
Peak Alignment using Restricted Edit Distances

Veli Mäkinen∗

AG Genominformatik, Technische Fakultät

Universität Bielefeld, Germany.

veli@cebitec.uni-bielefeld.de

Abstract

A peak is a pair of real values (x, y), where x is the
time when peak of height y is registered. In the
peak alignment problem, we are given two sequences
of peaks, and our task is to align the sequences al-
lowing some basic edit operations on the peaks. We
study an instance of the peak alignment problem that
arises in the analysis of Mass Spectrometry data in
Systems Biology. There the measurement technique
guarantees that two peaks (x, y), (x′, y′) can only be
considered the same if x is close enough to x′, and y
is close enough to y′. We review some methods to do
alignment under such restrictions on matches.

1 Introduction

Mass spectrometry is a device that measures the
masses and intensities of given sample particles. It
can be used e.g. for measuring intensities of differ-
ent proteins in a sample of cells. The result of a
measurement can usually be interpreted as a mass

spectrum: a function associating the intensity (y-
coordinate value) to each possible mass (x-coordinate
value). The purpose of peak alignment is to be able
to compare two spectra taken on different samples.
This immediately poses a problem, since the amount
of substrate differs from sample to sample, and also
the mass values can be non-linearly scaled. The mea-
surement technique, however, allows to add so-called
calibration peaks to the spectra. These can be used to
normalize (calibrate) spectra so that the global vari-
ations can be taken into account as a preprocessing
step. Hence, we can assume that between two spec-
tra, there are only local variations that need to be
traced. The local variations that are of interest are

∗Supported by the ‘‘Deutsche Forschungsgemeinschaft’’

(BO 1910/1-3) within the Computer Science Action Program
and by the Academy of Finland.

the peaks that have changed most or disappeared.
Let us now assume that after some preprocess-

ing steps we have a reasonably accurate spectrum
A[1, m] = (x1, y1)(x2, y2) · · · (xm, ym) of the mea-
sured particles, where the ith particle has mass xi and
intensity yi. We can assume xi−1 < xi. To simplify
the notation, we use A[i] to denote the ith particle,
A[i].x its mass and A[i].y its intensity. We denote by
|A| = m the length of a sequence A = A[1, m].

Let A[1, m] and B[1, n] be two mass spectra. To
align A and B, one has to identify the correct set
of basic edit operations to convert A into B. The
specific properties of the problem must be taken into
account when designing the right edit operations and
their costs, in order to produce a reliable alignment.
In this paper, we choose a “purists” approach; we
minimize one quantity, and limit others. The purpose
is that after the optimal alignment is computed, we
can easily characterize what properties it possesses.

To apply our approach, we identify the following
conditions and error sources that need to be taken
into account in aligning A and B:

i) Small changes in peak heights: We can assume
that A[i] can be matched to B[j] if |A[i].y −
B[j].y| ≤ δ, for some δ > 0 that is estimated
knowing the maximum error the specific mass
spectrometry technique produces to the values
that should not have changed.

ii) Small changes in mass values: We can assume
that A[i] can be matched to B[j] if |A[i].x −
B[j].x| ≤ α, for some α > 0 that is estimated
as in case (i).

iii) Peak heights differ significantly: Sometimes A[i]
can correspond to B[j] even if condition (i) does
not hold. Tracing such changes is actually the
main goal of peak alignment. Therefore, we
should allow substitutions between values that
differ more than by δ.

1

iv) Extra and missing peaks: Sometimes there is no
peak in B corresponding to A[i], and vice versa.
Such cases are either extreme cases of (iii), or
errors caused by peak detection. Therefore, we
should allow peak insertions and deletions.

The rest of the paper focuses on examining closer the
different options to align A and B taking into account
the observations listed above.

2 Related Work

Peak sequences can be seen as trajectories. Convert-
ing a trajectory into another is a classical problem
known as time warping [13]. However, time warp-
ing methods are not suitable for data that contains
extra/missing peaks, since deleting a peak incurs a
cost that depends on its size. In our problem ex-
tra/missing peaks occur on purpose; they explain a
biological phenomenon. The same classical book [13]
contains, however, an approach very similar to our
proposal; edit distances with restricted gaps. The
basic recurrences for computing such restricted edit
distances are already given there; we will review some
of them in the sequel. As far as we know, only our
recent previous work [12, 11] contains improved algo-
rithms for these problems; we will also review some of
these solutions for completeness since some of them
only appear in a thesis work [11].

