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Abstract— A large fraction of an XML document typically
consists of text data. The XPath query language allows text
search via the equal, contains, and starts-with predicates. Such
predicates can be efficiently implemented using a compressed
self-index of the document’s text nodes. Most queries, however,
contain some parts querying the text of the document, plus some
parts querying the tree structure. It is therefore a challenge to
choose an appropriate evaluation order for a given query, which
optimally leverages the execution speeds of the text and tree
indexes. Here the SXSI system is introduced. It stores the tree
structure of an XML document using a bit array of opening and
closing brackets plus a sequence of labels, and stores the text
nodes of the document using a global compressed self-index.On
top of these indexes sits an XPath query engine that is based
on tree automata. The engine uses fast counting queries of the
text index in order to dynamically determine whether to evaluate
top-down or bottom-up with respect to the tree structure. The
resulting system has several advantages over existing systems: (1)
on pure tree queries (without text search) such as the XPathMark
queries, the SXSI system performs on par or better than the
fastest known systems MonetDB and Qizx, (2) on queries that
use text search, SXSI outperforms the existing systems by 1–3
orders of magnitude (depending on the size of the result set),
and (3) with respect to memory consumption, SXSI outperforms
all other systems for counting-only queries.

I. I NTRODUCTION

As more and more data is stored, transmitted, queried,
and manipulated in XML form, the popularity of XPath
and XQuery as languages for querying semi-structured data
spreads faster. Solving those queries efficiently has proved to
be quite challenging, and has triggered much research. Today
there is a wealth of public and commercial XPath/XQuery
engines, apart from several theoretical proposals.

In this paper we focus on XPath, which is simpler and forms
the basis of XQuery. XPath query engines can be roughly
divided into two categories:sequentialand indexed. In the
former, which follows astreamingapproach, no preprocessing
of the XML data is necessary. Each query must sequentially
read the whole collection, and the goal is to be as close as

possible to making just one pass over the data, while using
as little main memory as possible to hold intermediate results
and data structures. Instead, the indexed approach preprocesses
the XML collection to build a data structure on it, so that
later queries can be solved without traversing the whole
collection. A serious challenge of the indexed approach is
that the index can use much more space than the original
data, and thus may have to be manipulated on disk. There are
two approaches for dealing with this problem: (1) to load the
index only partially (by using clever clustering techniques),
or (2) to use less powerful indexes which require less space.
Examples of systems using these approaches are Qizx/DB [1],
MonetDB/XQuery [2] and Tauro [3].

In this work we aim at an index for XML that uses little
space compared to the size of the data, so that the indexed
collection can fit in main memory for moderate-sized data,
thereby solving XPath queries without any need of resorting
to disk. An in-memory index should outperform streaming
approaches, even when the data fits in RAM. Note that
usually, main memory XML query systems (such as Saxon [4],
Galax [5], Qizx/Open [1], etc.) use machine pointers to repre-
sent XML data. We observed that on various well-established
DOM implementations, this representation blows up memory
consumption to about 5–10 times the size of the original XML
document.

An XML collection can be regarded essentially as atext
collection (that is, a set of strings) organized into atree
structure, so that the strings correspond to the text data and the
tree structure corresponds to the nesting of tags. The problem
of manipulating text collections within compressed space is
now well understood [6]–[8], and also much work has been
carried out on compact data structures for trees (see, e.g.,[9]
and references therein). In this paper we show how both types
of compact data structures can be integrated into a compressed
index representation for XML data, which is able to efficiently
solve XPath queries.



A feature inherited from its components is that the com-
pressed indexreplacesthe XML collection, in the sense that
the data (or any part of it) can be efficiently reproduced from
the index (and thus the data itself can be discarded). The result
is called aself-index, as the data is inextricably tied to its
index. A self-index for XML data was recently proposed [10],
[11], yet its support for XPath is reduced to a very limited
class of queries that are handled particularly well.

The main value of our work is to provide the first practical
and public tool for compressed indexing of XML data, dubbed
Succinct XML Self-Index(SXSI), which takes little space,
solves a significant portion of XPath (currently we support
at leastCore XPath[12], i.e., all navigational axes, plus the
three text predicates= (equality),contains, and starts-with),
and largely outperforms the best public softwares supporting
XPath we are aware of, namely MonetDB and Qizx. The
main challenges in achieving our results have been to obtain
practical implementations of compact data structures (fortexts,
trees, and others) that are at a theoretical stage, to develop
new compact schemes tailored to this particular problem, and
to develop query processing strategies tuned for the specific
cost model that emerges from the use of these compact data
structures. The limitations of our scheme are that it is in-
memory (this is a basic design decision, actually), that it is
static (i.e., the index must be rebuilt when the XML data
changes), and that it does not handle XQuery. The last two
limitations are subject of future work.

