
O(kn) time algorithms [10, 7, 16, 14, 2].

In the case of exact string matching (k = 0) preprocessing of T leads to optimal time
searches. If T is preprocessed into a suffix tree [17, 12] or into a suffix automaton [1, 3],
the queries of P can be accomplished in time O(m + size of output). If the suffix array
[11] is used, the search time becomes O(m Jr log n + size of output).

In the case of the approximate matching (k > 0) we develop in this paper two data
structures for representing a static T and give the corresponding search algorithms. The
first solution combines suffix automata and dynamic programming, and is applicable for
general edit operation costs c. Text T is represented a~ annotated suffix automaton. The
search is performed by dynamic programming over P and the transition graph of the
automaton. Based on certain properties of suffix automata we develop a search strategy
that avoids entering the same state of the automaton repeatedly. This gives a time bound
that is in the worst case the same as for the standard on-line dynamic programming but
in the best case is essentially better.

The second data structure is a simple special design for the k differences problem. The
structure is based on the so-called q-grams that are simply any strings of q symbols. The
preprocessing phase creates for each q-gram of T a chain that links together all occurrences
of the q-gram in T. This structure can be understood as an abridged version of the suffix
array or--when the headers of the link chains are organized as a trie--as a suffix tree
which has been cut to the depth q.

The search phase marks the areas of T that have a sufficient number of q-grams
in common with P. The marked areas are then checked by dynamic programming for
occurrences of P with at most k differences. The method has a predecessor in the work of
Owolabi & McGregor [13], and related 'signature' methods have been used e.g. in spelling
correction; see e.g. [9]. We show how the different parameters of the method should be
chosen to solve the given k differences problem.

A n n o t a t e d suffix a u t o m a t o n SA(T)

The suffix automaton [3, 4] (also known as DAWG, directed acyclic word graph, [1]) for
a string T = t l t2 . . . tn is the smallest DFA recognizing all the suffixes T/ = t i . . . t,,"
1 < i < n + 1, of T. We let root denote its initial state and goto its transition function;

242

there is a transition from state s to state r on input symbol a if r = goto(root, a). The
suffix automaton can be constructed in t ime O(n) by the methods given in [3, 4, 1]. The
suffix automaton for T has at most 3n - 4 goto transitions and at most 2n - 1 states. It
can be viewed as the s u e z tree for T, with the identical subtrees merged. As a graph, it
is a dag.

The depth of a state s of the automaton, denoted depth(s), is the length of the (unique)
longest string z such that there is a goto path from root to s, goto(root, z) = s; here we
have extended the goto function for strings in the obvious way. Similarly, mindepth(s)
denotes the length of the shortest string y such that goto(root, y) = s.

The following property of a suffix automaton is an immediate consequence of the fact
that the automaton accepts all the suffixes of a string and nothing more.

L e m m a 1 For a state s, let x be the longest string such that goto(root, x) = s. Then the
set of strings y such that goto(root, y) = s consists of all su~zes of x of length at least

. mindepth(s).

The important fail function on the states of the automaton has the following charac-
terization.

L e m m a 2 ([4]) Let s = goto(root, x) for some string z, and let w be the longest s u e z
of x such that s # goto(root, w). Then, goto(root, w) = fai l(s) and Iwl = depth(fail(s)) .

C o r o l l a r y 1 mindepth(s) = depth(fail(s)) + 1.

The suffix automaton serves an an index giving the locations of different substrings
of T. There are different ways to attach the location information to the automaton. For
our purposes the following is suitable.

The states of the automaton are divided into two classes: the primary states and the
secondary states. The primary states are the states sl = goto(root, tl ti) for 0 < i < n.
These states are disjoint, and depth(si) = i. The other states are secondary.

A string z is said to occur at location j in T if x = tj_Ixl+ltj_l~l+2.., tj.

L e m m a 3 Let goto(root, x) = s, and let L = {depth(r) [r is primary and s = fail i(r)
for some i > 0}. Then L is the set of all locations at which x occurs in T.

Hence the occurrences of a string leading to s can be found by finding the primary
states from which there is a fa i l transition path to s. Therefore we also need the inverse
of fail: with each state r we at tach a list of links, the co fa i l links, pointing to states r '
such that fail(r ') = r.