Peak sequences appear also in other applications
than in mass spectrometry. Almost identical problem
is the alignment of sequences from one-dimensional

gel electrophoresis. There is a study on this problem
that uses the time warping based approach [1]. Our
approach is an alternative to this, and could as well
be applied to the electrophoresis problem.

For mass spectra alignment, the earlier studies [2,
5, 3] are based on the probabilistic sequence analysis
paradigm [7]. We remark that such modeling is rigid
when considering pure mass sequences, as one can
compare with the theoretical spectrum [3]. We are
not aware of any approach that could model peak
hights similarly.

3 Restricted Edit Distances

Recall the peak sequences A[1, m] and B[1, n] from
the introduction. Let us define A[i] ∼ B[j] iff cases (i)
and (ii) given in the introduction hold, i.e. |A[i].y −
B[j].y| ≤ δ and |A[i].x − B[j].x| ≤ α. We denote
A ∼ B iff |A| = |B| and A[i] ∼ B[i] for all 1 ≤ i ≤ |A|.

Let X be a subsequence of A, i.e., any peak se-
quence that can be obtained by deleting zero or more
peaks from A. Let Y be a subsequence of B. We
say that a sequence Z is approximately common to
X and Y iff Z ∼ X and Z ∼ Y . Such Z is approxi-

mately common subsequence of A and B. We denote
by LACS(A, B,∼) the Longest Approximately Com-
mon Subsequence of A and B.

Hence, |LACS(A, B,∼)| is a measure of similarity
between A and B that takes into account cases (i), (ii)
and (iv) listed in the introduction. Let us look at the
dual of |LACS(A, B,∼)| that gives us the possibility
to add case (iii) to the measure:

D̃(A, B) = m + n − 2 ∗ |LACS(A, B,∼)|. (1)

It is easy to see that D̃(A, B) equals the minimum
number of peak insertions and deletions needed to
convert A into a sequence Z such that Z ∼ B. To
allow case (iii), we can simply add an additional oper-
ation to substitute any A[i] with B[j]. Due the lack of
space, we do not consider substitutions in the sequel
(and also because consecutive insertion and deletion
are enough to produce a substitution).

An equally justified way of taking into account
case (i) is to minimize the sum of the differences
|A[i].y−B[j].y| between matched elements i, j in the
alignment. Such approach is better if no good up-
perbound for δ is known. For this purpose, we fix a
parameter κ, and try to find the best alignment be-
tween A and B allowing κ free edit operations. Best
alignment now means the one minimizing the sum of
the differences between matched elements. We de-
note by Dκ(A, B) the distance, where we allow κ free
insertions and deletions.

Distance Dκ(A, B) can be seen as a means to find
κ most interesting peak changes : Assume that the
real data contains k < κ significant changes in the
peaks. If our estimate for κ is not too large, we are
likely to find the correct k changes and κ − k “false
positives”. That is because our alignment is based
only on the (hopefully majority of) peaks that have
changed a little, and the k outliers do not influence
the alignment.

Notice that condition (ii) is not taken into account
in the measure Dκ(A, B). Therefore we also con-

sider measure D̃κ(A, B), where in addition to the κ
free operations, we allow matches only with peaks
A[i] ∼ B[j]. This measure takes condition (i) into ac-
count twice (restricting absolute differences and min-
imizing their sum), that can be too restrictive. Our
algorithms do not depend on how ∼-relation is de-

2

fined, and for this distance one could as well redefine
∼ so that it only considers condition (ii).

4 Basic Recurrences

Standard dynamic programming recurrences follow
easily for the distance measures defined in the previ-
ous section. Let us not repeat the most well-known
formula here, but just mention that distance D̃(A, B)
is easily computable in O(mn) time [6]. Let us, in-
stead, give recurrences that take into account the
sparse nature of the problem. We define the match

set M = M(A, B,∼) as {(i, j) | A[i] ∼ B[j]}. Then
we have the following recurrence for points (i, j) ∈ M :

di,j = min{di′,j′ + i + j − i′ − j′ − 2

| (i′, j′) ∈ M, i′ < i, j′ < j}, (2)

where we assume to have a boundary point (0, 0) ∈ M

with d0,0 = 0. There holds D̃(A, B) = dm+1,n+1.
Notice that trivial implementation of the above

recurrence yields an O(|M |2) time algorithm, i.e.
O((mn)2) in the worst case; much worse than by us-
ing the standard O(mn) time algorithm. However,
we will see in the next section how to implement this
recurrence much faster.