II. BASIC CONCEPTS ANDMODEL

We regard an XML collection as(i) a set of strings and
(ii) a labeled tree. The latter is the natural XML parse tree
defined by the hierarchical tags, where the (normalized) tag
name labels the corresponding node. We add a dummy root
so that we have a tree instead of a forest. Moreover, each text
node is represented as a leaf labeled#. Attributes are handled
as follows in this model. Each node with attributes is added a
single child labeled@, and for each attribute@attr=value
of the node, we add a child labeledattr to its @-node, and a
leaf child labeled% to theattr-node. The text contentvalue
is then associated to that leaf. Therefore, there is exactlyone
string content associated to each tree leaf. We will refer to
those strings astexts.

Let us callT the set of all the texts andu its total length
measured in symbols,n the total number of tree nodes,Σ
the alphabet of the strings andσ = |Σ|, t the total number
of different tag and attribute names, andd the number of
texts (or tree leaves). These receivetext identifierswhich are
consecutive numbers assigned in a left-to-right parsing ofthe
data. In our implementationΣ is simply the set of byte values
1 to 255, and 0 will act as a special terminator called$. This
symbol occurs exactly once at the end of each text inT . We
can easily support multi-byte encodings such as Unicode.

To connect tree nodes and texts, we defineglobal identifiers,
which give unique numbers to both internal and leaf nodes,
in depth-first preorder. Fig. 1 shows a toy collection (top left)
and our model of it (top right), as well as its representation

using our data structures (bottom), which serves as a running
example for the rest of the paper. In the model, the tree is
formed by the solid edges, whereas dotted edges display the
connection with the set of texts. We created a dummy root
labeled&, as well as dummy internal nodes#, @, and %.
Note how the attributes are handled. There are 6 texts, which
are associated to the tree leaves and receive consecutive text
numbers (marked in italics at their right). Global identifiers
are associated to each node and leaf (drawn at their left).
The conversion between tag names and symbols, drawn within
the bottom-left component, is used to translate queries andto
recreate the XML data, and will not be further mentioned.

Some notation and measures of compressibility follow,
preceding a rough description of our space complexities.
Logarithms will be in base 2. Theempirical k-th order
entropy[13] of a sequenceS over alphabetσ, Hk(S) ≤ log σ,
is a lower bound to the output size per symbol of anyk-th
order compressor applied toS. We will build on self-indexes
able of handling text collectionsT of total lengthu within
uHk(T )+o(u logσ) bits [6], [8], [14]. On the other hand, rep-
resenting an unlabeled tree ofn nodes requires2n−O(log n)
bits, and several representations using2n + o(n) bits support
many tree query and navigation operations in constant time
(e.g., [9]). The labels require in principle othern log t bits.
SequencesS can be stored within|S| log σ(1+o(1)) bits (and
even|S|H0(S)+o(|S| logσ)), so that any elementS[i] can be
accessed, and they can also answer queriesrankc(S, i) (the
number ofc’s in S[1, i]) andselectc(S, j) (the position of the
j-th c in S) efficiently [14]–[16]. These are essential building
blocks for more complex functionalities, as seen later.

The final space requirement of our index will include:
1) uHk(T ) + o(u log σ) bits for representing the text col-

lection T in self-indexed form. This supports the string
searches of XPath and can (slowly) reproduce any text.

2) 2n + o(n) bits for representing the tree structure. This
supports many navigational operations in constant time.

3) d log d + o(d log d) bits for the string-to-text mapping,
e.g., to determine to which text a string position belongs,
or restricting string searches to some texts.

4) Optionally, u log σ or uHk(T ) + o(u log σ) bits, plus
O(d log u

d
), to achieve faster text extraction than in 1).

5) 4n log t + O(n) bits to represent the tags in a way that
they support very fast XPath searches.

6) 2n+o(n) bits for mapping between tree nodes and texts.
As a practical yardstick: without the extra storage of texts

(item 4) the memory consumption of our system is about
the size of the original XML file (and, being a self-index,
includes it!), and with the extra store the memory consumption
is between 1 and2 times the size of the original XML file.

In Section III we describe our representation of the set
of strings, including how to obtain text identifiers from text
positions. This explains items 1, 3, and 4 above. Section IV
describes our representation for the tree and the labels, and the
way the correspondence between tree nodes and text identifiers
works. This explains items 2, 5, and 6. Section V describes
how we process XPath queries on top of these compact data
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Fig. 1. Our running example on representing an XML collection.

structures. In Section VI we empirically compare our SXSI
engine with the most relevant public engines we are aware of.

III. T EXT REPRESENTATION

Text data is represented as a succinct full-text self-index
[6] that is generally known as theFM-index [17]. The index
supports efficient pattern matching that can be easily extended
to support different XPath predicates.

