
Approximate String-Mat
hing over SuÆx Trees ?Esko UkkonenDepartment of Computer S
ien
e, University of HelsinkiP. O. Box 26, SF{00014 University of Helsinki, Finlandemail: ukkonen�
s.Helsinki.FIAbstra
t. The 
lassi
al approximate string{mat
hing problem of �nding the lo-
ations of approximate o

urren
es P 0 of pattern string P in text string T su
hthat the edit distan
e between P and P 0 is � k is 
onsidered. We 
on
entrate onthe spe
ial 
ase in whi
h T is available for prepro
essing before the sear
hes withvarying P and k. It is shown how the sear
hes 
an be done fast using the suÆxtree of T augmented with the suÆx links as the prepro
essed form of T and apply-ing dynami
 programming over the tree. Three variations of the sear
h algorithmare developed with running times O(mq + n), O(mq log q + size of the output), andO(m2q + size of the output). Here n = jT j, m = jP j, and q varies depending on theproblem instan
e between 0 and n. In the 
ase of the unit 
ost edit distan
e it isshown that q = O(min(n;mk+1j�jk)) where � is the alphabet.1 Introdu
tionThe approximate string{mat
hing problem is to �nd the approximate o

urren
es ofa pattern in a text. We will 
onsider the problem in the following form: Given textT = t1t2 � � � tn and pattern P = p1p2 � � � pm in alphabet �, and a number k � 0, �ndthe end lo
ations j of all substrings P 0 of T su
h that the edit distan
e between Pand P 0 is � k.The edit distan
e between P and P 0 is the minimum possible total 
ost of asequen
e of editing steps that 
onvert P to P 0. Ea
h editing step applies a rewritingrule of the forms a ! � (deletion), � ! b (insertion), or a ! b (
hange) wherea; b 2 �, a 6= b.The problem has the following four sub
ases:1. k = 0, no prepro
essing of T (exa
t on{line string{mat
hing).2. k = 0, with prepro
essing of T (exa
t o�-line string{mat
hing).3. k > 0, no prepro
essing of T (approximate on{line string-mat
hing).4. k > 0, with prepro
essing of T (approximate o�{line string{mat
hing).Case 1 leads to the well{known Boyer{Moore and Knuth{Morris{Pratt algo-rithms. Case 2 has optimal solutions based on suÆx trees [16, 25℄ or on suÆx au-tomata ('DAWG`) [3, 6, 7℄. Case 3 has re
ently re
eived lot of attention [8, 9, 26℄. Thesimplest solution is by dynami
 programming in time O(mn) where m = jP j andn = jT j. For the k{di�eren
es problem (ea
h edit operation has 
ost 1) fast spe
ialmethods are possible, in
luding O(kn) time algorithms, see e.g. [14, 10, 23, 19, 5, 21℄.? This work was supported by the A
ademy of Finland and by the Alexander von HumboldtFoundation (Germany).



This paper deals with Case 4, whi
h also 
ould be 
alled the problem of approxi-mate string sear
hes over indexed �les. The problem is to �nd a suitable prepro
ess-ing for T and an asso
iated sear
h algorithm that �nds the approximate o

urren
esof P using the prepro
essed T for varying P and k. We show how this 
an be solvedfast using the suÆx tree (for simpli
ity, the algorithms will be formulated for thesuÆx{trie) of T augmented with the suÆx links, and applying dynami
 program-ming over the tree. Re
all that a suÆx tree for T is, basi
ally, a trie representing allthe suÆxes of T . It 
an be 
onstru
ted in time O(n). Therefore the prepro
essingphase of our algorithms will be linear.Perhaps the most natural way of applying dynami
 programming over a suÆxtree is to make a depth{�rst traversal that �nds all substrings P 0 of T at a distan
e� k from P . (Note that this is not exa
tly our problem; we want only the end pointsof su
h strings P 0.) The sear
h is easy to organize be
ause all possible substrings ofT 
an be found along some path starting from the root of the tree. Ea
h path isfollowed until the edit distan
e between the 
orresponding substring and all pre�xesof P be
omes > k. The ba
ktra
king point 
an be found using the 
olumn of editdistan
es that is evaluated at ea
h node visited during the traversal. This type ofmethod is des
ribed and analyzed by Baeza{Yates & Gonnet [2℄ (see also Remark2 of [13℄). The method is further applied in [2, 11℄ for �nding signi�
ant alignmentsbetween all pairs of substrings of T .In the worst 
ase, the above method evaluates �(mn) 
olumns of edit distan
eswhi
h is more than the n 
olumns evaluated by the simple on{line algorithm withno prepro
essing of T . In this paper we show how to apply dynami
 programmingover the suÆx tree su
h that in the worst 
ase the number of evaluated 
olumnsstays � n and 
an in a good 
ase be mu
h smaller.To explain the idea, let T = aaaaaaaabbbbbbbb, P = abbb, and k = 1. In this
ase there is lot of repetition in the on{line dynami
 programming algorithm. Itevaluates a table whi
h has a 
olumn of m + 1 entries for ea
h symbol tj of T . We
all an entry essential if its value is � k. The o

urren
es of P 
an be found usingonly the essential entries: if the last entry of a 
olumn is essential then there is anapproximate o

urren
e whose edit distan
e from P is � k ending at that 
olumn.A 
olumn and its essential part in parti
ular 
an depend only on a substring of T oflength O(m). We 
all this substring a viable k{approximate pre�x of P in T . If two
olumns have same viable pre�x then their essential part must be identi
al. In ourexample, the eight 
olumns 
orresponding to the eight a's at the beginning of T willhave the same viable pre�x and hen
e the same essential part of the 
olumn.To avoid evaluating a 
olumn whose viable pre�x has o

urred earlier we store
olumns into the suÆx tree. A 
olumn with viable pre�x Q is stored with the statethat 
an be rea
hed along the Q{path from the root. The sear
h algorithm performsa traversal over the tree that spells out string T . The traversal 
an follow both thenormal trie transitions and the suÆx transitions. During the traversal, new 
olumnsare evaluated for ea
h tj ex
ept if we 
an 
on
lude that the viable pre�x at tj will bethe same as some older pre�x. In this 
ase the evaluation 
an be skipped; we havealready stored a 
olumn with the same essential part.The number of 
olumns evaluated by the method is � n and proportional to qwhere q is the total number of di�erent viable pre�xes in T . For small k, q 
an be
onsiderably smaller than n.



