
Space-efficient Algorithms for Document

Retrieval

Niko Välimäki and Veli Mäkinen ⋆

Department of Computer Science, University of Helsinki, Finland.
{nvalimak,vmakinen}@cs.helsinki.fi

Abstract. We study the Document Listing problem, where a collec-
tion D of documents d1, . . . , dk of total length

∑
i
di = n is to be pre-

processed, so that one can later efficiently list all the ndoc documents
containing a given query pattern P of length m as a substring. Muthukr-
ishnan (SODA 2002) gave an optimal solution to the problem; with O(n)
time preprocessing, one can answer the queries in O(m + ndoc) time. In
this paper, we improve the space-requirement of the Muthukrishnan’s so-
lution from O(n log n) bits to |CSA|+ 2n + n log k(1 + o(1)) bits, where
|CSA| ≤ n log |Σ|(1 + o(1)) is the size of any suitable compressed suffix
array (CSA), and Σ is the underlying alphabet of documents. The time
requirement depends on the CSA used, but we can obtain e.g. the opti-
mal O(m+ndoc) time when |Σ|, k = O(polylog(n)). For general |Σ|, k the
time requirement becomes O(m log |Σ| + ndoc log k). Sadakane (ISAAC
2002) has developed a similar space-efficient variant of the Muthukrish-
nan’s solution; we obtain a better time requirement in most cases, but a
slightly worse space requirement.

1 Introduction and Related Work

The inverted file is by far the most often utilized data structure in the Informa-
tion Retrieval domain, being a fundamental part of Internet search engines such
as Google, Yahoo, and MSN Search. In its simplest form, an inverted file con-
sists of a set of words, where each word is associated with the list of documents
containing it in a given document collection D. The Document Listing problem
is then solved by printing out the document list associated with the given query
word.

This approach works as such only for documents consisting of distinct words,
such as natural language documents. If one considers the more general case,
where a document consists of a sequence of symbols without any word bound-
aries, then the inverted file approach may turn out to be infeasible. There are
basically two alternative approaches to proceed; (i) create an inverted file over
all substrings of D; or (ii) create an inverted file over all q-grams of D, i.e., over
all substrings of D of length q.

⋆ Funded by the Academy of Finland under grant 108219.

Approach (i) suffers from (at least) quadratic space requirement, and ap-
proach (ii) suffers from the slow time requirement affected by the size of inter-
mediate results; In approach (ii) the search for a pattern P of length m > q

proceeds by covering the pattern with q-grams, and searching each q-gram from
the inverted file. In this case, each q-gram needs to be associated with a list of
exact occurrence positions inside the documents. One can then merge the oc-
currence lists to spot the co-occurrences of the q-grams covering P . The total
time requirement is determined by the length of the longest intermediate occur-
rence list associated with a q-gram of P . This can be significantly more than the
number of occurrences of whole P .

Despite the above mentioned weakness, a q-gram based inverted file is very
effective in practice, and it has found its place in important applications such
as in a popular search tool BLAST for genome data [1]. One of the attractive
properties of an inverted file is that it is easily compressible while still supporting
fast queries [13]. In practice, an inverted file occupies space close to that of a
compressed document collection.

Nevertheless, it is both practically and theoretically interesting to study index
structures having the same attractive space requirement properties as inverted
files and at the same time having provably good performance on queries.

If one can afford to use more space, then so-called full-text indexes such
as suffix arrays and suffix trees [3] provide good alternatives to inverted files.
These structures can be used, among many other things, to efficiently solve the
Occurrence Listing problem, where all occurrence positions of a given pattern P

are sought for from the document collection.
Recently, several compressed full-text indexes have been proposed that achieve

the same good space requirement properties as inverted files [10]. These indexes
also provide provably good performance in queries. Many of these indexes have
been implemented and experimented, and shown effective in practice as well.1

Puglisi et al. [11] made an important sanity-check study on the practical
efficiency of compressed full-text indexes when compared to inverted files. They
concluded that, indeed, pattern searches are typically faster using compressed
full-text indexes. However, when the number of occurrence positions becomes
high (e.g. more than 5, 000 on English text [11]), inverted files become faster.
This experimental observation is consistent with the theoretical properties of
the indexes; In compressed full-text indexes each occurrence position must be
decoded, and this typically takes O(log n) time per occurrence. On the other
hand, the shorter the pattern, the more occurrences there are, meaning that in a
q-gram based inverted file, the intermediate occurrence lists are not significantly
larger than the final result.