The annotated sufftz automaton for T, denoted SA(T) , is the suffix automaton of T
(i.e., the states and the goto function) with the states marked primary or secondary and
with the fa i l and cofail links and the depth value for each state. The annotations do not
increase the construction time; in fact, both fa i l and depth are needed in the construction,
so the only extra work is to reverse fa i l and mark states primary or secondary which
clearly does not increase the asymptotic time requirement.

P r o p o s i t i o n 1 The annotated s u ~ automaton S A (T) can be constructed in time and
in space O(n).

243

Approx ima te str ing ma tch ing with SA(T)

The approximate string matching problem for text T = q t y . . , t,~ and pattern P =
plp~"" pm can be solved on-line, without preprocessing T, with the following well-known
dynamic programming method.

Let D be a m-t- 1 by n + 1 table such that for 0 < i < m, 0 < j < n, D(i , j) is the
minimum edit distance from pl" '" pi to the substrings of T ending at tj. Clearly, there is
an approximate occurrence of P in T, ending at tj, with edit distance < k from P, if and
only if D (m , j) < k. Such indexes j can be found by evaluating D from

D(O,j)

D(i , j)

= 0, 0_<j_<n; (1)

D (i - 1,j) +c(pi -* ~)
= rain D (i - l , j - 1) + i f p ~ = t j t h e n O e l s e c (p i ~ t j) (2)

D (i , j - 1) + c(e ~ tj)

f o r l < i < m , O < j < n .
As D(i , j) depends only on entries D (i - 1,j), D (i - 1, j - 1), and D(i , j - 1) of D, the

evaluation conveniently proceeds column-by-column: Column D(* , j) can be evaluated
from column D (* , j - 1), proceeding in the order D (O , j) , . . . , D (m , j) . The total time is
O(mn).

The length L(i, j) of the shortest suffix of tx. . . tj, whose edit distance from P is D(i, j) ,
can be computed together with D(i , j) itself. Clearly, for 0 < j _< n we have L(O,j) = O,
and for 1 < i < m, 0 < j < n:

L (i , j) if D(i , j) = D(i - 1,j) + c(pi -~ e) then L(i - 1,j)
elsif D(i , j) = D(i - 1 , j - 1) + (if pl = tj then 0 else c(pl -* tj))

then L(i - 1 , j - 1) + 1
else L (i , j - 1) + 1.

Then D(i , j) equals the edit distance from pl"" "p~ to tj tj where j ' = j - L (i , j) + 1.
Next we develop a method that performs a similar dynamic programming over P and

S A (T) to find the approximate occurrences of P in T. The method will attach with the
states of S A (T) similar columns of m + 1 entries as are the columns of matrices D and L.
The column representing edit distances at state r is denoted as dcol(r), and the column
representing the corresponding lengths is denoted as leol(r).

The method will work, roughly formulated, in the following steps.

1. Traverse the useful subtree U(P, k) of SA(T) starting from root and using a modified
Dijkstra's shortest path algorithm to control the traversing order;

2. When the traversal enters state r along a transition goto(s, a) = r, evaluate dcol(r)
and lcol(r) by dynamic programming from a, dcol(s), and lcol(s);

3. If dcol(r)(m) < k, mark all states that can be reached from r along cofail links and
are not already marked. Output depth(q) for each primary state q that gets a mark.

Next we refine the above description of the algorithm, starting from step 2.
To understand the use of dcol and leol some further notation is necessary. For any

string x, we let d(i, x) denote the minimum edit distance between p l " " pi and any suffix

244

of x, and l(i,x) denote the length of the shortest such a suffix. Then, for example,
D(i, j) = d(i, tl . . . t j) and L(i , j) = l(i, t l . . . t j) . It should be clear that d anf I can be
evaluated in the same way as D and L from a recursion similar to (1) and (2); string x
now takes the role of t l - - - t j .

The traversal over SA(T) starts from root. Initially, dcol(root) = d(. , e) and lcol(root) =
l(*, e), where d(i, e) = E~=a c(ph ~ e) and I(i, e) = 0, for 0 < i < m. For other states s the
columns dcol(s) and tcol(s) will be such that dcol(s) = d(*, x) and Icol(s) = l(*, z), where
x is the string spelled out by the path from root to s in the traversed subtree U(P, k).
This property is preserved if, when the traversal takes transition goto(s, a) = r, the new
columns dcol(r) = d(*, za) and/col(r) = l(*, xa) are evaluated by dynamic programming
from dcol(s), lcol(s), and a. For example, for dcol(r) this evaluation gets the form

dcol(r)(O) = 0 (3)