We elaborate the above idea into three algorithms of di�erent degree of sophis-ti
ation. The introdu
tory Algorithm A (Se
tion 4) runs in time O(mq + n) andalways needs time 
(n). This undesirable dependen
y on n is eliminated by us-ing more 
ompli
ated data stru
tures in Algorithm B (Se
tion 5) whi
h has run-ning time O(mq log q) + size of the output). Algorithm C (Se
tion 6) is �nally aneasy{to{implement simpli�
ation of Algorithms A and B. It 
an evaluate more thann 
olumns and has running time O(m2q + size of the output). We also show thatq � min(n; 125 (m+ 1)k+1(j�j+ 1)k) = O(min(n;mk+1j�jk)).The exponential growth of q as a fun
tion of k suggests that while our methods
an be very fast for small k, their running time rapidly approa
hes the time of theon{line algorithm when k grows. In an interesting paper [17℄ (see also [1℄), Myerspoints out that this inherent diÆ
ulty in our problem 
an be relieved by dividingP into smaller subpatterns and performing the sear
h with a redu
ed error level forea
h subpattern. This �lters out the interesting regions of T where one then attemptsto expand the approximate o

urren
es of the subpatterns into k{approximate o
-
urren
es of the whole P . A simpler 'q{gram' method along similar lines is des
ribedin [13℄.2 The approximate string mat
hing problemAn edit operation is given by any rewriting rule of the form a! � (a deletion), �! a(an insertion), or a! b (a 
hange), where a, b are any symbols in alphabet �, a 6= b,and � is the empty string. Ea
h operation x! y has a 
ost 
(x! y) > 0.Operation a ! a is 
alled the identity operation for all a 2 �. It has 
ost
(a! a) = 0.Let A = a1a2 � � �am and B = b1b2 � � � bn be strings over �. A tra
e from A toB is any sequen
e � = (x1 ! y1; x2 ! y2; : : : ; xh ! yh) of edit operations andidentity operations su
h that A = x1x2 � � �xh and B = y1y2 � � � yh. The 
ost of atra
e � is 
(�) = Phi=1 
(xi ! yi). The edit distan
e E(A;B) between A and B isthe minimum possible 
ost of a tra
e from A to B [24℄. The unit 
ost edit distan
ewhi
h means that ea
h edit operation has 
ost = 1 is denoted as E1(A;B).The intuition behind this de�nition is that E(A;B) will be the minimum possibletotal 
ost of a sequen
e of editing steps that 
onvertA intoB su
h that ea
h symbol isrewritten at most on
e. Distan
e E(A;B) 
an be evaluated in time O(mn) by a verysimple form of dynami
 programming [24℄. The method evaluates an (m+1)�(n+1)table e su
h that e(i; j) = E(a1 � � � ai; b1 � � � bj). Hen
e E(A;B) = e(m;n).If E(A;B) � k we say that B is a k{approximation of A.De�nition. Let P = p1p2 � � � pm be a pattern string and T = t1t2 � � � tn a text stringover �, and let k be a number � 0. The approximate string mat
hing problem withthreshold k is to �nd all j su
h that the edit distan
e E(P; P 0) between P and somesubstring P 0 = tj0 � � � tj of T ending at tj is � k. Then P has a k{approximateo

urren
e P 0 at position j of T .The approximate string mat
hing problem 
an be solved on{line, without pre-pro
essing of T , with a very slightly modi�ed form of the dynami
 programming forthe the edit distan
e [18℄: Let D(i; j) be the minimum edit distan
e between the



pre�x Pi = p1 � � � pi of P and the substrings of T ending at tj . The (m+1)� (n+1)table D(i; j), 0 � i � m, 0 � j � n, of su
h values 
an be evaluated fromD(0; j) = 0; 0 � j � n; (1)D(i; j) = min8<:D(i� 1; j) + 
(pi ! �)D(i� 1; j � 1) + (if pi = tj then 0 else 
(pi ! tj))D(i; j � 1) + 
(�! tj) (2)for 1 � i � m, 0 � j � n. It should be emphasized that all entries D(0; j) on row0 of this table have value 0 while in the 
orresponding table for the edit distan
ebetween P and T only the (0; 0){entry gets value 0.The solution to the problem 
an be read from the last row of table D: there is ak{approximate o

