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Abstract. We address the problem of searching for a two-dimensional
pattern in a two-dimensional text (or image), such that the pattern can
be found even if it appears rotated and brighter or darker than its oc-
currence. Furthermore, we consider approximate matching under several
tolerance models. We obtain algorithms that are almost worst-case opti-
mal. The complexities we obtain are very close to the best current results
for the case where only rotations, but not lighting invariance, are sup-
ported. These are the first results for this problem under a combinatorial
approach.

1 Introduction

We consider the problem of finding the occurrences of a two-dimensional pattern
of size m × m cells in a two-dimensional text of size n × n cells, when all pos-
sible rotations of the pattern are allowed and also pattern and text may have
differences in brightness. This stands for rotation and lighting invariant template
matching. Text and pattern are seen as images formed by cells, each of which
has a gray level value, also called a color.

Template matching has numerous important applications from science to
multimedia, for example in image processing, content based information retrieval
from image databases, geographic information systems, processing of aerial im-
ages, to name a few. In all these cases, we want to find a small subimage (the
pattern) inside a large image (the text) permitting rotations (a small degree or
any). Furthermore, pattern and text may have been photographed under differ-
ent lighting conditions, so one may be brighter than the other.

The traditional approach to this problem [2] is to compute the cross correla-
tion between each text location and each rotation of the pattern template. This
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can be done reasonably efficiently using the Fast Fourier Transform (FFT), re-
quiring time O(Kn2 log n) where K is the number of rotations sampled. Typically
K is O(m) in the two-dimensional (2D) case, and O(m3) in the 3D case, which
makes the FFT approach very slow in practice. In addition, lighting-invariant
features may be defined in order to make the FFT insensitive to brightness. Also,
in many applications, “close enough” matches of the pattern are also accepted.
To this end, the user may specify, for example, a parameter κ such that matches
that have at most κ differences with the pattern should be accepted, or a pa-
rameter δ such that gray levels differing by less than δ are considered equal. The
definition of the matching conditions is called the “matching model”.

Rotation invariant template matching was first considered from a combinato-
rial point of view in [8,9]. Since then, several fast filters have been developed for
diverse matching models [10,7,6]. These represent large performance improve-
ments over the FFT-based approach. The worst-case complexity of the problem
was also studied [1,7]. However, lighting invariance has not been considered in
this scenario.

On the other hand, transposition invariant string matching was considered
in music retrieval [3,11]. The aim is to search for (one-dimensional) patterns in
texts such that the pattern may match the text after all its characters (notes)
are shifted by some value. The reason is that such an occurrence will sound
like the pattern to a human, albeit in a different scale. In this context, efficient
algorithms for several approximate matching functions were developed in [12].

We note that transposition invariance becomes lighting invariance when we
replace musical notes by gray levels of cells in an image. Hence, the aim of
this paper is to enrich the existing algorithms for rotation invariant template
matching [7] with the techniques developed for transposition invariance [12] so
as to obtain rotation and lighting invariant template matching. It turns out that
lighting invariance can be added at very little extra cost. The key technique ex-
ploited is incremental distance computation; we show that several transposition
invariant distances can be computed incrementally taking the computation done
with the previous rotation into account in the next rotation angle.

Let us now determine which are the reasonable matching models. In [7],
some of the models considered were useful only for binary images, a case where
obviously we are not interested in this paper. We will address models that make
sense for gray level images. We define three transposition-invariant distances:
dt,δ
H , which counts how many pattern and text cells differ by more than δ; dt,κ

MAD,
which is the maximum color difference between pattern and text cells when up to
κ outliers are permitted; and dt,κ

SAD, which is the sum of absolute color differences
between pattern and text cells permitting up to κ outliers. Table 1 shows our
complexities to compute these distances for every possible rotation of a pattern
centered at a fixed text position. Variable σ is the number of different gray levels
(assume σ = ∞ if the alphabet is not a finite discrete range). A lower bound to
this problem is O(m3), achieved in [7] without lighting invariance.

We also define two search problems, consisting in finding all the transposition-
invariant rotated occurrences of P in T such that: (1) there are at most κ cells
of P differing by more than δ from their text cell (δ-matching); or (2) the sum
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Table 1. Worst-case complexities to compute the different distances defined.