dcol(r)(i - 1) + c(pi ---r e)
dcol(r)(i) = min dcol(s)(i - 1) + if pi = a then 0 else c(pi --+ a) (4)

dcol(s)(i) + c(e --+ a)

for i = 1 ,2 , . . . ,m .
Next consider step 1. Our goal is to develop a traversing order that guarantees that all

approximate occurrences of P will be found but extra traversing is avoided. This should
be done in such a way that each goto transition of SA(T) is traversed at most once. As
there are O(n) transitions and taking a transition needs time O(m) (for evaluating dcol
and Icol), this would give an O(mn) time bound for the whole method. It turns out that
it suffices to traverse over subtree U(P, k) which we shall define next.

We denote as A(x) the length of the longest suffix y of a string x such that the edit
distance from some prefix of P to y is < k. Obviously, A(x) = l(i, x) where i < m is the
largest index such that d(i,x) < k. We say that an entry d(i, x) is essential, if d(i, x) < k.
Hence A(x) expresses the length of the part of x on which the essential part of d(*, x)
depends.

Let goto(root, ala2.. , ah) = s for some a i e 5]. The goto path a~--. ah is called useful,
if A(al . . .a i) > mindepth(goto(root, a~...al)) for all 1 < i < h. State s is useful, if all
goto paths from root to s are useful. In particular, root is useful.

Definit ion. The useful subtree U(P~ k) of SA(T) is the subgraph of SA(T) that contains
all the useful states and for each such state s, it also contains the goto transitions on the
longest useful goto path from root to s.

Useful subtree U(P, k) is really a tree because every initial segment of a useful path is
useful.

It is sufficient to restrict the traversal on U(P, k). To prove this, we need first a lemma.

L e m m a 4 Let x be a string and y its su]fiz such that lYl > A(x). Then d(*, x) and d(*, y)
are identical when restricted to the essential entries, and the correspondingly restricted
l(*, x) and l(,, y) are identical.

Let J be the set of all locations j that our algorithm will output (step 3) when
performing dynamic programming over U(P, k), and let j t be the correct set of locations
we want to find, that is, g' = {j I D(m, j) < k}.

245

Theorem 1 J = J~.

Finally we need an efficient way to isolate and traverse the useful subtree U(P, k).
This will be done by finding a slightly larger tree that consists of U(P, k) and of some
additional leaves.

A goto path al . . .ah is called a bounding path, if path a l . . . ah_l is useful but path
a t . . - ah is not useful (that is, ~ (a l . . . ah) < mindepth(goto(root, ax. . . ah)). A state s of
SA(T) is a boundary state if there is to s at least one bounding path but no useful path.

Definit ion. The eztended useful subtree U+(P, k) of SA(T) consists of U(P, k) and of all
boundary states of SA(T) and of longest possible bounding paths to them.

Again, subgraph U+(P, k) is really a tree because the longest bounding path to each
boundary state is unique, and its each initial segment is useful and longest possible and
hence belongs to U(P, k).

Assume for a moment that we know a priori the nodes of U + (P, k). Then its arcs can
be found by Dijkstra's shortest path algorithm. We define the cost w(s, r) of an arc (s, r)
(i.e., goto(s, a) = r for some a) as w(s, r) = depth(r) - depth(s) - 1, if s is a useful state.
If s is a boundary state, then we set w(s, r) = oo; hence, in effect, such arcs are removed
from SA(T).

Then find with Dijkstra's algorithm the minimum cost paths with respect to cost func-
tion w from root to all states in U+ (P, k). Consider the path so = root, sl,. . ., Sh-1, sh = s
found in this way to some s.

L e m m a 5 The length h of the path to s is largest possible.

The useful states and the boundary states are not known a priori, but we can recognize
them easily during the execution of the Dijkstra's algorithm. The dynamic programming
is performed at each state in the traversal order determined by the algorithm: When
the algorithm reaches a new state r along transition goto(s, a) = r, columns dcol(r) and
Icol(r) are computed from dcol(s), Icol(s), and a, as already explained.

Let x be the path from root along which r is found. Then/~(x) = lcol(r)(i) where i is
the largest index such that dcol(r)(i) is essential. Hence $(x) can be evaluated locally at
r, and we may write "~(r) = ,~(x).

Now the status of r can be decided.

L e m m a 6 I f)t(r) < mindcpth(r), then r is a boundary state, otherwise r is a useful
state.