urren
e of P in T at position j if and only if D(m; j) � k.In the sequel, an important te
hni
al tool will be the length L(i; j) of the shortestsubstring of T ending at tj whose edit distan
e from Pi equals D(i; j). Value L(i; j)obviously satis�esL(0; j) = 0; 0 � j � n; (3)L(i; j) = if D(i; j) = D(i� 1; j) + 
(pi ! �) then L(i� 1; j) (4)elsif D(i; j) = D(i� 1; j � 1) + (if pi = tj then 0 else 
(pi ! tj))then L(i� 1; j � 1) + 1else L(i; j � 1) + 1for 1 � i � m, 0 � j � n.TablesD and L 
an be 
onveniently evaluated, 
olumn{by{
olumn, in an on{line,left{to{right s
an over T . ColumnsD(�; j) and L(�; j) 
an be produ
ed fromD(�; j�1), L(�; j � 1), and symbol tj of T . The evaluation 
an be organized as fun
tion dp,given below, whi
h will return (D(�; j); L(�; j)) as dp(D(�; j � 1); L(�; j � 1); tj):fun
tion dp(d0(0 : : :m); l0(0 : : :m); t):d(0) l(0) 0;for j  1 to m dod(i) d(i� 1) + 
(pi ! �)l(i) l(i� 1)if d0(i� 1) + (if pi = tj then 0 else 
(pi ! tj)) < d(i) thend(i) d0(i� 1) + (if pi = tj then 0 else 
(pi  tj))l(i) l0(i� 1) + 1;if d0(i) + 
(�! tj) < d(i) thend(i) d0(i) + 
(�! tj)l(i) l0(i) + 1return(d; l).This takes time O(m) and the evaluation of D and L therefore takes total timeof O(mn). Other on{line algorithms running in O(kn) expe
ted time [20, 4℄ (thesemethods 
an easily be in
orporated into pro
edure dp) or in O(kn) worst{
ase time(for the unit 
ost edit distan
e) [10, 23℄ are also known.In the next se
tions we develop algorithms that are o�-line with respe
t to T . Weassume that T has been prepro
essed into a suÆx tree and study how the evaluationof D 
an be organized in a more eÆ
ient way.



3 k{approximate pre�xes of PThe on{line solution to our problem in Se
tion 2 has the drawba
k that dynami
programming is expli
itly repeated over identi
al repeated substrings of T . This may
reate unne
essary work be
ause the 
ontent of ea
h 
olumn D(�; j) of D dependsonly on a relatively short substring of T . If su
h a substring o

urs again in T , thedynami
 programming would give a 
olumn that is equal to an old 
olumn. Our newalgorithms avoid the repetition of su
h identi
al 
al
ulations.To make this pre
ise we �rst de�ne the essential entries of D. The approximatestring mat
hing problem 
an be solved using only entries D(i; j) � k of D. Thereforewe 
all ea
h entry D(i; j) � k an essential entry. By (1), (2), an essential entrydepends only on other essential entries in the sense that the inessential entries of D
ould be repla
ed by default value 1 without a�e
ting the 
ontent of the essentialpart.Let D(�; i) and D(�; j) be any two 
olumns of D and let L(�; i) and L(�; j) be the
orresponding 
olumns of L. Then pairs (D(�; i); L(�; i)) and (D(�; j); L(�; j)) are
alled equivalent, denoted (D(�; i); L(�; i)) � (D(�; j); L(�; j)), if the essential entriesof D(�; i) and D(�; j) have identi
al 
ontents and the 
orresponding entries of L(�; i)and L(�; j) have identi
al 
ontents. In other words, if D(h; i) � k or D(h; j) � k forsome 0 � h � m, then D(h; i) = D(h; j) and L(h; i) = L(h; j).Next we de�ne the substringQj of T that determines the essential part ofD(�; j).Re
all here that the Knuth{Morris{Pratt algorithm of exa
t string mat
hing has theproperty that it �nds at ea
h text lo
ation j the longest pre�x p1 � � � pi of patternP that o

urs at j, i.e., p1 � � � pi = tj�i+1 � � � tj is a 0{approximation of p1 � � � pi thato

urs at j. The use of Qj 
an be seen as a generalization of this to the approximate
ase: Qj will be a k{approximation of p1 � � � pi that o

urs at j in T .Let Tj = t1 � � � tj be the pre�x of T ending at j, and let �(Tj) = L(i; j) where i isthe largest index su
h that D(i; j) is essential. Obviously, Pi = p1 � � � pi is the longestpre�x of P that has a k{approximation at the end of Tj . String tj��(Tj )+1 � � � tj issu
h an approximation, in fa
t, the shortest one.De�nition. String Qj = tj��(Tj )+1 � � � tj is 
alled the viable k{approximate pre�x ofP at j (viable pre�x at j, for short). If �(Tj) = 0 then Qj = �.String Qj is `viable' in the sense that it 
an be a pre�x of a k{approximateo

urren
e of the whole P .Viable pre�x Qi determines the essential part of 
olumn D(�; i):Theorem1. If Qi = Qj then (D(�; i); L(�; i)) � (D(�; j); L(�; j)).Proof. It is helpful to 
onsider table D as a solution to a shortest path problem inthe edit graph asso
iated with our pattern mat
hing problem.Su
h a graph 
onsists of nodes G(i; j), 0 � i � m, 0 � j � n, and of weighteddire
ted ar
s that form a regular grid as follows: There is an ar
 (G(i� l; j); G(i; j))with weight 
(pi ! �) for all 1 � i � m, 0 � j � n; an ar
 G(i � 1; j � 1); G(i; j))with weight 0 if pi = tj and with weight 
(pi ! tj) otherwise for all 1 � i � m,1 � j � n; and an ar
 (G(i; j � 1); G(i; j)) with weight 
(� ! tj) for all 1 � i � m,1 � j � n. Then D(i; j) gives the length of a shortest path in this graph among allpaths that lead from any node G(0; j0) on the row 0 to node G(i; j). Value L(i; j)