Distance Dκ(A, B) is not defined by the match set
M , as it allows any peaks to match. We have the
following basic recurrence for Dκ(A, B):

di,j,k = min{di−1,j−1,k + |A[i].y − B[j].y|,

di−1,j,k−1, di,j,k−1}, (3)

where the boundary conditions are d0,k,k = 0 and
dk,0,k = 0 for 0 ≤ k ≤ κ (uninitialized cells are as-
sumed to have value ∞). There holds Dκ(A, B) =
min0≤k≤κ dm,n,k.

Again, trivial implementation of the above recur-
rence yields an O(mnκ) time algorithm. One easily
notices that only the κ + 1 middle diagonals need to
computed, since elsewhere the κ insertions and dele-
tions are not enough. This improves the running time
to O(κ2 min(m, n)).

Distance D̃κ(A, B) can be computed by slightly
changing the above recurrence. The running time
will remain the same. In the next section, we develop
an algorithm whose running time depends on the size
of the match set M . This algorithm is based on an
alternative recurrence described next. For D̃κ(A, B)
we have the following recurrence for points (i, j) ∈ M :

di,j,k = min{di′,j′,k′ + |A[i].y − B[j].y|

| (i′, j′) ∈ M, i′ < i, j′ < j, (4)

0 ≤ k′ = k − (i − i′ − 1) − (j − j′ − 1)},

where we assume to have boundary point (0, 0) ∈

M with d0,0,0 = 0. There holds D̃κ(A, B) =
min0≤k≤κ dm+1,n+1,k, where we assume A[m + 1] =
B[n + 1].

5 Efficient Solutions using

Range Minimum Queries

We will now review sparse dynamic programming

solutions for the restricted edit distances. For
D̃(A, B) such solutions have already existed some
time. The essential technique is by Hunt and Szy-
manski [9]; they showed how to compute the length
of the longest common subsequence in O(|M | log n)
time. Almost identical algorithm can be applied
in our case, and such was described by Epp-
stein et al.[8, Sect. 2] for the computation of
RNA secondary structure. That algorithm uses
O(|M | log log(min(mn/|M |, |M |)) time, but is fairly
complicated. Recently, a much simpler algorithm
was developed with essentially the same running time
[12]. Let us briefly describe it as we use the same

technique later on to compute distance D̃κ(A, B).
Let us assume that M is given in reverse column

order, that is (i′, j′) precedes (i, j) iff j′ < j or (j′ = j
and i′ > i). Writing Eq. (2) in a form di,j = i + j −
2+min{di′,j′ − i′− j′ | (i′, j′) ∈ M, i′ < i, j′ < j} one
notices that di,j can be computed by making a range

minimum query on some data structure T that stores
points (i′, j′) ∈ M associated with values di′,j′−i′−j′,
and adding i + j − 2 to this minimum afterwards. If
values di,j are computed in the reverse column order,
and each value di,j − i − j is added to T after its
computation, one notices that condition j′ < j can
be ignored; for values di′,j′ − i′ − j′ that are stored
in T when computing di,j , holds that if i′ < i then
j′ < j. That is, the condition i′ < i is enough. We
have the following algorithm [12]:

Algorithm for eD(A, B).
(1) T .Add(0, 0);
(2) for each (i, j) ∈ M in reverse column order do

(3) di,j = i + j − 2 + T .Minimum([−∞, i));
(4) T .Add(i, di,j − i − j);
(5) return m + n + T .Minimum([−∞, m + 1));

Operation T .Add(i, v) adds key i associated
with value v to the structure. Operation

3

T .Minimum([l, r)) returns the minimum value as-
sociated to a key from range [l, r). It is easy to sup-
port these operations if T is implemented as a bi-
nary search tree. As the keys are integers from range
[0, m], and the query range is semi-infinite, one can
use more advanced structures [14] that support both
operations in O(log log m) time [12]. Hence, the over-
all running time is O(|M | log log m), where m ≤ n.