Let us now get back to the original motivation — the Document Listing
problem. Unlike for the Occurrence Listing problem, there is yet no simultane-
ously space- and time-efficient solution known for this problem. Interestingly,
even achieving a good time requirement is nontrivial. One can, of course, solve
the problem by pruning the answer given by any solution to the Occurrence

1 See http://pizzachili.dcc.uchile.cl/

Listing problem. This is clearly not optimal, since the number of occurrences,
nocc, may be arbitrarily greater than the number of documents, ndoc, containing
these occurrences!

Matias et al. [8] gave the first efficient solution to the Document Listing
problem; with O(n) time preprocessing of a collection D of documents d1, . . . , dk

of total length
∑

i di = n, they could answer the document listing query on a
pattern P of length m in O(m log k+ndoc) time. The algorithm uses a generalized
suffix tree augmented with extra edges making it a directed acyclic graph.

Muthukrishnan [9] simplified the solution in [8] by replacing the augmented
edges with a divide and conquer strategy. This simplification resulted into opti-
mal query time O(m + ndoc).

The space requirements of both the above solutions are O(n log n) bits. This
is significantly more than the collection size, O(n log |Σ|) bits, where Σ is the
underlying alphabet. More importantly, the space usage is much more than that
of an inverted file.

Sadakane [12] has developed a space-efficient version of the Muthukrishnan’s
algorithm. He obtains a structure taking |CSA| + 4n + O(k log n

k
) + o(n) bits.

However, his structure is not anymore time-optimal, as document listing queries
take O(m+ndoc logǫ n) time on a constant alphabet, where |CSA| is the size of
any compressed suffix array that supports backward search and O(logǫ n) time
retrieval of one suffix array value. Here ǫ > 0 is a constant affecting the size of
such compressed suffix array.

Very recently, Fischer and Heun [6] have shown how the space of the Sadakane’s
structure can be reduced to |CSA| + 2n + O(k log n

k
) + o(n) bits; they also im-

prove the extra space needed to build the Sadakane’s structure from O(n log n)
bits to O(n log |Σ|) bits.

In this paper, we give an alternative space-efficient variant of Muthukrish-
nan’s structure that is capable of supporting document listing queries in opti-
mal time under realistic parameter settings. Our structure takes |CSA| + 2n +
n log k(1 + o(1)) bits, where |CSA| ≤ n log |Σ|(1 + o(1)) is the size of any com-
pressed suffix array supporting backward search. (We do not require the CSA

to support the retrieval of suffix array values as the Sadakane’s structure.) The
time requirement depends on the underlying CSA used, but we can obtain e.g.
optimal O(m+ndoc) time when Σ, k = O(polylog(n)). For general Σ, k the time
requirement becomes O(m log |Σ| + ndoc log k).

We also show that a recent data structure by Bast et al. [2] proposed for
output-sensitive autocompletion search can be used for the Document Listing
problem. The space requirement is asymptotically the same as above but the
time requirement is slightly inferior.

We provide some preliminary experimental evidence to show that our struc-
ture is significantly faster than an inverted file, especially when ndoc << nocc.

2 Preliminaries

A string T = t1t2 · · · tn is a sequence of symbols from an ordered alphabet Σ. A
substring of T is any string Ti...j = titi+1 · · · tj , where 1 ≤ i ≤ j ≤ n. A suffix of
T is any substring Ti...n, where 1 ≤ i ≤ n. A prefix of T is any substring T1...j ,
where 1 ≤ j ≤ n. A pattern is a short string over the alphabet Σ. We say that
the pattern P = p1p2 · · · pm occurs at the position j of the text alias document
string T iff p1 = tj , p2 = tj+1, . . . , pm = tj+m−1. Length of a document T is
denoted |T |.

Definition 1 (Document Listing problem). Given a collection D of docu-

ments d1, d2, . . . , dk of total length
∑k

i=1 |di| = n, the Document Listing problem
is to build an index for D such that one can later efficiently support the docu-
ment listing query of listing for any given pattern P of length m the documents
that contain P as a substring.

The output of the document listing query in Def. 1 is a subset of document
identifiers {1, 2, . . . , k}.

We say that a space-optimal solution to the Document Listing problem is an
index that occupies n log Σ(1 + o(1)) bits. This is the asymptotic lower-bound
given by the Kolmogorov complexity for any representation of D. Here we count
the representation of D as part of the index. For compressible documents, it is
possible to achieve better bounds.