indi
ates the start node of a steepest path: L(i; j) is the smallest value su
h that ashortest path to G(i; j) starts from G(0; j � L(i; j)).Let now i and j be as in the theorem and let h be the largest index su
h thatD(h; i) � k. Hen
e jQij = L(h; i). Then for ea
h r � h, there is a shortest pathto G(r; i) that starts from some node G(0; i � jQij); G(0; i � jQij + 1); : : : ; G(0; i).To evaluate the essential entries of 
olumn D(�; i) 
orre
tly it therefore suÆ
esto 
onsider only subgraph Gi of the edit graph spanned by nodes G(r; s), 0 �r � m, i � jQij � s � i. Similarly, to evaluate the essential entries of 
olumnD(�; j) 
orre
tly it suÆ
es to 
onsider only subgraph Gj spanned by nodes G(r; s),0 � r � m, j�jQj j � s � j. Graphs Gi and Gj have identi
al topology and weightsbe
ause Qi = Qj . Hen
e their shortest path problems have identi
al solutions, inparti
ular, the essential entries of D(�; i) and D(�; j) have to be identi
al as well asthe 
orresponding entries of L(�; i) and L(�; j). 2Example. Let T = aaaaaaaabbbbbbbb, P = abbb, and k = 1. Assume the unit 
ostmodel of the edit distan
e (ea
h edit operation has 
ost = 1). Then table D isa a a a a a a a b b b b b b b b0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0a 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1b 2 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1b 3 2 2 2 2 2 2 2 2 1 0 1 1 1 1 1 1b 4 3 3 3 3 3 3 3 3 2 1 0 1 1 1 1 1and table L is 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 00 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 2 3 2 2 2 2 2 20 1 1 1 1 1 1 1 1 2 3 4 3 3 3 3 3The viable pre�xes are Q1 = a (be
ause D(2; 1) is the last essential entry of D(�; 1),and L(2; 1) = 1), Q2 = Q3 = : : : = Q8 = a, Q9 = ab, Q10 = abb, Q11 = abbb,Q12 = : : : = Q16 = bbb. There are �ve di�erent viable pre�xes. 2For ea
h j we let Q0j = Qj�1tj . The following theorem says that viable pre�x Qj
an not start properly before Qj�1.Theorem2. Qj is a suÆx of Q0j .Proof. Using the interpretation of D as a solution to the shortest path problem (seethe proof of Theorem 1), one �rst noti
es that values L(h; j) are non{de
reasingwhen h grows: If h < h0 then L(h; j) � L(h0; j). The rest of the proof is a simple
ase analysis of how L(h; j) where h is the largest index su
h that D(h; j) � k 
andepend on the entries of L(�; j � 1). 24 Dynami
 programming over suÆx treesWe will evaluate table D using T represented as a suÆx tree. First we re
all thealternative forms of su
h trees.



SuÆx tree of T . The suÆx tree of T is a data stru
ture representing all the suÆxesT i = ti � � � tn, 1 � i � n+1, of T . We distinguish three versions of su
h a stru
ture.The un
ompa
ted version of a suÆx tree is 
alled a suÆx trie of T , denotedSTrie(T ). It is the unique deterministi
 �nite{state automaton that re
ognizes thesuÆxes T i of T and nothing else, and has tree{shaped transition graph. The transi-tion graph is the trie representing strings T i.Let root denote the initial state and g the transition fun
tion of STrie(T ). We saythat there is a goto{transition from state r to state s on input a 2 � if s = g(r; a).If there is a goto{transition path from r to s on input symbols whose 
atenation isstring x we write s = g(r; x).We augment STrie(T ) with the suÆx fun
tion f , de�ned for ea
h state s, s 6=root, as follows: As s 6= root, there is a symbol a and a string x in �� su
h thatg(root; ax) = s. We set f(s) = r where r is the state su
h that g(root; x) = r. Wesay that there is a suÆx transition from s to r. A suÆx transition does not 
onsumeany input.The size of STrie(T ) is O(jT j2). STrie(T ) is easy to 
onstru
t (see e.g. [23, 22℄)but its quadrati
 size makes it impra
ti
al. Fortunately, STrie(T ) has linear sizerepresentations that 
an be 
onstru
ted in linear time, namely the (
ompa
t) suÆxtree [25, 16, 22℄ and the suÆx automaton (DAWG) [3, 6, 7℄.For simpli
ity, the suÆx trie STrie(T ) 
onsisting of fun
tions g and f will beused in the des
ription of our algorithms. However, the a
tual implementation willbe done using the standard linear{size suÆx tree or suÆx automaton for T . Thisdoes not 
hange the 
omplexity bounds derived here for STrie(T ).Algorithm A. The algorithm will traverse in STrie(T ) a path of goto and suÆxtransitions that starts from root and spells out in its goto{transitions string T .Combined with this the 
olumns of D that 
orrespond to di�erent viable pre�xesQi will be evaluated. Ea
h su
h 
olumn D(�; i) together with 
olumn L(�; i) will bestored with state ri = g(root;Qi) as d(ri) D(�; i); l(ri) L(�; i).The traversal goes through states r0; s1; : : : ; r1; s2; : : : ; rn�1; sn; : : : ; rn where r0 =root, ri = g(root;Qi), and si = g(root;Q0i). The transition from ri�1 to si is agoto{transition for ti be
ause si = g(root;Q0i) = g(root;Qi�1ti) = g(ri�1; ti). Thetransition path from si to ri 
onsists of zero or more suÆx transitions; su
h a pathexists by Theorem 2.Consider the subpath from rj�1 to rj . The goto{transition g(rj�1; tj) = sj istaken �rst. After that there are two 
ases:Case 1. If sj has already been visited during the traversal, then follow the suÆxtransition path until the �rst state r is en
ountered su
h that d(r) and l(r) havenon{empty values. Then r = rj .Case 2. If sj has not been visited yet, then evaluate a pair (d; l) of 
olumns as(d; l) dp(d(rj�1); l(rj�1); tj). Then (see Lemma 4 below) (d; l) � (D(�; j); L(�; j)).This equivalen
e implies that d(h) = D(h; j) and l(h) = L(h; j) = jQj j, where h issu
h that d(h) is the last essential entry of d. The algorithm then follows the suÆxlink path from sj to the state r whose depth (distan
e from root) is jQj j. Then r = rjand the algorithm saves 
olumns (d; l) as d(r)  d, l(r) l.To make the whole traversal the above is repeated for j = 1; : : : ; n. As an initial-ization we set d(root)  D(�; 0), l(root) L(�; 0). By (2), entry D(h; 0) of D(�; 0)



