Lecture Thu 4.11.

PROTEIN SEQUENCE ALIGNMENT AND MULTIPLE ALIGNMENT
Protein sequence alignment

- We have discussed alignment of DNA sequences
- Amino acid sequences can be aligned as well
- However, the design of the substitution matrix is more involved because of the larger alphabet
- Homologs can be easier identified with alignment of protein sequences:
 - *Synonymous (silent) mutations* that do not change the amino acid coding are frequent
 - Every third nucleotide can be mismatch in an alignment where amino acids match perfectly
 - Frameshifts, introns, etc. should be taken into account when aligning protein coding DNA sequences
• Consider RNA sequence alignment:
 AUGAUUACUCAUAGA...
 AUGAUCACCACAGG...

• Versus protein sequence alignment:
 MITHR...
 MITHR...
Scoring amino acid alignments

- Substitutions between chemically similar amino acids are more frequent than between dissimilar amino acids
- We can check our scoring model against this

Score matrices

- Let $A = a_1a_2...a_n$ and $B = b_1b_2...b_n$ be sequences of equal length (no gaps allowed to simplify things)
- To obtain a score for alignment of A and B, where a_i is aligned against b_i, we take the ratio of two probabilities
 - The probability of having A and B where the characters match (match model M)
 - The probability that A and B were chosen randomly (random model R)
Score matrices: random model

- Under the random model, the probability of having A and B is

\[P(A, B | R) = \prod_i q_{a_i} \prod_i q_{b_i} \]

where \(q_{x_i} \) is the probability of occurrence of amino acid type \(x_i \)

- Position where an amino acid occurs does not affect its type
Score matrices: match model

- Let p_{ab} be the probability of having amino acids of type a and b aligned against each other given they have evolved from the same ancestor c
- The probability is

$$P(A, B|M) = \prod_i p_{a_i b_i}$$
We obtain the score S by taking the ratio of these two probabilities

$$\frac{P(A,B|M)}{P(A,B|R)} = \frac{\prod_i p_{a_i b_i}}{\prod_i q_{a_i} \prod_i q_{b_i}} = \prod_i \frac{p_{a_i b_i}}{q_{a_i} q_{b_i}}$$

and taking a logarithm of the ratio

$$S = \log_2 \frac{P(A,B|M)}{P(A,B|R)} = \sum_{i=1}^{n} \log_2 \frac{p_{a_i b_i}}{q_{a_i} q_{b_i}} = \sum_{i=1}^{n} s(a_i, b_i)$$
Score matrices: log-odds ratio score

$$S = \log_2 \frac{P(A,B|M)}{P(A,B|R)} = \sum_{i=1}^{n} \log_2 \frac{p_{a_i b_i}}{q_{a_i} q_{b_i}} = \sum_{i=1}^{n} s(a_i, b_i)$$

- The score S is obtained by summing over character pair-specific scores:
 $$s(a, b) = \log_2 \frac{p_{ab}}{q_a q_b}$$

- The probabilities q_a and p_{ab} are extracted from data
Calculating score matrices for amino acids

- Probabilities q_a are in principle easy to obtain:
 - Count relative frequencies of every amino acid in a sequence database

$$s(a, b) = \log_2 \frac{p_{ab}}{q_a q_b}$$
Calculating score matrices for amino acids

To calculate p_{ab} we can use a known pool of aligned sequences.

BLOCKS is a database of highly conserved regions for proteins.

It lists *multiple aligned*, ungapped and conserved protein segments.

Example from BLOCKS shows genes related to human gene associated with DNA-repair defect xeroderma pigmentosum.

$$s(a, b) = \log_2 \frac{p_{ab}}{q_a q_b}$$

Block PR00851A
ID XRODRMPGNTB; BLOCK
AC PR00851A; distance from previous block=(52,131)
DE Xeroderma pigmentosum group B protein signature
BL adapted; width=21; seqs=8; 99.5%=985; strength=1287