Distance Complexity
dt,δ

H min(log m, σ + (δ + 1))m3

dt,κ

MAD (min(κ, σ) + log min(m, σ))m3

dt,κ

SAD (min(κ, σ) + log min(m, σ))m3

of absolute difference between cells in P and T , except for κ outliers, does not
exceed γ (γ-matching). Note that δ-matching can be solved by examining every
text cell and reporting it if dt,δ

H (P, T ) ≤ κ, or if dt,κ
MAD(P, T ) ≤ δ around the

text cell. Hence any O(f(m)) algorithm for computing dt,δ
H or dt,κ

MAD(P, T ) yields
an O(f(m)n2) algorithm for δ-matching. Similarly, γ-matching can be reduced
to checking whether dt,κ

SAD(P, T ) ≤ γ around each cell. Without transposition
invariance all searching worst cases are O(m3n2) [7].

We remark that we have developed algorithms that work on arbitrary al-
phabets, but we have also taken advantage of the case where the alphabet is a
discrete range of integer values.

A full version of this paper [5] considers also (δ, γ)-matching and optimal
average case search complexities.

2 Definitions

Let T = T [1..n, 1..n] and P = P [1..m, 1..m] be arrays of unit squares, called
cells, in the (x, y)-plane. Each cell has a value in an alphabet called Σ, sometimes
called its gray level or its color. A particular case of interest is that of Σ being
a finite integer range of size σ. The corners of the cell for T [i, j] are (i − 1, j −
1), (i, j − 1), (i − 1, j) and (i, j). The center of the cell for T [i, j] is (i − 1

2 , j − 1
2 ).

The array of cells for pattern P is defined similarly. The center of the whole
pattern P is the center of the cell in the middle of P . Precisely, assuming for
simplicity that m is odd, the center of P is the center of cell P [m+1

2 , m+1
2 ].

Assume now that P has been moved on top of T using a rigid motion (trans-
lation and rotation), such that the center of P coincides exactly with the center
of some cell of T (center-to-center assumption). The location of P with respect
to T can be uniquely given as ((i, j), θ) where (i, j) is the cell of T that matches
the center of P , and θ is the angle between the x-axis of T and the x-axis of P .
The (approximate) occurrence between T and P at some location is defined by
comparing the values of the cells of T and P that overlap. We will use the centers
of the cells of T for selecting the comparison points. That is, for the pattern at
location ((i, j), θ), we look which cells of the pattern cover the centers of the
cells of the text, and compare the corresponding values of those cells (Fig. 1).

More precisely, assume that P is at location ((i, j), θ). For each cell T [r, s]
of T whose center belongs to the area covered by P , let P [r′, s′] be the cell of
P such that the center of T [r, s] belongs to the area covered by P [r′, s′]. Then
M(T [r, s]) = P [r′, s′], that is, our algorithms compare the cell T [r, s] of T against
the cell M(T [r, s]) of P .
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x

y’

x’

j

α

y

(0,0)

i

Fig. 1. Each text cell is matched against the pattern cell that covers the center of the
text cell.

Hence the matching function M is a function from the cells of T to the
cells of P . Now consider what happens to M when angle θ grows continu-
ously, starting from θ = 0. Function M changes only at the values of θ such
that some cell center of T hits some cell boundary of P . It was shown in
[8] that this happens O(m3) times, when P rotates full 2π radians. This re-
sult was shown to be also a lower bound in [1]. Hence there are Θ(m3) rele-
vant orientations of P to be checked. The set of angles for 0 ≤ θ ≤ π/2 is
A = {β, π/2 − β | β = arcsin h+ 1

2√
i2+j2

− arcsin j√
i2+j2

; i = 1, 2, . . . , �m/2�; j =

0, 1, . . . , �m/2�; h = 0, 1, . . . , �
√

i2 + j2�}. By symmetry, the set of possible an-
gles θ, 0 ≤ θ < 2π, is A = A ∪ A + π/2 ∪ A + π ∪ A + 3π/2.

Furthermore, pattern P matches at location ((i, j), θ) with lighting invariance
if there is some integer transposition t such that T [r, s]+t = P [r′, s′] for all [r′, s′]
in the area of P .