Let us now consider distance D̃κ(A, B). Recall
Eq. (5). When computing the value of a cell di,j,k we
need the minimum of values |A[i].y−B[j].y|+di′,j′,k′ ,
where (i′, j′), (i, j) ∈ M , i′ < i, j′ < j, and
k− (i− i′−1)− (j− j′−1) = k′. We observe that the
query area is actually on a two-dimensional layer of
the three-dimensional point set. This is because we
can write the condition k−(i−i′−1)−(j−j′−1) = k′

as i′ + j′ − k′ = i + j − k − 2, and consider val-
ues di′,j′,k′ in a three-dimensional space at coordinate
(i′, j′, i′+j′−k′). When computing value di,j,k we can
query the minimum, say d, from a two-dimensional
range [−∞, i)× [−∞, j) at layer i+ j−k−2. Finally,
di,j,k = |A[i].y − B[j].y| + d. This two-dimensional
range query at layer i+ j−k−2 can be implemented
as follows. First, we traverse M in reverse column
order, so that the range [−∞, j) is handled automati-
cally (similarly as explained before). Second, we use a
separate data structure for each layer and store point-
ers to the correct layer in an array L(−k, . . .m + n).
In a layer i + j − k − 2 we query the one-dimensional
range [−∞, i) from data structure L(i + j − k − 2).
Since this range is semi-infinite and the values are
in the range [0, m], the query can be answered in
O(log log m) time. Altogether, the algorithm works
in O(κ|M | log log m) time.

Finally, we note that the construction time for M =
M(A, B,∼) has not been included in the above time
bounds. However, it is easy to construct M in time
O(n log n + |M | log log m) [12, 11].

6 Implementation

We implemented a prototype software that visualizes
two given spectra and aligns them using a selected
algorithm. We experimented with real data and with
simulated data: We generated random errors to real
peak sequences, and tried to find the correct align-
ments between the originals and the noisy versions.
The methods worked robustly, making only few mis-
takes each time, when using realistic error distribu-
tions and good (but not correct) estimates for the
parameter values δ and κ.

References

[1] T. Aittokallio, P. Ojala, T. J. Nevalainen, O.
Nevalainen. Automated detection of differentially
expressed fragments in mRNA differential display.
Electrophoresis, 22(10):1935–1945, 2001.

[2] V. Bafna and N. Edwards. SCOPE: A probabilis-
tic model for scoring tandem mass spectra against a
peptide database. Bioinformatics, 17:S13-S21, 2001.

[3] S. Böcker and H.-M. Kaltenbach. Mass Spectra
Alignments and Their Significance. To appear in
Proc. CPM 2005, Korea, June 19-22, 2005.

[4] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scal-
ing and related techniques for geometry problems.
Proc. STOC’84, pp. 135–143, 1984.

[5] J. Colinge, A. Maselot, and J. Magnin. A systematic
statistical analysis of ion trap tandem mass spectra
in view of peptide scoring. In Proc. WABI 2003,
Springer-Verlag LNCS 2812, pp. 25–38, 2003.

[6] M. Crochemore and W. Rytter. Jewels of Stringol-

ogy. World Scientific, 2002.

[7] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison.
Biological Sequence Analysis: Probabilistic Models of

Proteins and Nucleic Acids. Camb. Univ. Pr., 1997.

[8] D. Eppstein, Z. Galil, R. Giancarlo, and G. F. Ital-
iano. Sparse dynamic programming I: linear cost
functions. Journal of the ACM, 39(3):519–545, 1992.

[9] J. W. Hunt and T. G. Szymanski. A fast algorithm
for computing longest common subsequences. Com-

mun. ACM, 20(5):350–353, May 1977.

[10] V. Levenshtein. Binary codes capable of correcting
deletions, insertions and reversals. Soviet Physics

Doklady, 6:707–710, 1966.

[11] V. Mäkinen. Parameterized Approximate String

Matching and Local-Similarity-Based Point-Pattern

Matching. PhD thesis, Report A-2003-6, Depart-
ment of Computer Science, Univ. of Helsinki, 2003.

[12] V. Mäkinen, G. Navarro, and E. Ukkonen. Algo-
rithms for Transposition Invariant String Matching.
In Proc. STACS 2003, Springer-Verlag LNCS 2607,
pages 191–202, 2003.

[13] D. Sankoff and J. B. Kruskal, editors. Time Warps,

String Edits, and Macromolecules: The Theory and

Practice of Sequence Comparison. Addison-Wesley
Publishing Company, 1983.

[14] P. van Emde Boas. Preserving order in a forest in less
than logarithmic time and linear space. Information

Processing Letters, 6(3):80–82, 1977.

4