Likewise, we say that a time-optimal solution to the Document Listing prob-
lem is an index that can be constructed in O(n) time, and that supports listing
of documents in O(m + ndoc) time, where ndoc is the size of the output.

3 Time-Optimal Document Listing

Muthukrishnan [9] obtained a time-optimal solution to the document listing
problem, but the solution was yet not space-optimal. In the sequel, we show
that one can adjust the solution to obtain the space-optimality as well in certain
parameter settings.

Let us describe the Muthukrishnan’s solution in a level suitable for our pur-
poses. We use a generalized suffix array instead of the generalized suffix tree
used in the original proposal.

Let the document collection d1, d2, . . . , dk be represented as a concatena-
tion D = d1d2 · · ·dk. A generalized suffix array for the document collection D

is then an array A[1 . . . n] containing the permutation of 1, 2, . . . , n such that
DA[i],n <b DA[i+1],n for 1 ≤ i < n. Here <b is the normal lexicographic order
< of strings, except that the document boundaries are handled separately; the
order of suffixes is computed assuming (virtually) a special symbol $i inserted
after each document di, such that $1 < $2 < · · · < $k < c, where c ∈ Σ.2

2 Concrete insertion of symbols $i is the standard definition. However, here it would
make the alphabet size grow to |Σ|+ k, affecting the later results. Therefore we opt
for the virtual handling of boundaries.

Using two binary searches on A, one can easily locate the maximal range
[sp, ep] of A such that the pattern P is a prefix of all the suffixes DA[sp],n,
DA[sp+1],n, . . ., DA[ep],n. Now, the remaining task is to report the ndoc docu-
ments containing those suffixes without having to spend time on each occurrence.

Muthukrishnan introduces a divide and conquer strategy on two arrays
C[1 . . . n] and E[1 . . . n] for this task. The array E simply lists the document
numbers of each suffix in the order they appear in the suffix array A, that is,
E[i] = j if A[i] points inside the document dj in the concatenation D. The array
C is defined as

C[i] = max{j | j < i, E[i] = E[j]} (1)

(if there is no such j < i, then C[i] = −1). The algorithm is based on the
following observation.

Lemma 1 ([9]). Let [sp, ep] be the maximal range of A corresponding to suffixes
that have pattern P as a prefix. The document k′ contains P if and only if there
exists precisely one j ∈ [sp, ep] such that E[j] = k′ and C[j] < sp.

To proceed, the table C is assumed to be preprocessed for constant time
Range Minimum Queries (RMQ). That is, on a given interval I, one can compute
mini∈I C[i] in constant time (as well as the argument i giving the minimum).
This preprocessing can be done in O(n) time [4].

The divide and conquer algorithm starts by finding the i ∈ [sp, ep] such that
C[i] is the smallest (using the constant time RMQ). If C[i] > sp then there is no
document to report and the process stops. Otherwise, we output E[i] and repeat
the same process recursively on [sp, i− 1] and on [i + 1, ep]. One can see that all
the documents containing P are reported and each of them only once [9].

By replacing the generalized suffix array with a generalized suffix tree, one
can find the range [sp, ep] in O(m) time on a constant size alphabet (on gen-
eral alphabets, this takes O(m log |Σ|) time). Afterward, the reporting of the
documents takes O(ndoc) time.

Theorem 1 ([9]). Document Listing problem can be solved using an index
structure occupying O(n log n) bits and having an O(n) time construction algo-
rithm. The index supports document listing queries in O(m+ndoc) time on con-
stant size alphabets. On general alphabets, the query time becomes O(m log |Σ|+
ndoc).

4 Space-Optimal Document Listing

We will derive a space-efficient version of the index structure derived in the
previous section. This is accomplished by representing the arrays A, C, E, as
well as the structure for RMQ, compressed. The algorithm for answering the
queries stays the same.

Representing A. Instead of suffix array A we can use any compressed suffix array
supporting the backward search [10]. Different time/space tradeoffs are possible,
e.g. one can find the range [sp, ep] of A containing the occurrences of P in O(m)
time, when |Σ| = O(polylog(n)), using an index of size nHh + o(n log |Σ|) bits
[5]. Here Hh = Hh(D) ≤ log |Σ| is the h-th order empirical entropy of the
text collection D (lower bound for the average number of bits needed to code a
symbol using a fixed code table for each h-context in D). The given space bound
holds for small h (see [5]), but for our purposes it is enough to use an estimate
Hh ≤ log |Σ| that is independent of h. That is, the index size can be expressed
as n log |Σ|(1+o(1)) bits. The space bound is valid for general alphabets as well,
but the time requirement becomes O(m log |Σ|).

