Algorithms for Bioinformatics (Autumn 2011)

Exercise 2 (Thu 22.9, 10-12, BK107, Niko Välimäki)

1. Continuing with Python.
 Write a Python program that implements $\text{TotalDistance}(v, DNA)$ -function from the lecture.

2. Partial digest.
 Consider partial digest
 \[L = \{1, 2, 3, 4, 5, 6, 8, 9\} \]
 Solve Partial Digest problem for L (i.e. find X such that $\Delta X = L$).

3. Motif finding using black box program.
 You have access to a program X that, given set S of DNA sequences, motif length m, and threshold k, finds all motifs $A = a_1a_2\cdots a_m$ that occur with at most k mismatches in each of the DNA sequences in S. Program X outputs each motif with a list of all its occurrences. You are studying a set of genes for which earlier studies indicate that there might be a transcription factor that binds to a motif that consists of two half-sites, i.e., having the structure $a_1a_2\cdots a_m'NNNNNB_1b_2\cdots b_m'$, where N is any symbol, B is the reverse complement of A, and A and B can have together at most k' mismatches in their occurrences in each DNA sequence in S. You try to run program X with parameters $m = 2m' + 5$ and $k = k' + 5$ but it takes too long to run. How would you proceed in finding your motif? Does your approach allow the amount of symbols N to vary?

4. Modifying your own motif finder I.
 Modify $\text{BranchAndBoundMedianStringSearch()}$ pseudocode studied at the lecture so that it finds motifs consisting of half-sites as in assignment 3. (You may use TotalDistance() metric instead of the one used in assignment 3., if you define that N matches any symbol, i.e., induces cost 0.)

5. Modifying your own motif finder II.
 A suffix tree -based approach was described at the lecture for finding exact motifs. Modify it to find motifs consisting of half-sites (assignment 3. with $k' = 0$).

 Write a Python program that implements $\text{BranchAndBoundMedianStringSearch(DNA, t, n, l)}$ -function from the lecture.