<table>
<thead>
<tr>
<th>Protein</th>
<th>Accession</th>
<th>Length</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPB_HUMAN</td>
<td>P19447</td>
<td>74</td>
<td>RPLWVAPDGHIFLEAFSPVYK 54</td>
</tr>
<tr>
<td>XPB_MOUSE</td>
<td>P49135</td>
<td>74</td>
<td>RPLWVAPDGHIFLEAFSPVYK 54</td>
</tr>
<tr>
<td>P91579</td>
<td></td>
<td>80</td>
<td>RPLWVAPDGHIFLEAFSPVYK 54</td>
</tr>
<tr>
<td>XPB_DROME</td>
<td>Q02870</td>
<td>84</td>
<td>RPLWVAPNGHVFLEAFSPVYK 79</td>
</tr>
<tr>
<td>RA25_YEAST</td>
<td>Q00578</td>
<td>131</td>
<td>PLWISPSDGRILEFSPLAE 100</td>
</tr>
<tr>
<td>Q38861</td>
<td></td>
<td>52</td>
<td>RPLWACADGRIFLEFSPLYK 71</td>
</tr>
<tr>
<td>O13768</td>
<td></td>
<td>90</td>
<td>PLWINPIDGREILEAFSPLAIE 100</td>
</tr>
<tr>
<td>O00835</td>
<td></td>
<td>79</td>
<td>RPIWVCAPDGHIFLETFSAIYK 86</td>
</tr>
</tbody>
</table>

http://blocks.fhcrc.org
BLOSUM is a score matrix for amino acid sequences derived from BLOCKS data. First, count pairwise matches $f_{x,y}$ for every amino acid type pair (x, y). For example, for column 3 and amino acids L and W, we find 8 pairwise matches: $f_{L,W} = f_{W,L} = 8$.

- **RPLWVAPD**
- **RPLWVAPR**
- **RPLWVAPN**
- **PLWISPSD**
- **RPLWACAD**
- **PLWINPID**
- **RPIWVCPD**
Creating a BLOSUM matrix

- Probability p_{ab} is obtained by dividing f_{ab} with the total number of pairs (note difference with course book):

$$p_{ab} = f_{ab} / \sum_{x=1}^{20} \sum_{y=1}^{x} f_{xy}$$

- We get probabilities q_a by

$$q_a = \sum_{b=1}^{20} p_{ab}$$
Creating a BLOSUM matrix

- The probabilities p_{ab} and q_a can now be plugged into

$$s(a, b) = \log_2 \frac{p_{ab}}{q_a q_b}$$

- to get a 20 x 20 matrix of scores $s(a, b)$.