Once the position and rotation ((i, j), θ) of P in T define the matching func-
tion, we can compute different kinds of distances between the pattern and the
text. Lighting-invariance versions of the distances choose the transposition min-
imizing the basic distance. Interesting distances for gray level images follow.

Hamming Distance (H): The number of times T [r, s] �= P [r′, s′] occurs,
over all the cells of P , that is, dH(i, j, θ, t) =

∑
r′,s′ [if T [r, s] + t �=

P [r′, s′] then 1 else 0], and dt
H(i, j, θ) = mint dH(i, j, θ, t). This can be

extended to distance dδ
H and its transposition-invariant version dt,δ

H , where
colors must differ by more than δ in order to be considered different, that is,
T [r, s] + t �∈ [P [r′, s′] − δ, P [r′, s′] + δ].

Maximum Absolute Differences (MAD): The maximum value of |T [r, s]−
P [r′, s′]| over all the cells of P , that is, dMAD(i, j, θ, t) = maxr′,s′ |T [r, s] +
t − P [r′, s′]|, and dt

MAD(i, j, θ) = mint dMAD(i, j, θ, t). This can be extended
to distance dκ

MAD and its transposition-invariant version dt,κ
MAD, so that up

to κ pattern cells are freed from matching the text. Then the problem is to
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compute the MAD distance with the best choice of κ outliers that are not
included in the maximum.

Sum of Absolute Differences (SAD): The sum of the |T [r, s]−P [r′, s′]| val-
ues over all the cells of P , that is, dSAD(i, j, θ, t) =

∑
r′,s′ |T [r, s]+t−P [r′, s′]|,

and dt
SAD(i, j, θ) = mint dSAD(i, j, θ, t). Similarly, this distance can be ex-

tended to dκ
SAD and its transposition-invariant version dt,κ

SAD, where up to κ
pattern cells can be removed from the summation.

3 Efficient Algorithms

In [1] it was shown that for the problem of the two dimensional pattern matching
allowing rotations the worst case lower bound is Ω(n2m3). We have shown in
[7] a simple way to achieve this lower bound for any of the distances under
consideration (without lighting invariance). The idea is that we will check each
possible text center, one by one. So we have to pay O(m3) per text center to
achieve the desired complexity. What we do is to compute the distance we want
for each possible rotation, by reusing most of the work done for the previous
rotation. Once the distances are computed, it is easy to report the triples (i, j, θ)
where these values are smaller than the given thresholds (δ and/or γ). Only
distances dH (with δ = 0) and dSAD (with κ = 0) were considered.

Assume that, when computing the set of angles A = (β1, β2, . . .), we also
sort the angles so that βi < βi+1, and associate with each angle βi the set Ci

containing the corresponding cell centers that must hit a cell boundary at βi.
This is done in a precomputation step that depends only on m, not on P or T .
Hence we can evaluate the distance functions (such as dSAD) incrementally for
successive rotations of P . That is, assume that the distance has been evaluated
for βi, then to evaluate it for rotation βi+1 it suffices to re-evaluate the cells
restricted to the set Ci. This is repeated for each β ∈ A. Therefore, the total
time for evaluating the distance for P centered at some position in T , for all
possible angles, is O(

∑
i |Ci|). This is O(m3) because each fixed cell center of T ,

covered by P , can belong to some Ci at most O(m) times. To see this, note that
when P is rotated the whole angle 2π, any cell of P traverses O(m) cells of T .

If we want to add lighting invariance to the above scheme, a naive approach
is to run the algorithm for every possible transposition, for a total cost of
O(n2m3σ). In case of a general alphabet there are O(m2) relevant transpo-
sitions at each rotation (that is, each pattern cell can be made to match its
corresponding text cell). Hence the cost raises to O(n2m5).

In order to do better, we must be able to compute the optimal transposition
for the initial angle and then maintaining it when some characters of the text
change (because the pattern has been aligned over a different text cell). If we
take f(m) time to do this, then our lighting invariant algorithm becomes worst-
case time O(n2m3f(m)). In the following we show how can we achieve this for
each of the distances under consideration.
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3.1 Distance dt,δ
H

As proved in [12], the optimal transposition for Hamming distance is obtained
as follows. Each cell P [r′, s′], aligned to T [r, s], votes for a range of transposi-
tions [P [r′, s′] − T [r, s] − δ, P [r′, s′] − T [r, s] + δ], for which it would match. If a
transposition receives v votes, then its Hamming distance is m2 − v. Hence, the
transposition that receives most votes is the one yielding distance dt,δ

H . Let us
now separate the cases of integer and general alphabets.