is given as D(h; 0) =Phi=1 
(pi ! �), and by (4), entry L(h; 0) of L(�; 0) is given asL(h; 0) = 0.The algorithm has to output j whenever D(m; j) � k. This is implemented su
hthat Algorithm A outputs j whenever d(rj)(m) � k during the traversal.Consider then the 
orre
tness of Algorithm A. We need a notation: If x is a suÆxof y, we write yjx, and if, moreover, y is a suÆx of z, we write zjyjx.The 
ru
ial point where Algorithm A saves 
ompared to the on{line algorithmis Case 1. Assume that sj = g(root;Q0j) has been visited earlier. This means thatsj has to belong to the suÆx link path between si and ri for some i < j, that is,Q0ijQ0j jQi. On the other hand we have:Lemma3. If Q0ijQ0j jQi for some i < j, then Qj = Qi.Proof. This is immediate whenD is viewed as a solution to the shortest path problem(see the proof of Theorem 1). 2This implies, noting Theorem 1, that a pair of 
olumns equivalent to (D(�; j); L(�; j))has already been stored as (d(ri); l(ri)). The dynami
 programming 
an be skipped;the algorithm just follows the suÆx transition path from sj to ri = rj . Hen
e Case1 is 
orre
t.It is 
orre
t to use in Algorithm A 
olumns that are only equivalent to the a
tual
olumns of D and L. The essential entries of a new 
olumn of D are determined bythe essential entries of the previous 
olumn. Therefore we have the following lemma.Lemma4. If (d0; l0) � (D(�; j�1); L(�; j�1)) and (d; l) = dp(d0; l0; tj), then (d; l) �(D(�; j); L(�; j)).Hen
e Algorithm A 
orre
tly outputs all j su
h that D(m; j) � k.Analysis. Let Q = fQi j 1 � i � ng, and let q = jQj be the size of Q, i.e.the number of di�erent viable pre�xes. Moreover, let Q0 = fQ0i j 1 � i � ng andq0 = jQ0j.Algorithm A evaluates � q0 pairs of 
olumns of D and L, and stores q of them.As the evaluation of ea
h pair of 
olumns takes time and spa
e O(m), and thetime 
onsumption for the rest is proportional to n (note that the traversal takes ngoto{transitions and at most n suÆx transitions), we obtain:Theorem5. Algorithm A runs in time O(mq0+n) and needs working spa
e O(mq)for storing the 
olumns of the tables.Next we analyze the growth of q in more detail in the spe
ial 
ase of the unit
ost edit distan
e. Let Uk(P ) = fx 2 ��jE1(P; x) � kg be the set of strings whoseunit 
ost edit distan
e from P is � k. The size of Uk(P ) has the following bound;
.f. Lemma 3 of [17℄.Theorem6. jUk(P )j � 125 (m+ 1)k(j�j+ 1)k.Proof. The size of Uk(P ) is � the number of di�erent tra
es (edit s
ripts) of length� k that 
an be applied on P . Ea
h tra
e 
onsists of � k a
tual editing steps andof zero or more identity steps a ! a. The number of tra
es equals the number of



di�erent possibilities to sele
t the a
tual steps. This 
an be estimated by boundingthe number of di�erent ways of applying exa
tly k steps that 
an in
lude both a
tualsteps and identity steps.The k steps are divided into two groups: The steps of the form a ! x wherea 2 �, x 2 � [f�g ( = group A; this 
ontains the possible identity operations), andthe steps of the form �! a where a 2 � (= group B).In group A, ea
h step a! x has a unique pi su
h that a = pi. Moreover, x 
anbe sele
ted in j�j+ 1 di�erent ways. Hen
e a group A 
onsisting of t steps 
an besele
ted in � (mt )(j�j+ 1)t di�erent ways.In group B, ea
h step �! a 
an be sele
ted in (m+1)j�j di�erent ways be
ause� refers to any of the m+1 intervals between the m letters of P , and be
ause a 
anbe sele
ted independently of � in j�j di�erent ways. Ea
h interval 
an be sele
tedarbitrarily many times. Hen
e a group B 
onsisting of t steps 
an be sele
ted in� (m+ 1)tj�jt di�erent ways.This givesjUk(P )j � kXt=0[(mt )(j�j+ 1)t + (m+ 1)k�tj�jk�t℄= kXt=0[(mt )(j�j+ 1)t + (m+ 1)tj�jtj℄� 2 kXt=0(m+ 1)t(j�j+ 1)t � 125 (m+ 1)k(j�j+ 1)kwhere we have assumed that m � 1 and j�j � 2. 2As q �Pmi=k Uk(p1 � � � pi) � m � jUk(P )j, we have by Theorem 6q � 125 (m+ 1)k+1(j�j+ 1)k = O(mk+1j�jk): (5)As q0 � j�jq, we further obtainq0 � 125 (m+ 1)k+1(j�j+ 1)k+1 = O(mk+1j�jk+1): (6)Noting that q � q0 � n, Theorem 5 with (5) and (6) gives:Theorem7. Algorithm A runs for the k{di�eren
es problem in timeO(m �min(n;mk+1j�jk+1)+n) and needs working spa
e of O(m �min(n;mk+1j�jk)).5 Finding the next viable pre�x fastThe method of this se
tion 
an be understood as an advan
ed implementation ofAlgorithm A. Algorithm A always needs time 
(n) be
ause it s
ans symbol bysymbol over the whole text T . In Algorithm B to be developed next this dependen
yon n will be eliminated. Columns of D for di�erent viable pre�xes will be foundusing di
tionary operations implemented with balan
ed sear
h trees. The method is