- Next slide presents the **BLOSUM62** matrix
 - Values scaled by factor of 2 and rounded to integers
 - Additional step required to take into account expected evolutionary distance
 - Described in Deonier’s book in more detail
| | A | R | N | D | C | Q | E | G | H | I | L | K | M | F | P | S | T | W | Y | V | B | Z | X * | | |
| A | 4 | -1 | -2 | -2 | 0 | -1 | -1 | 0 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | 0 | -3 | -2 | 0 | -2 | -1 | 0 | -4 |
| R | -1 | 5 | 0 | -2 | -3 | 1 | 0 | -2 | 0 | -3 | -2 | 2 | -1 | -3 | -2 | -1 | -1 | -3 | -2 | -3 | -1 | 0 | -1 | -4 |
| N | -2 | 0 | 6 | 1 | -3 | 0 | 0 | 0 | 1 | -3 | -3 | 0 | -2 | -3 | -2 | 1 | 0 | -4 | -2 | -3 | 3 | 0 | -1 | -4 |
| D | -2 | -2 | 1 | 6 | -3 | 0 | 2 | -1 | -1 | -3 | -4 | -1 | -3 | -3 | -1 | 0 | -1 | -4 | -3 | -3 | 4 | 1 | -1 | -4 |
| C | 0 | -3 | -3 | -3 | 9 | -3 | -4 | -3 | -3 | -1 | -1 | -3 | -1 | -2 | -3 | -1 | -1 | -2 | -2 | -1 | -3 | -3 | -2 | -4 |
| Q | -1 | 1 | 0 | 0 | -3 | 5 | 2 | -2 | 0 | -3 | -2 | 1 | 0 | -3 | -1 | 0 | -1 | -2 | -1 | -2 | 0 | 3 | -1 | -4 |
| E | -1 | 0 | 0 | 2 | -4 | 2 | 5 | -2 | 0 | -3 | -3 | 1 | -2 | -3 | -1 | 0 | -1 | -3 | -2 | -2 | 1 | 4 | -1 | -4 |
| G | 0 | -2 | 0 | -1 | -3 | -2 | -2 | 6 | -2 | -4 | -4 | -2 | -3 | -3 | -2 | 0 | -2 | -2 | -3 | -3 | -1 | -2 | -1 | -4 |
| H | -2 | 0 | 1 | -1 | -3 | 0 | 0 | -2 | 8 | -3 | -3 | -1 | -2 | -1 | -2 | -1 | -1 | -2 | -2 | 2 | 3 | 0 | 0 | -1 | -4 |
| I | -1 | -3 | -3 | -3 | -1 | -3 | -3 | -4 | -3 | 4 | 2 | -3 | 1 | 0 | -3 | -2 | -1 | -3 | -1 | 3 | -3 | -3 | -1 | -4 |
| L | -1 | -2 | -3 | -4 | -1 | -2 | -3 | -4 | -3 | 2 | 4 | -2 | 2 | 0 | -3 | -2 | -1 | -2 | -1 | 1 | -4 | -3 | -1 | -4 |
| K | -1 | 2 | 0 | -1 | -3 | 1 | 1 | -2 | -1 | -3 | -2 | 5 | -1 | -3 | -1 | 0 | -1 | -3 | -2 | -2 | 0 | 1 | -1 | -4 |
| M | -1 | -1 | -2 | -3 | -1 | 0 | -2 | -3 | -2 | 1 | 2 | -1 | 5 | 0 | -2 | -1 | -1 | -1 | -1 | -1 | -3 | -1 | -4 |
| F | -2 | -3 | -3 | -3 | -2 | -3 | -3 | -3 | -1 | 0 | 0 | -3 | 0 | 6 | -4 | -2 | -2 | 1 | 3 | -1 | -3 | -3 | -1 | -4 |
| P | -1 | -2 | -2 | -1 | -3 | -1 | -1 | -2 | -2 | -3 | -3 | -1 | -2 | -4 | 7 | -1 | -1 | -4 | -3 | -2 | -1 | -2 | -4 |
| T | -1 | -1 | 1 | 0 | -1 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -2 | -1 | 4 | 1 | -3 | -2 | -2 | 0 | 0 | 0 | -4 |
| W | -4 | 3 | -4 | -4 | -2 | -2 | 3 | -2 | -2 | -3 | -3 | -1 | -2 | -4 | 7 | -1 | -1 | -4 | -3 | -2 | -1 | -2 | -4 |
| Y | -2 | -2 | -2 | -3 | -2 | -1 | -2 | -3 | 2 | -1 | -2 | -1 | 3 | -3 | -2 | -2 | 2 | 7 | -1 | -3 | -2 | -1 | -4 |
| V | 0 | -3 | -3 | -3 | -1 | -2 | -2 | -3 | 3 | 1 | -2 | 1 | -1 | -2 | -2 | 0 | -3 | -1 | 4 | -3 | -2 | -1 | -4 |
| B | -2 | -1 | 3 | 4 | -3 | 0 | 1 | -1 | 0 | -3 | -4 | 0 | -3 | -3 | -2 | 0 | -1 | -4 | -3 | -3 | 4 | 1 | -1 | -4 |
| Z | -1 | 0 | 0 | 1 | -3 | 3 | 4 | -2 | 0 | -3 | -3 | 1 | -1 | -3 | -1 | 0 | -1 | -3 | -2 | -2 | 1 | 4 | -1 | -4 |
| X | 0 | -1 | -1 | -1 | -2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -2 | 0 | 0 | -2 | -1 | -1 | -1 | -1 | -4 |
| * | -4 | 1 |
Using BLOSUM62 matrix

MQLEANADTSV

LQEQAEAQGEM

\[s = \sum_{i=1}^{11} s(a_i, b_i) \]
\[= 2 + 5 - 3 - 4 + 4 + 0 + 4 + 0 - 2 + 0 + 1 \]
\[= 7 \]
Why positive score alignment is meaningful?