Integer alphabet. The original algorithm [12] obtains O(σ + |P |) time on integer
alphabet, by bucket-sorting the range extremes and then traversing them linearly
so as to find the most voted transposition (a counter is incremented when a range
starts and decremented when it finishes).

In our case, we have to pay O(σ + m2) in order to find the optimal transpo-
sition for the first rotation angle. The problem is how to recompute the optimal
transposition once some text cell T [r, s] changes its value (due to a small change
in rotation angle). The net effect is that the range of transpositions given by the
old cell value loses a vote and a new range gains a vote.

We use the fact that the alphabet is an integer range, so there are O(σ)
possible transpositions. Each transposition can be classified according to the
number of votes it has. There are m2 + 1 lists Li, 0 ≤ i ≤ m2, containing the
transpositions that currently have i votes. Hence, when a range of transpositions
loses/gains one vote, the 2δ + 1 transpositions are moved to the lower/upper
list. An array pointing to the list node where each transposition appears is
necessary to efficiently find each of those 2δ + 1 transpositions. We need to keep
control of which is the highest-numbered non-empty list, which is easily done
in constant time per operation because transpositions move only from one list
to the next/previous. Initially we pay O(σ + m2) to initialize all the lists and
put all the transpositions in list L0, then O((δ + 1)m2) to process the votes of
all the cells, and then O(δ + 1) to process each cell that changes. Overall, when
we consider all the O(m3) cell changes, the scheme is O(σ + (δ + 1)m3). This is
our complexity to compute distance dt,δ

H between a pattern and a text center,
considering all possible rotations and transpositions.

General alphabet. Let us resort to a more general problem of dynamic range
voting : In the static case we have a multiset S = {[�, r]} of one-dimensional
closed ranges, and we are interested in obtaining a point p that is included in
most ranges, that is maxvote(S) = maxp |{[�, r] ∈ S | � ≤ p ≤ r}|. In the
dynamic case a new range is added to or an old one is deleted from S, and we
must be able to return maxvote(S) after each update.

Notice that our original problem of computing dt,δ
H from one rotation angle

to another is a special case of dynamic range voting; multiset S is {[P [r′, s′] −
T [r, s]−δ, P [r′, s′]−T [r, s]+δ] | M(T [r, s]) = P [r′, s′]} in one rotation angle, and
in the next one some T [r, s] changes its value. That is, the old range is deleted
and the new one is inserted, after which maxvote(S) is requested to compute
the distance dt,δ

H = m2 − maxvote(S) in the new angle.
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We show that dynamic range voting can be supported in O(log |S|) time,
which immediately gives an O(m3 log m) time algorithm for computing dt,δ

H be-
tween a pattern and a text center, considering all rotations and transpositions.

First, notice that the point that gives maxvote(S) can always be chosen
among the endpoints of ranges in S. We store each endpoint e in a balanced
binary search tree with key e. Let us denote the leaf whose key is e simply by
(leaf) e. With each endpoint e we associate a value vote(e) (stored in leaf e) that
gives the number |{[�, r] | � ≤ e ≤ r, [�, r] ∈ S}|, where the set is considered as
a multiset (same ranges can have multiple occurrences). In each internal node
v, value maxvote(v) gives the maximum of the vote(e) values of the leaves e in
its subtree. After all the endpoints e are added and the values vote(e) in the
leaves and values maxvote(v) in the internal nodes are computed, the static case
is solved by taking the value maxvote(root) = maxvote(S) in the root node of
the tree.

A straightforward way of generalizing the above approach to the dynamic
case would be to recompute all values vote(e) that are affected by the inser-
tion/deletion of a range. This would, however, take O(|S|) time in the worst
case. To get a faster algorithm, we only store the changes of the votes in the
roots of certain subtrees so that vote(e) for any leaf e can be computed by
summing up the changes from the root to the leaf e.