based on Lemma 3 and its implementation heavily depends on the spe
ial propertiesof STrie(T ).Assume that Algorithm A has performed the dynami
 programming at ti, hasobtained (d; l) equivalent to (D(�; i); L(�; i)), and has stored them as d(ri)  d,l(ri)  l where ri = g(root;Qi). Algorithm A will next examine the state si+1 =g(ri; ti+1). If si+1 has already been visited, Algorithm A knowns by Lemma 3 thatdynami
 programming 
an be skipped be
ause Qi+1 has to be equal to Qh for someh � i. State ri+1 = g(root;Qh) = g(root;Qi+1) is found by following the suÆx linkpath from si+1. Then Algorithm A will examine si+2 = g(ri+1; ti+2), and so on.Finally an unvisited state sj will be found, and dynami
 programming is resumed.To �nd sj dire
tly after si, we �rst observe:� the set of di�erent viable pre�xes 
an grow at si and again at sj , but it remainsun
hanged between them;� the set of the visited states remains un
hanged between si and sj ;� the string on the path from root to any state si+1; : : : ; sj is of the form Qhafor some a 2 �, h � i.Hen
e states si+1; : : : ; sj belong to the setSi = fs j s = g(root;Qha) for some h � i; a 2 �gof states that are at the distan
e of one goto{transition from some state that 
an berea
hed from root along some viable pre�x Qh.Algorithm B. For any state s of STrie(T ), let Key(s) denote the string su
h thatg(root;Key(s)) = s, and for a set S of states, let Keys(S) be the set of stringsKey(s), where s 2 S. We will asso
iate with ea
h state s in Si value lo
(s) (to bede�ned pre
isely below) that gives the smallest index h > i su
h that Key(s) `
ouldbe' equal to Q0h. During Algorithm B the uneliminated states s in Si will be kept indi
tionary H . The re
ords in the di
tionary are of the form (s; lo
(s)) where lo
(s)is used as the sear
h{key for s. The di
tionary has to support insertions, deletions,and minimum extra
tions. By extra
ting the minimum element from H we get thestate s with the smallest lo
(s). This state s will be sj and j = lo
(sj). Then new
olumns have to be evaluated by dynami
 programming from d(r) and l(r), wherer = father(sj), and from symbol a su
h that g(r; a) = sj .For a pre
ise de�nition of lo
(s) we need the 
on
epts of elimination and 
overing.To introdu
e the latter, 
onsider strings Q0v, i+1 � v � j, in more detail. As alreadymentioned, ea
h Q0v = Qv�1tv has to be equal to Qha for some Qh, h � i. Hen
ewe have Qv�1 = Qh. Moreover, viable pre�x Qv�1 is the longest among all viablepre�xes of T that are suÆxes of Tv�1 = t1t2 � � � tv�1:Lemma8. If Tv�1jQe then Qv�1jQe.Proof. Use the interpretation of D as a solution to the shortest path problem aspresented in the proof of Theorem 1. 2This implies that ea
h Q0v, i+1 � v � j, has to be the longest string in Keys(Si)that is a suÆx of Tv. If more than one string in Keys(Si) is a suÆx of Tv, thenthese strings have to be suÆxes of the longest one. With this in mind we make thefollowing de�nition.De�nition. String X 
overs an o

urren
e of string Y at v if TvjX jY .



String Key(s) is the longest element of Keys(Si) at v if and only if TvjKey(s)and no other string in Keys(Si) 
overs Key(s) at v.We still need the 
on
ept of elimination. Its purpose is to in
orporate Lemma 3into our algorithm.De�nition. StringsQ0h andQh eliminate a state s and stringKey(s) ifQ0hjKey(s)jQh.Note that the states visited by Algorithm A and the eliminated states de�nedhere are same. By Lemma 3, dynami
 programming need not be performed whenentering an eliminated state.We now de�nelo
(s) = �1; if Key(s) is eliminated by some Q0h, Qh where h � i;v; otherwise,where v > i is the �rst o

urren
e of Key(s) after lo
ation i in T that is not 
overedby some other string in Keys(Si). Note that lo
(s) is de�ned for all states s, notonly for members of Si. The algorithm also maintains these values for all s.The algorithm sele
ts j  mins2Si lo
(s) using di
tionary H that 
ontains(s; lo
(s)) for states s in Si. The dynami
 programming is performed next at sjsu
h that lo
(sj) = j.After this some lo
{values have to be 
hanged and H must be updated su
h thatit represents Sj instead of Si. The algorithm follows the suÆx link path from sj torj = g(root;Qj). All states s on this path be
ome now eliminated if they are noteliminated earlier (this 
an be the 
ase for all s 6= sj). Hen
e lo
(s)  1; this isimplemented simply by removing s from H .We have still to add into H new elements 
orresponding to Sj �Si and to makethe updates on lo
{values due to 
overing. This happens only if rj is a new state notvisited earlier. Then (s; lo
(s)) is inserted into H for all uneliminated s su
h thats = g(rj ; a) for some symbol a. Moreover, the appropriate 
hanges to lo
(w) haveto be done for all w su
h that Key(w) is 
overed by some Key(s).Here, again, the suÆx transitions 
an be used. We 
all a state w primary ifKey(w) = t1 � � � th for some h. (Note that the suÆx transitions 
onstitute a tree,with primary states as the leaves and root as the root.) The next lemma followsfrom the de�nition of lo
 and gives a method for updating; re
all that f denotes thesuÆx fun
tion.Lemma9. If w is an eliminated state then lo
(w) = 1; if w is primary but noteliminated then lo
(w) = depth(w); otherwiselo
(w) = min lo
(w0) (7)where the minimum is over all w0 su
h that f(w0) = w and w0 is not in Si.This means, ea
h lo
(w) that needs updating 
an be found by traversing thesuÆx link path from ea
h new state s 2 Sj � Si. At ea
h uneliminates state w,w 6= s, on su
h path the updated lo
(w) is evaluated from (7). As there are at mostj�j di�erent w0 su
h that f(w0) = w, the minimization in (7) 
an be done in timeO(log j�j). If (w; lo
(w)) is in H , the update is performed in H , too.