- We have designed scoring matrix so that expected score of random match at any position is negative:

\[\sum_{a,b} q_a q_b s(a, b) < 0. \]

- This can be seen by noticing that

\[\sum_{a,b} q_a q_b s(a, b) = - \sum_{a,b} q_a q_b \log \left(\frac{q_a q_b}{p_{ab}} \right) = -H(q^2 \parallel p), \]

where \(H(q^2 \parallel p) \) is the relative entropy (or Kullback-Leibler divergence) of distribution \(q^2 = q \times q \) with respect to distribution \(p \). Value of \(H(q^2 \parallel p) \) is always positive unless \(q^2 = p \). (Exercise: show why.)
What about gap penalties?

- Similar log-odds reasoning gives that the gap penalty should be $-\log f(k)$, where k is the gap length, and $f()$ is the function modeling the replication process (See Durbin et al., page 17).
 - $-\log \delta k$ for the linear model
 - $-\log (\alpha + \beta(k - 1))$ for the affine gap model

- However, logarithmic gap penalties are difficult (yet possible) to take into account in dynamic programming:
What about gap penalties? (2)

- Typically some *ad hoc* values are used, like $\delta=8$ in the linear model and $\alpha=12$, $\beta=2$ in the affine gap model.
- It can be argued that penalty of insertion + deletion should be always greater than penalty for one mismatch.
 - Otherwise expected score of random match may get positive.
Consider a set of d sequences on the right
- Orthologous sequences from different organisms
- Paralogs from multiple duplications

How can we study relationships between these sequences?

Aligning simultaneously many sequences gives better estimates for the homology, as many sequences vote for the same "column".

```
AGCAGTGATGCTAGTCG
ACAGCAGTGATGCTAGTCG
ACAGAGTGATGCTATCG
CAGCAGTGCTGCTAGTCG
ACAAGTGATGCTAGTCG
ACAGCAGTGATGCTAGCG
AGCAGTGGATGCTAGTCG
AAGTGATGCTAGTCG
ACAGCGATGCTAGGGTCG
```
Let \(\mathbf{M} \) denote the multiple alignment, i.e., a matrix with \(d \) sequences being the rows with gap symbols “-” inserted so that all rows are the same length.

Let \(\mathbf{M}_{i*} \) and \(\mathbf{M}_{*j} \) denote the \(i \)-th row (\(j \)-th column) in the alignment, respectively, and \(\mathbf{M}_{ij} \) the symbol at \(i \)-th row and \(j \)-th column.
Applications of multiple alignment

- Amino acid scoring matrix estimation (chicken or the egg problem)
- Phylogeny by parsimony (chicken or the egg problem again)

A---GC-AGTG--ATGCTAGT
ACAGC-AGTG-GATGCTAGTCG
ACAG--AGT--GATGCTA-TCG
-CAAGC-AGTG--CTG-TAGT
ACA---AGTG--ATGCTAGT
ACAGC-AGTG--ATGCTAG-CG
A---GC-AGTG-GATGCTAGT
A-AG-----TG--ATGCTAGT
ACAGCGA-TGCTAGGGT---CG
Phylogeny by parsimony pipeline

For all pairs of species, find the homologous genes

Select interesting homologs

Compute multiple alignment for each homolog family

Build the phylogenetic tree based on the aligned columns
Optimal alignment of three sequences

- Alignment of $A = a_1a_2...a_i$ and $B = b_1b_2...b_j$ can end either in $(-, b_j)$, (a_i, b_j) or $(a_i, -)$
- $2^2 - 1 = 3$ alternatives
- Alignment of A, B and $C = c_1c_2...c_k$ can end in $2^3 - 1$ ways: $(a_i, -, -)$, $(-, b_j, -)$, $(-, -, c_k)$, $(-, b_j, c_k)$, $(a_i, -, c_k)$, $(a_i, b_j, -)$ or (a_i, b_j, c_k)
- Solve the recursion using three-dimensional dynamic programming matrix: $O(n^3)$ time and space
- Generalizes to d sequences but impractical with even a moderate number of sequences
Scoring multiple alignments

- **Sum-of-pairs (SP) score:**
 - $S(M) = \sum_{i} \sum_{i' < i} s(M_{i'j}, M_{ij})$, where $s(a,b)$ is the given substitution score function.
 - Assumes all columns are independent.
 - Scores $s(a,\cdot') = s(\cdot', b)$ are the gap costs in the linear model.
 - For affine gap cost model, gaps are ignored from above and computed separately.
 - Widely used model in practice, but has the problem of counting the same substitutions several times:
 - See Durbin et al., page 140 for arguments against using this model.
Scoring multiple alignments (2)