For now on, we refer to vote(e) and maxvote(v) as virtual values, and replace
them with counters diff(v) and values maxdiff(v). Counters diff(v) are defined
implicitly so that for all leaves of the tree it holds

vote(e) =
∑

v∈path(root,e)

diff(v), (1)

where path(root, e) is the set of nodes in the path from the root to a leaf e
(including the leaf). We note that there are several possible ways to choose
diff(v) values so that they satisfy the definition. Values maxdiff(v) are defined
recursively as

max(maxdiff(v.left) + diff(v.left), maxdiff(v.right) + diff(v.right)), (2)

where v.left and v.right are the left and right child of v, respectively. In partic-
ular, maxdiff(e) = 0 for any leaf node e. One easily notices that

maxvote(v) = maxdiff(v) +
∑

v′∈path(root,v)

diff(v′),

which also gives as a special case Equation (1) once we notice that maxvote(e) =
vote(e) for each leaf node e.

Our goal is to maintain diff() and maxdiff() values correctly during insertions
and deletions. We have three different cases to consider: (i) How to compute the
value diff(e) for a new endpoint of a range, (ii) how to update the values of
diff() and maxdiff() when a range is inserted/deleted, and (iii) how to update
the values during rotations to rebalance the tree.
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Case (i) is handled by storing in each leaf an additional counter end(e). It
gives the number of ranges whose rightmost endpoint is e. Assume that this
value is computed for all existing leaves. When we insert a new endpoint e, we
either find a leaf labeled e or otherwise there is a leaf e′ after which e is inserted.
In the first case vote(e) remains the same and in the latter case vote(e) =
vote(e′) − end(e′), because e is included in the same ranges as e′ except those
that end at e′. Notice also that vote(e) = 0 in the degenerate case when e is
the leftmost leaf. The +1 vote induced by the new range whose endpoint e is,
will be handled in case (ii). To make vote(e) =

∑
v′∈path(root,e) diff(v′), we fix

diff(e) so that vote(e) = diff(e) +
∑

v′∈path(root,v) diff(v′), where v is the parent
of e. Once the maxdiff() values are updated in the path from e to the root, we
can conclude that all the necessary updates are done in O(log |S|) time.

Let us then consider case (ii). Recall the one-dimensional range search on a
balanced binary search tree (see e.g. [4], Section 5.1). We use the fact that one
can find in O(log |S|) time the minimal set of nodes, say F , such that the range
[�, r] of S is partitioned by F ; the subtrees starting at nodes of F contain all
the points in [�, r]∩S and only them. It follows that when inserting (deleting) a
range [�, r], we can set diff(v) = diff(v) + 1 (diff(v) = diff(v) − 1) at each v ∈ F .
This is because all the values vote(e) in these subtrees change by ±1 (including
leaves � and r). Note that some diff(v) values may go below zero, but this does
not affect correctness. To keep also the maxdiff() values correctly updated, it is
enough to recompute the values in the nodes in the paths from each v ∈ F to the
root using Equation (2); other values are not affected by the insertion/deletion
of the range [�, r]. The overall number of nodes that need updating is O(log |S|).

Finally, let us consider case (iii). Counters diff(v) are affected by tree rota-
tions, but in case a tree rotation involving e.g. subtrees v.left, v.right.left and
v.right.right takes place, values diff(v) and diff(v.right) can be “pushed” down
to the roots of the affected subtrees, and hence they become zero. Then the tree
rotation can be carried out, also maintaining subtree maxima easily.

Hence, each insertion/deletion takes O(log |S|) time, and maxvote(S) =
maxdiff(root) + diff(root) is readily available in the root node.

3.2 Distance dt,κ
MAD

Let us start with κ = 0. As proved in [12], the optimal transposition for dis-
tance dt

MAD is obtained as follows. Each cell P [r′, s′], aligned to T [r, s], votes for
transposition P [r′, s′] − T [r, s]. Then, the optimal transposition is the average
between the minimum and maximum vote, and dt

MAD distance is the difference
of maximum minus minimum, divided by two. An O(|P |) algorithm follwed.