Representing C and E. The crucial observation is that the array C is not needed
at all, but instead it can be represented implicitly via the array E. Recall the
definition of C in Eq. (1). We can re-express the definition as

C[i] = selectE[i](E, rankE[i](E, i) − 1), (2)

where rankk′ (E, i) gives the number of times the value k′ appears in E[1, i] and
selectk′(E, j) gives the index of E containing the j-th occurrence of the value k′

(and we define selectk′(E, 0) = −1 to handle the boundary case). It is easy to
see that Eqs. (1) and (2) are identical; both express the link from the value E[i]
to its predecessor in E.

The array E can be seen as a sequence of symbols from the alphabet Σ′ =
{1, 2, . . . , k}. The functions rank and select on such sequences are an essential
part of the index structure we are already using as a representation of the suffix
array A [5]. That is, we can represent E using n log |Σ′|(1 + o(1)) = n log k(1 +
o(1)) bits of space for a so-called generalized wavelet tree [5]. Each value of E

as well as the queries rankk′ (E, i) and selectk′(E, j) can then be computed in
constant time when k = O(polylog(n)). On general k ≤ n, the space stays the
same, but the time requirement becomes O(log k).

Representing RMQ structure. The algorithm requires range minimum queries on
C. As C is now implicitly represented via E, some modifications to the existing
RMQ structures are needed. Sadakane [12] gives a succinct representation of the
RMQ structure in [4] requiring 4n+o(n) bits on top of the array indexed. Fischer
and Heun [6] have recently found another constant time RMQ representation
occupying only 2n + o(n) bits on top of the array indexed. We can use either of
these representations on top of our implicit representation of C. Explicit values of
C are mainly needed only during construction; queries access a constant number
of values in C, which can then be computed from the generalized wavelet tree
representation of E.

We have obtained the following result.

Theorem 2. The Document Listing problem can be solved using an index struc-
ture occupying n log |Σ|(1 + o(1)) + 2n + n log k(1 + o(1)) bits and having an
O(n log |Σ|+n log k) time construction algorithm. The index supports document

listing queries in O(m + ndoc) time when |Σ|, k = O(polylog(n)). On general
alphabets and on general document collection sizes k ≤ n, the query time com-
ponent O(m) becomes O(m log |Σ|) and O(ndoc) becomes O(ndoc log k), respec-
tively.

Proof. The space and query time bounds should be clear from the above discus-
sion. The construction time is achieved by building first the suffix array of D

using e.g a linear time construction algorithm, and then building the generalized
wavelet tree on the Burrows-Wheeler transform and other structures to form the
compressed representation of the suffix array [5]. The array E and its generalized
wavelet tree are constructed similarly. The bottleneck is the generalized wavelet
tree construction. Although not explicitly stated in [5], it can be constructed in
time linear in the final result size in bits. ⊓⊔

Notice that the obtained structure is space-optimal when k = o(|Σ|) and
|Σ| = O(polylog(n)).

The space requirement of the O(n log |Σ|) time construction algorithm is
O(n log n) bits. A slower construction algorithm, taking O(n log n log |Σ|) time,
that uses the same asymptotic space as the final structure, is easy to derive using
the dynamic wavelet tree proposed in [7]. Also the RMQ-solution by Fischer and
Heun can be constructed within these space and time limits.

4.1 Extended functionality.

So far our structure can list the documents containing the pattern. A useful
extension would be to list the occurrences inside the selected documents.

For motivation, imagine that the collection represents a file system; files are
concatenated into D in the order of a depth-first traversal. A search on the
file system would return the documents containing the query word. A user could
select documents of interest from the list, and ask to see the occurrence positions.
Most likely the user would like to see a context around each occurrence to judge
the relevance.

Also, to guide the selection of relevant documents, it would be good to have
the matching documents listed in the order of expected relevance; one way would
be to list the documents in the order of number of occurrences of the pattern.