In summary, Algorithm B starts by inserting (root; lo
(root) = 0) into an initiallyempty di
tionary H . Then (sj ; j)  extra
t-min(H) is performed, H and the lo
{values are updated, and this is repeated until H be
omes empty. Whenever a 
olumnd(r) is stored su
h that d(r)(m) � k, state r is marked for output. The �nal outputphase lists all o

urren
es of Key(r) in T , for all states r marked for output. Theseo

urren
es 
an be found from STrie(T ) by standard methods.The prepro
essing phase 
reates STrie(T ) and initializes values lo
(s) using themethod of Lemma 9 with Si = ;.Theorem10. Algorithm B runs in time O(mq log q+ size of the output) and needsworking spa
e of O(mq) for di
tionary H and the 
olumns of dynami
 programmingtables.Proof. Algorithm B evaluates q0 
olumns of D and L. Di
tionary H is implementedas a balan
ed sear
h tree whi
h takes O(log jH j) time per di
tionary operation.The algorithm performs the following q0 times: sele
tion of next sj from H in timeO(log jH j); evaluation of new 
olumns in time O(m); traversal from sj to rj , removalof the eliminated states from H in time O(m log jH j); insertion of states s = g(rj ; a)into H in time O(j�j log jH j). Moreover, for ea
h new state s inserted into H duringthe algorithm, lo
(w) has to be updated for states w on the suÆx link path froms to root and the 
orresponding 
hanges have to be done in H . The length of ea
hsu
h path is O(m), hen
e the updates take total time of O(jH jm(log j�j+ log jH j)).This gives total time bound O(q0(log jH j+m+m log jH j)+jH jm(log j�j+log jH j))whi
h is O(mq log q) be
ause q0 � j�jq, jH j � j�jq, and j�j is assumed 
onstant.The output time 
an be made linear in the size of the output if some 
are isdevoted to the elimination of dupli
ated output.The spa
e requirement is O(mq) for the 
olumns and O(j�jq) for H , hen
eO(mq). 2Theorem 10 together with upper bound (6) of q shows that for small k and largen Algorithm B 
an be faster than Algorithm A.6 Simple algorithmDi
tionaryH and the other me
hanisms of Algorithm B for maintaining values lo
(s)
reate relatively large overhead. We des
ribe next Algorithm C, a simpli�ed versionof Algorithm B that uses only elimination of states but does not use lo
{values.Algorithm C is easy to implement and has low overhead.Algorithm C makes a depth{�rst{sear
h over the uneliminated states. All stateswith a saved pair (d; l) of 
olumns are now kept in a sta
k. When there is a transitiong(r; a) = s from the top state r of the sta
k to an uneliminated state s, new 
olumnsare evaluated as (d; l)  dp(d(r); l(r); a). Columns (d; l) and state r0 are saved inthe sta
k; state r0 is the state on the suÆx link path from s su
h that its distan
efrom root, depth(r0), equals the length of the viable pre�x asso
iated with (d; l).The resulting algorithm is given below. Fun
tion viable{pre�x{length(d; l) givesthe length of the viable pre�x represented by 
olumns (d; l), i.e., the value of l(h)where h is the largest index su
h that d(h) � k. Fun
tion output{mark(r) adds state



r to the list of states that represent the lo
ations of the k{approximate o

urren
esof P in T .Algorithm C.1. eliminated(root)  true2. sear
h(root;D(�; 0); L(�; 0)).3. pro
edure sear
h(r; d0(0 : : :m); l0(0 : : :m)):4. for ea
h state s = g(r; a) for some a 2 � do5. if not(eliminated(s)) then6. (d; l) dp(d0; l0; a)7. length  viable{pre�x{length(d; l)8. if depth(s) > length do9. eliminated(s)  true; s f(s)10. until depth(s) = length or eliminated(s)11. if depth(s) = length and not(eliminated(s)) then12. if d(m) � k then output{mark(s)13. eliminated(s) true14. w  s15. while f(w) 6= root andeliminated(f(w0)) = true for all w0 su
h that f(w0) = f(w) do16. w  f(w); eliminated(w)  true17. sear
h(s; d; l).In Algorithm C the sele
tion order of the next state s is not based on lo
(s).Therefore Algorithm C 
an sele
t a state s that would have never been sele
ted byAlgorithm B; the optimal sele
tion order implemented in Algorithm B 
an resultinto total 
overing of s and therefore into an elimination of s before it would 
omesele
ted.Fortunately, it is not a fatal error to sele
t su
h an s. It only means that thealgorithm �rst �nds a too short viable pre�x for some lo
ations of T but will �ndthe 
orre
t, long{enough pre�x later. All di�erent essential parts of 
olumns of Dwill ultimately be evaluated.Ea
h viable pre�x is of length O(m). Before �nding the 
orre
t pre�x AlgorithmC may �nd one or more of its proper suÆxes. Therefore the total number of ex-tra 
olumns evaluated is O(mq). In any 
ase, the algorithm evaluates the same q0
olumns as Algorithm B. Thus the total number of 
olumns is O(mq+ q0) = O(mq)and we have the following theorem.Theorem11. Algorithm C runs in time O(m2q + size of the output) and needsworking spa
e of O(m2q).7 Con
luding remarksSeveral relevant questions 
on
erning the new algorithms remained unanswered.Most notably, these in
lude theoreti
al analysis of the expe
ted running times andexperimental 
omparison of these and related algorithms from [2, 13, 17℄.For modestly long T it is feasible to implement our algorithms using the (
om-pa
t) suÆx tree of T . Adapting the methods for suÆx automata seems simple, too.