- **Minimum entropy score:**
 - Let $c_j(a)$ be the number of times symbol a occurs at column M_{*j}.
 - $S(M) = -\sum_j \sum_a \log \frac{c_j(a)}{\sum_c c_j(a')}$
 - Assumes all columns and all rows are independent.
 - No benefit from having close amino acids at the same column.
 - Gaps can either be counted as normal symbols, or separately in the case of affine gap costs.
Multiple alignment in practice

- In practice, real-world multiple alignment problems are usually solved with heuristics
- Progressive multiple alignment outline
 - Choose two sequences and align them
 - Choose third sequence w.r.t. two previous sequences and align the third against them
 - ”Once a gap, always a gap” principle
 - Repeat until all sequences have been aligned
 - Different options how to choose sequences and score alignments
Multiple alignment in practice

- Profile-based progressive multiple alignment: CLUSTALW
 - Construct a distance matrix of all pairs of sequences using dynamic programming
 - Progressively align pairs in order of decreasing similarity
 - CLUSTALW uses various heuristics to contribute to accuracy
Generic framework for progressive multiple alignment

- Compute all pair-wise alignments for the d input sequences, converting the score into a distance $D(A,B)$ between each sequence pair A,B.
- Use any *hierarchical clustering algorithm* on the distances $D(,)$ to create a *guide tree* defining the order in which sequences are aligned:
 - Leaves represent the d sequences, and internal nodes the multiple alignment of the sequences in the leaves.
 - Multiple alignment to the root is created bottom-up aligning at each node sequence against sequence, sequence against multiple alignment, or multiple alignment against multiple alignment.
Progressive multiple alignment example

ACACGAT
AC--GATG
ACAGGAT--
ACAGGA--

ACACGAT--
AC--GATG
ACAGGAT--
ACAGGA--

ACACGAT--
AC--GATG

ACACGAT
ACGATG

ACAGGAT
ACAGGA
Practical exact algorithm for multiple alignment

- Small multiple alignments using SP score can be constructed without heuristics using a search space pruning technique by Carrillo & Lipman 1988:
 - Idea is to use sum of optimal pair-wise alignments as upper-bound for multiple alignment score, and a heuristically obtained multiple alignment as a lower-bound.
 - This gives lower-bound for each pair-wise alignment inside the optimal multiple alignment, and limits the cells in the high-dimensional dynamic programming matrix that need to be taken into account in the computation.
Practical exact algorithm for multiple alignment (2)

- Let $S(A_i', A_i)$ be the optimal global alignment score of sequences A_i' and A_i whose alignments inside the multiple alignment have score

 $$S_M(A_i', A_i) = \sum_j s(M_{i'j}, M_{ij}) \leq S(A_i', A_i).$$

- Obviously

 $$S(M) \leq S_M(A_i', A_i) - S(A_i', A_i) + \sum_{k<l} S(A_k, A_l).$$

- This gives the lower-bound

 $$S_M(A_i', A_i) \geq S(M) + S(A_i', A_i) - \sum_{k<l} S(A_k, A_l)$$

 $$\geq S(M') + S(A_i', A_i) - \sum_{k<l} S(A_k, A_l) = LB_{i'i},$$

 where M' is a sub-optimal alignment computed using e.g. heuristic progressive alignment.
Now find a set $B_{i'i}$ of coordinate pairs $(k_{i'}, k_i)$ such that the best alignment of $A_{i'}$ and A_i through $(k_{i'}, k_i)$ scores at least $LB_{i'i}$.

- Compute $S(A_{i'}[1, k_{i'}], A_i[1, k_i])$ and $S(A_{i'}^{-1}[1, |A_{i'}|-k_{i'}], A_i^{-1}[1, |A_i|-k_i])$, where $^{-1}$ denotes the reverse of the sequence.
- Set $B_{i'i}$ consists of all coordinate pairs $(k_{i'}, k_i)$ where the sum of the two scores above is at least $LB_{i'i}$.

Only coordinates (k_1, k_2, \ldots, k_d) such that $(k_{i'}, k_i)$ is in $B_{i'i}$ for all i', i need to be considered in filling the d-dimensional dynamic programming matrix to compute the optimal multiple alignment.