We can support the above described functionalities with our index. First, to
have the matching documents listed in the order of relevance, one may use the
fact that the number of occurrences nocck′ in document k′ can be computed by

nocck′ = rankk′ (E, ep) − rankk′ (E, sp − 1). (3)

After sorting the numbers nocck′ , one has achieved the goal.
Second, to list the occurrences lying in a selected document (or in the range

of documents lying in a subdirectory), one may use the existing functionalities
of compressed suffix arrays to list all the occurrences. To make this faster than
just pruning the list, one can proceed as follows. Let k′ be a selected document
known to contain occurrences of P . To find the last occurrence inside the suffix

array range [sp, ep], one can query i = selectk′(E, rankk′ (E, ep)) and compute
the occurrence position A[i] by decoding the entry from the compressed suffix
array. The process is continued step-by-step with i = selectk′(E, rankk′ (E, i−1))
until i < sp. At each step one can also output a context around each occurrence.

5 Autocompletion Search and Document Listing

Recently, Bast et al. [2] studied a related problem of providing a space-efficient
index for the so-called output-sensitive autocompletion search problem.

Consider a user typing a query in a document retrieval tool. The tool can
provide repeatedly a list of matching documents while the user is still completing
the query. This interactive feature is called autocompletion.

To avoid the trivial solution of starting the query on each new symbol from
scratch, Bast et al. proposed an online output-sensitive method that focuses the
query W on the so-far matching documents, say D′ ⊂ D. They developed an
index structure supporting this query assuming a text collection consisting of
distinct words. As they mention [2, p. 153], the structure can be extended to the
case of full-text sequences by using e.g. a suffix array on top of their index.

Let us now consider how the structure of Bast et al., when applied to the full-
text setting, can be used to solve the Document Listing problem. Their AUTOTREE
structure is basically a succinct version of the following; a balanced binary tree
built on the lexicographically ordered suffixes of D such that each node lists
the documents containing suffixes in its subtree. In fact, the succinct coding
they propose (TREE+BITVEC) is almost identical to a balanced wavelet tree built
on our array E! However, the difference comes in the queries supported; they
engineer the representation suitable for fast autocompletion searches and do not
exploit the divide and conquer strategy to speed up the search. Instead they
avoid reporting the same occurrence repeatedly by pruning the tree suitably.

Nevertheless, one cannot obtain exactly as fast reporting time for the Doc-
ument Listing problem using AUTOTREE as what we obtain in Theorem 2; the
reason is that AUTOTREE outputs word-in-document pairs where the prefix of the
word matches the query pattern. In our case, this means outputting all suffixes
whose prefix matches the pattern (that is, all occurrences). However, one can
adjust the search algorithm in [2, page 154, step 2] to work only on the O(log n)
nodes covering the search range; in the worst case, each document can appear
in each of those nodes and be reported O(log n) times. This gives O(ndoc log n)
reporting time which is still inferior to our structure. The space usage of both
structures are closely the same, since in our terminology the size of AUTOTREE is
n⌈log k⌉ bits (their N equals our number of suffixes n, and their n is our k).

6 Comparison to Sadakane’s Solution

Our solution is very similar to the Sadakane’s solution [12]. The difference is
in the use of generalized wavelet trees to represent the document numbers as-
sociated with the suffixes. Sadakane is able to represent this information in

O(k log n
k
) bits, as we use n log k(1 + o(1)) bits. However, to retrieve the docu-

ment numbers, he needs to use the expensive O(logǫ n) time operation to retrieve
a suffix array value. Choosing a small value of ǫ affects the multiplicative con-
stant factor in the size of the underlying compressed suffix array inversely. We
can do this in constant time using generalized wavelet tree, when the number of
documents is k = polylog(n).

7 Preliminary Experimental Results

Extrapolating from the experimental results in [11] for the Occurrence Listing
problem, one could expect that our structure is superior to inverted files in
typical document listing settings, that is, where the inverted file needs to examine
all occurrences and our index can work directly on the document level. The
space should be quite close as well; Inverted files use more space in representing
the document collection as such, while in our index the document collection is
compressed inside the index. Our n log k(1 + o(1)) may exceed the space needed
for the inverted file, when k is large.

We have a preliminary implementation ready of our structure, which is yet
not fully optimized for time or space usage. However, it is enough for validating
the claim of being faster when the number of occurrence positions nocc is large
but the number of matching documents ndoc is small. To see this, we compared
our structure to the same inverted file implementation as used in [11]. We used
different size prefixes of a catenated English text collection as the input and
partitioned each prefix to k equal size “documents”, with varying k. We selected
randomly from the text collection two sets of patterns, each containing 1000
patterns of length m = 3 and m = 4, respectively. The small pattern length
was used to guarantee that ndoc << nocc. Table 1 shows the results for the
inverted file, and Table 2 shows the results for our structure. The running times
are the total time needed for the 1000 queries, and values nocc/pattern and
ndoc/pattern are the average output sizes.