By Lemmas 5 and 6, our algorithm finds the boundary states and the useful states
correctly along longest possible paths. Therefore U+(P, k) is found correctly which means,
by Theorem 1, that the approximate occurrences of P are found correctly.

Theorem 2 The described algorithm can be implemented such that it works in time
O(mn) in the worst case and, for the unit cost model of the edit distance, in time O(m)
in the best case.

246

Proof. As there are O(n) states in U+(P, k) and a dynamic programming step of time
O(m) is performed once at each, the time for dynamic programming is O(ran). In Dijk-
stra's algorithm we use bucket sort instead of heap to get time O(n), and hence total time
O(mn). For the best case bound consider P and T such that they do not have common
symbols.

R e m a r k 1. The algorithm of Theorem 2 satisfies the natural requirement that the worst
case time O(nm) is not larger than the time of the on-line solution, without preprocessing
T. The best case time is O(m) showing that we have achieved some progress with the
preprocessing of T. Without it also the best case has to grow proportional to n.

When k = 0, the algoritm requires time O(m2). The time seems to grow very fast
with k but we leave open a more complete analysis of this dependency.

R e m a r k 2. The simplest way to find approximate P's from automaton SA(T) would be
to follow each goto path from the root until the corresponding string has an edit distance
> k from all prefixes of P. Such paths can have total length O(mn). It can be shown
that this leads to O(mnk) time search.

The q-gram m e t h o d

This section considers the k differences problem, that is, c(x ~ y) = 1 for all editing
operations x ~ y.

A q-gram in ~ is any string in zq. The usefulness of the q-grams is based on the
following lemma.

L e m m a 7 Let an occurrence of P with at most k differences end at tj in T. Then at
least m + 1 - (k + 1)q of the m - q + 1 q-grams of P occur in t j-m+l.. . t j .

Proof. Let. P ' be the approximate version of P that ends at tj. Hence P ' is a suffix of
tj_m+l.., tj or t~_m+l ---t~ is a suffix of P'. String P ' is obtained from P with at most
k insertions, deletions or changes. A deletion or a change at character pi of P destroys
at most q q-grams of P, namely those that contain pi. An insertion between pi and pi+1
destroys at most q - 1 q-grams of P, namely those that contain both pl and pi+x. Hence at
most klq+k2(q-1) q-grams of P are missing in P' , where kl is the total number of deletions
and changes and k2 is the total number of insertions. As [P'[_< m + k2, string tj-m+l- .. tj
contains all q-grams of P 'except for at most ks. Hence at most klq+ k2(q - 1) + ks = kq
q-grams of P are not present in t~_m+l -. • tj, which proves the lemma.

Using the lemma the areas of T that may contain a good enough approximate occur-
rence of P can be found fast. These are separately checked with dynamic programming.

Text T is preprocessed as follows: For each q-gram G in ~q we construct a list L(G)
consisting of all j such that T has an (exact) occurrence of G starting at tj. The lists for
all G can be created in one scan over T either by using a natural encoding of q-grams
into integers to the base [~[(c.f. [8]) or by using a modified suffix automaton with fail-
transitions representing different q-grams of T [15]. We also create a search structure for
finding fast the list L(G), given G. A suitable stucture is an array indexed by the integer
code of G, or a t r i e representing the different q-grams of T. The preprocessing time is
O(n + [El q) for the method based on integer codings; the size of the resulting structure

247

is also O(n + q) where n represents the total length of the lists and IEI q the search
structure.

Assume then that we have to find the occurrences of P in T with < k differences. The
first phase of the search traverses all lists L(G) where G occurs in P. The occurrences
listed in L(G)'s are counted into initially zero buckets B~, 0 < i < [n / (m- 1)] +1. Bucket
B~ is increased by 1 when the next element j of L(G) satisfies (i - 1)(m - 1) + 1 < j <
(i + 1)(m - 1). Hence the width of each bucket is 2(m - 1) and two successive buckets
have an overlap of length m - 1; the overlap ensures that no occurrences of P are lost.
(For simplicity, we assume that m > 2.) The rule for updating the buckets can be stated
simply B [~ j ~ • + 1; B/2=~_/..~,~_lj,, ~ * + 1.

When Bi achieves value m + 1 - (k + 1)q we know by Lemma 7 that an approximate
occurrence of P can end somewhere in ti(m-1)"" t(i+x)(m-a)- As an occurrence is of length
< re+k, its leftmost possible starting character is tj where j = i (m - 1) - m - k + l . Hence
we check by dynamic programming whether or not there is an approximate occurrence in
t j . . • t (i + l) (m - 1) .