We need O(m2) to obtain the optimal transposition for the first angle, zero.
Then, in order to address changes of text characters (because, due to angle
changes, the pattern cell was aligned to a different text cell), we must be able to
maintain minimum and maximum votes. Every time a text character changes,
a vote disappears and a new vote appears. We can simply maintain balanced
search trees with all the current votes so as to handle any insertion/deletion
of votes in O(log(m2)) = O(log m) time, knowing the minimum and maximum
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at any time. If we have an integer alphabet of size σ, there are only 2σ + 1
possible votes, so it is not hard to obtain O(log σ) complexity. Hence dt

MAD
distance between a pattern and a text center can be computed in O(m3 log m)
or O(m3 log min(m, σ)) time, for all possible rotations and transpositions.

In order to account for up to κ outliers, it was already shown in [12] that
it is optimal to choose them from the pairs that vote for maximum or mini-
mum transpositions. That is, if all the votes are sorted into a list v1 . . . vm2 ,
then distance dt,κ

MAD is the minimum among distances dt
MAD computed in sets

v1 . . . vm2−κ, v2 . . . vm2−κ+1, and so on until vκ+1 . . . vm2 . Moreover, the optimum
transposition of the i-th value of this list is simply the average of maximum and
minimum, that is, (vm2−κ−1+i + vi)/2.

So our algorithm for dt,κ
MAD is as follows. We make our tree threaded (each

node points to its predecessor and successor in the tree), so we can easily access
the κ + 1 smallest and largest votes. After each change in the tree, we retra-
verse these κ + 1 pairs and recompute the minimum among the vm2−κ−1+i − vi

differences. This takes O(m3(κ + log m)) time. In case of an integer alphabet,
since there cannot be more than O(σ) different votes, this can be done in time
O(m3(min(κ, σ) + log min(m, σ))).

3.3 Distance dt,κ
SAD

Let us first consider case κ = 0. This corresponds to the SAD model of [12],
where it was shown that, if we collect votes P [r′, s′] − T [r, s], then the median
vote (either one if |P | is even) is the transposition that yields distance dt

SAD.
Then the actual distance can be obtained by using the formula for dSAD, and an
O(|P |) time algorithm was immediate.

In this case we have to pay O(m2) to compute the distance for the first
rotation, and then have to manage to maintain the median transposition and
current distance when some text cells change their value due to small rotations.

We maintain a balanced and threaded binary search tree for the votes, plus
a pointer to the median vote. Each time a vote changes because a pattern cell
aligns to a new text cell, we must remove the old vote and insert the new one.
When insertion and deletion occur at different halves of the sorted list of votes
(that is, one is larger and the other smaller than the median), the median may
move by one position. This is done in constant time since the tree is threaded.

The distance value itself can change. One change is due to the fact that one
of the votes changed its value. Given a fixed transposition, it is trivial to remove
the appropriate summand and introduce a new one in the formula for dSAD.
Another change is due to the fact that the median position can change from
a value in the sorted list to the next or previous. It was shown in [12] how to
modify in constant time distance dt

SAD in this case: If we move from transposition
vj to vj+1, then all the j smallest votes increase their value by vj+1 − vj , and
the m − j largest votes decrease by vj+1 − vj . Hence distance dSAD at the new
transposition is the value at the old transposition plus (2j − m)(vj+1 − vj).

Hence, we can traverse all the rotations in time O(m3 log m). This can be
reduced to O(m3 log min(m, σ)) on finite integer alphabet, by noting that there
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cannot be more than O(σ) different votes, and taking some care in handling
repeated values inside single tree nodes.

To compute distance dt,κ
SAD, we have again that the optimal values to free

from matching are those voting for minimum or maximum transpositions. If we
remove those values, then the median lies at positions m − 
κ/2� . . . m + 
κ/2�
in the list of sorted votes, where m is the median position for the whole list.

Hence, instead of maintaining a pointer to the median, we maintain two point-
ers to the range of κ+1 medians that could be relevant. It is not hard to maintain
left and right pointers when votes are inserted and deleted in the set. All the
median values can be changed one by one, and we can choose the minimum dis-
tance among the κ+1 options. This gives us an O(m3(κ+log m)) time algorithm
to compute dt,κ

SAD. On integer alphabet, this is O(m3(κ + log min(m, σ))), which
can be turned into O(m3(min(κ, σ) + log min(m, σ))) by standard tricks using
the fact that there are O(σ) possible median votes that have different values.
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