Table 1. Running times and index sizes for inverted file. The results correspond to
Occurrence Listing queries; the time needed for pruning the Document Listing result
would be negligible. We used parameter values Block size = 64, q-gram size = 3, and
list intersection limit = 10000 inside the inverted file implementation, see [11].

m = 3 m = 4
|text| (MB) |index| (MB) time (s) nocc/pattern time (s) nocc/pattern

1 2.00 0.35 1334.5 0.13 267.4
25 49.12 8.61 29085.4 2.23 3077.1
50 98.11 17.46 57136.0 4.29 6428.9

The results are as expected: The running times of both structures depend
almost linearly on their output sizes. When the input size grows, but the number

Table 2. Running times and index sizes for our structure, with varying k.

m = 3 m = 4
|text| (MB) k |index| (MB) time (s) ndoc/pattern time (s) ndoc/pattern

1 1 2.12 0.0029 1 0.0036 1
1 50 3.13 0.35 40.7 0.21 27.9
1 100 3.31 0.68 72.9 0.35 44.0
1 150 3.41 0.95 100.0 0.45 55.7
1 200 3.47 1.21 123.4 0.54 65.0
1 250 3.52 1.41 144.3 0.61 72.8

25 200 84.76 3.1 180.1 2.1 132.2
50 200 169.29 3.7 185.1 2.7 148.6

of documents (i.e. the maximum output size for our structure) stays the same,
our structure becomes faster than the inverted file. On short collections the
running times are almost the same.

This result with short patterns, combined with the observation in [11] that
compressed suffix arrays are faster than inverted files for Occurrence Listing
queries on long patterns, gives reason to argue that an index based on com-
pressed suffix arrays may be an attractive alternative to inverted files as a generic
building block for flexible Information Retrieval tasks.

8 Future Work

Muthukrishnan [9] studied many other important Information Retrieval tasks
such as document mining (finding the documents where a given pattern appears
more often than a given threshold) and proximity queries (where the occurrences
of patterns appearing near to each others are searched for). The solutions to
these problems use the same kind of ideas as for the Document Listing problem,
but are somewhat more complicated, and hence more difficult to make space-
efficient. It is an interesting future challenge to derive space-efficient solutions
to these problems such that they would become competitive with inverted file
-based solutions in practice.

Acknowledgement

We wish to thank Gonzalo Navarro for bringing [9] to our attention and anony-
mous reviewers for bringing [8] and[12] to our attention.

References

1. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

2. H. Bast, C. W. Mortensen, and I. Weber. Output-sensitive autocompletion search.
In Proceedings of the 13th International Conference on String Processing and In-
formation Retrieval (SPIRE 2006), pages 150–162, 2006.

3. M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, 2002.
4. M. Farach-Colton and M. A. Bender. The lca problem revisited. In Proc. Latin

American Theoretical Informatics (LATIN), pages 88–94, 2000.
5. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representation

of sequences and full-text indexes. ACM Transactions on Algorithms, 2007. To
appear.

6. J. Fischer and V. Heun. A new succinct representation of rmq-information and im-
provements in the enhanced suffix array. In Proceedings of the International Sympo-
sium on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies
(ESCAPE’07), LNCS. Springer, 2007. To appear.

7. V. Mäkinen and G. Navarro. Dynamic entropy compressed sequences and full-text
indexes. In Proc. Annual Symposium on Combinatorial Pattern Matching (CPM),
LNCS 4009, pages 306–317, 2006.

8. Y. Matias, S. Muthukrishnan, S. C. Sahinalpk, and J. Ziv. Augmenting suffix
trees with applications. In Proceedings of the 6th Annual European Symposium on
Algorithms (ESA 1998), LNCS 1461, pages 67–78. Springer-Verlag, 1998.

9. S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Pro-
ceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms
(SODA’02), pages 657–666, 2002.

10. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1):Article 2, 2007.

11. S. J. Puglisi, W. F. Smyth, and A. Turpin. Inverted files versus suffix arrays for
locating patterns in primary memory. In Proceedings of the 13th International
Conference on String Processing and Information Retrieval (SPIRE 2006), pages
122–133, 2006.

12. K. Sadakane. Space-efficient data structures for flexible text retrieval systems.
Journal of Discrete Algorithms, 5(1):12–22, 2007. Earlier in ISAAC 2002.

13. Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing gigabytes (2nd ed.):
compressing and indexing documents and images. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1999.