Because the total length of the q-gram lists L(G) for G in P is < n, they can be
traversed as described above in time O(m + n). Under the random string assumption
(each symbol in T is chosen uniformly and independently from E) the expected length of
each list is n / l E E hence the expected traversal time is O(m + (m - q + 1)ntlSt~). In the
best case each list is empty, hence time O(m) suffices. Let r be the number of the buckets
checked by dynamic programming. Using the O(kn) version of dynamic programming
[7, 16], the total time for the checking phase is O(rkm) which in the worst case is O(kn).

Theorem 3 The q-gram lists for T can be constructed in time and in space O(n + IEIq).
The search for occurrences of P with at most k differences can be done in time O(m +
n + rkm) where r is the number of buckets checked with dynamic programming. In the
best case time O(m) suO~ces for the search.

The bound m + 1 - (k + 1)q for the number of q grams in Lemma 7 is non-trivial
only if q < (m + 1)/(k + 1). Hence it is possible that the q used in preprocessing T is
too large for the present m and k. Fortunately, we can in this case use a smaller q' that
is < (m + 1)/(k + 1). The list L(G) for a q'-gram G is the catenation of the q-gram lists
L(GX) where X is in ~,q-¢.

Annotated suffix automaton SA(T) is also a complete '*-gram' index for T containing
q-gram lists for all 0 _< q _< n. For a gram G of any length, L(G) consists of all values
depth(s) such that s is primary and reachable from goto(root, G) along co fail-links (Lemma
3). The q-gram method could be based on SA(T) as well.

R e f e r e n c e s

[11

[2]

Blumer,A., Blumer,J., Haussler, D., Ehrenfeucht, A., Chen, M.T. and Seiferas, J.
(1985): The smallest automaton recognizing the subwords of a text. Theor. Comp.
Sci. 40, 31-55.

Chang,W. and Lawler,E (1990): Approximate string matching in sublinear expected
time. FOCS'90, pp. 116-124.

2 4 8

[3] Crochemore, M. (1986): Transducers and repetitions. Theor. Camp. Sci. 45, 63-86.

[4] Crochemore, M. (1988): String matching with constraints. Proc. MFCS'88. SLNCS
324, pp. 44-58.

[5] Dowling, G. R. & Hall, P. (1980): Approximate string matching. ACM Comput.
Surv. 12, 381-402.

[6] Galil, Z. & Giancarlo, R. (1988): Data structures and algorithms for approximate
string matching. J. Complexity 4, 33-72.

[7] Galil, Z. & Park, K. (1989): An improved algorithm for approximate string matching.
ICALP'89. SLNCS 372, pp. 394-404.

[8] Karp,R.M. and Rabin,M.O. (1987): Efficient randomized pattern matching. IBM J.
Res. Dev. 31, 249-260.

[9] Kohonen,T. & Reuhkala, E. (1978): A very fast associative method for the recognition
and correction of misspellt words, based on redundant hash-addressing. Proc. 4th Int.
Joint Conf. on Pattern Recognition, 1978, Kyoto, Japan, pp. 807-809.

[10] Landau, G. & Vishkin, U. (1988): Fast string matching with k differences. JCSS 37,
63-78. (Also 26th FOCS, pp. 126-136).

[11] Manber, U. & Myers, G. (1990): Suffix arrays: a new method for on-line string
searches. SODA '90, pp. 319-327.

[12] McCreight, E. M. (1976): A space economical suffix tree construction algorithm. J.
ACM 23, 262-272.

[13] Owolabi, O. & McGregor, D. R.(1988): Fast approximate string matching. Software
- Practice and Experience 18(4), 387-393.

[14] Tarhio, J. & Ukkonen, E. (1990): Boyer-Moore approach to approximate string
matching. 2nd Scand. Workshop on Algorithm Theory (SWATgO), SLNCS 447, pp.
348-359.

[15] Ukkonen, E. (1991): Approximate string matching with q-grams and maximal
matches. Theor: Comp. Sci., to appear.

[16] Ukkonen, E. & Wood, D. (1990): Approximate string matching with suffix automata.
Report A-1990-4. Department of Computer Science, University of Helsinki.

[17] Weiner, P. (1973): Linear pattern matching algorithms. Proc. 14th IEEE Symp.
Switching and Automata Theory, pp. 1-11.