However, for very long texts it is better to use the more spa
e e
onomi
al suÆx array[15, 12℄ instead. The details and a pra
ti
al �ne{tuning of su
h an implementationare a subje
t for further study.Referen
es1. Alts
hul, S., Gish, W., Miller, W., Myers, E. & Lipman, D. (1990): A basi
 lo
alalignment sear
h tool. J. of Mole
ular Biology 215, 403{410.2. Baeza{Yates, R. A. & Gonnet, G. H.: All{against{all sequen
e mat
hing (ExtendedAbstra
t).3. Blumer,A., Blumer,J., Haussler, D., Ehrenfeu
ht, A., Chen, M.T. and Seiferas, J.(1985): The smallest automaton re
ognizing the subwords of a text. Theor. Comp.S
i. 40, 31-55.4. Chang, W. & Lampe, J. (1992): Theoreti
al and empiri
al 
omparisons of approxi-mate string mat
hing algorithms. Pro
. Combinatorial Pattern Mat
hing 1992, (Tu
-son, April 1992), Le
t. Notes in Computer S
ien
e 644 (Springer{Verlag 1992), pp.175{184.5. Chang, W. & Lawler, E (1990): Approximate string mat
hing in sublinear expe
tedtime. Pro
. IEEE 1990 Ann. Symp. on Foundations of Computer S
ien
e, pp. 116-124.6. Cro
hemore, M. (1986): Transdu
ers and repetitions. Theor. Comp. S
i. 45, 63-86.7. Cro
hemore, M. (1988): String mat
hing with 
onstraints. Pro
. MFCS'88 Symposium.Le
t. Notes in Computer S
ien
e 324 (Springer{Verlag 1988), pp. 44{58.8. Dowling, G. R. & Hall, P. (1980): Approximate string mat
hing. ACM Comput. Surv.12, 381{402.9. Galil, Z. & Gian
arlo, R. (1988): Data stru
tures and algorithms for approximate stringmat
hing. J. Complexity 4, 33{72.10. Galil, Z. & Park, K. (1989): An improved algorithm for approximate string mat
hing.SIAM J. on Computing 19, 989{999.11. Gonnet, G. H. (1992): A tutorial introdu
tion to Computational Bio
hemistry usingDarwin. Informatik E. T. H. Zueri
h, Switzerland.12. Gonnet,G.H., Baeza-Yates,R.A. & Snider,T. (1991): Lexi
ographi
al indi
es for text:Inverted �les vs. PAT trees. Report OED-91-01, UWCentre for the New Oxford EnglishDi
tionary and Text Resear
h, 1991.13. Jokinen, P. & Ukkonen, E. (1991): Two algorithms for approximate string mat
hingin stati
 texts. Pro
. MFCS'91, Le
t. Notes in Computer S
ien
e 520 (Springer{Verlag1991), pp. 240-248.14. Landau, G. & Vishkin, U. (1988): Fast string mat
hing with k di�eren
es. J. Comp.Syst. S
i. 37, 63-78.15. Manber, U. & Myers, G. (1990): SuÆx arrays: A new method for on{line string sear
hes.In: SODA-90, pp. 319{327.16. M
Creight, E. M. (1976): A spa
e e
onomi
al suÆx tree 
onstru
tion algorithm. J.ACM 23, 262-272.17. Myers, E. W.: A sublinear algorithm for approximate keyword sear
hing. TR 90{25,Department of Computer S
ien
e, The Univ. of Arizona, Tu
son (to appear in Algo-rithmi
a).18. Sellers, P. H. (1980): The theory and 
omputation of evolutionary distan
es: Patternre
ognition. J. Algorithms 1, 359{373.19. Tarhio, J. & Ukkonen, E. (1990): Boyer-Moore approa
h to approximate string mat
h-ing. 2nd S
and. Workshop on Algorithm Theory, Le
t. Notes in Computer S
ien
e 447(Springer{Verlag 1990), pp. 348-359. Full version is to appear in SIAM J. Comput. 22.



20. Ukkonen, E. (1985): Finding approximate patterns in strings. J. Algorithms 6, 132{137.21. Ukkonen, E. (1992): Approximate string{mat
hing with q{grams and maximalmat
hes. Theoreti
al Computer S
ien
e 92, 191{211.22. Ukkonen, E. (1992): Constru
ting suÆx trees on{line in linear time. In: J. van Leeuwen(ed.), Algorithms, Software, Ar
hite
ture. Information Pro
essing 92, vol. I, pp. 484{492. Elsevier.23. Ukkonen, E. & Wood, D.: Approximate string mat
hing with suÆx automata. Algo-rithmi
a (to appear in 1993).24. Wagner, R. A. & Fis
her, M. J. (1974): The string-to-string 
orre
tion problem. J.ACM 21, 168-173.25. Weiner, P. (1973): Linear pattern mat
hing algorithms. Pro
. 14th IEEE Symp. Swit
h-ing and Automata Theory, pp. 1-11.26. Wu, S. & Manber, U. (1992): Fast text sear
hing allowing errors. Comm. ACM 35,83{91.

This arti
le was pro
essed using the LaTEX ma
ro pa
kage with LLNCS style