A. FM-Index and Backward Searching

Given a stringT of total lengthu, from an alphabet of size
σ, the alphabet-friendly FM-index[14] requiresuHk(T ) +
o(u log σ) bits of space. The index supports counting the
number of occurrences of a patternP in O(|P | log σ) time.
Locating the occurrences takes extraO(log1+ǫ u) time per
answer, for any constantǫ > 1.

The FM-index is based on the Burrows–Wheeler transform
(BWT) of stringT [18]. AssumeT ends with the special end-
marker$. Let M be a matrix whose rows are all the cyclic
rotations ofT in lexicographic order. The last columnL of M
forms a permutation ofT which is the BWT stringL = T bwt.
The matrix is only conceptual; the FM-index uses only on the
T bwt string. See Fig. 1 (bottom right). NoteL[i] is the symbol
preceding thei-th lexicographically smallest row ofM.

The resulting permutation is reversible. The first column
of M, denotedF , contains all symbols ofT in lexicographic
order. There exists a simple last-to-first mapping from symbols
in L to F [17]: Let C[c] be the total number of symbols inT
that are lexicographically less thanc. Now the LF-mapping
can be defined asLF (i) = C[L[i]] + rankL[i](L, i). The
symbols ofT can be read in reverse order by starting from the
end-marker locationi and applyingLF (i) recursively: we get

T bwt[i], T bwt[LF (i)], T bwt[LF (LF (i))] etc. and finally, after
u steps, get the first symbol ofT . The valuesC[c] can be
stored in a small array ofσ log u bits. Functionrankc(L, i)
can be computed inO(log σ) time with a wavelet treedata
structure requiring onlyuHk(T ) + o(u log σ) bits [14], [15].

Pattern matching is supported viabackward searchingon
the BWT [17]. Given a patternP [1, m], the backward search
starts with the range[sp, ep] = [1, u] of rows in M. At each
stepi ∈ {m, m− 1, . . . , 1} of the backward search, the range
[sp, ep] is updated to match all rows ofM that haveP [i, m]
as a prefix. New range[sp′, ep′] is given bysp′ = C[P [i]] +
rankP [i](L, sp− 1) + 1 andep′ = C[P [i]] + rankP [i](L, ep).
Each step takesO(log σ) time [14], and finallyep − sp + 1
gives the number of timesP occurs inT .

To find out the location of each occurrence, the text is tra-
versed backwards from eachsp ≤ i ≤ sp (virtually, usingLF
on T bwt) until a sampledposition is found. This is a sampling
carried out at regular text positions, so that the corresponding
positions inT bwt are marked in a bitmapBs[1, u], and the
text position corresponding toT bwt[i], if Bs[i] = 1, is stored
at a samples arrayPs[rank1(Bs, i)]. If every l-th position of
T is sampled, the extra space isO((n/l) log n) (including the
compressedBs [19]) and the locating takesO(l log σ) time per
occurrence. Usingl = Θ(log1+ǫ u/ logσ) yields o(u log σ)
extra space andO(log1+ǫ u) locating time.

B. Text Collection and Queries

The textual content of the XML data is stored as$-
terminated strings so that each text corresponds to one string.
Let T be the concatenated sequence ofd texts. The sampling is
extended to include all text beginning positions, and to record



both the text identifier and the offset inside it. Since there
are several$’s in T , we fix a special ordering such that the
end-marker of thei-th text will appear atF [i] in M (see
Fig. 1, bottom right). This generates a validT bwt of all the
texts and makes it easy to extract thei-th text starting from
its $-terminator. The type of wavelet tree actually used was a
Huffman-shaped one using uncompressed bitmaps inside [20].

Now T bwt contains all end-markers in some permuted order.
This permutation is represented with a data structureDoc,
that maps from positions of $s inT bwt to text numbers, and
also allows two-dimensional range searching [21] (see Fig.1,
bottom right). Thus the text corresponding to a terminator
T bwt[i] = $ is Doc[rank$(T

bwt, i)]. Furthermore, given a
range [sp, ep] of T bwt and a range of text identifiers[x, y],
Doc can be used to output identifiers of all$-terminators
within [sp, ep] × [x, y] range inO(log d) time per answer. In
practice, because we only use the simpler functionality in the
current implementation,Doc is implemented as a plain array
usingd log d bits.

The basic pattern matching feature of the FM-index can be
extended to support XPath functions such asstarts-with, ends-
with, contains, and operators=, ≤, <, >, ≥ for lexicographic
ordering. Given a pattern and a range of text identifiers to be
searched, these functions return all text identifiers that match
the query within the range. In addition, existential (is there
a match in the range?) and counting (how many matches
in the range?) queries are supported. Time complexities are
O(|P | log σ) for the search phase, plus an extra for reporting:

1) starts-with(P, [x, y]): The goal is to find texts in[x, y]
range prefixed by the given patternP . After the normal
backward search, the range[sp, ep] in T bwt contains the end-
markers of all the texts prefixed byP . Now [sp, ep] × [x, y]
can be mapped toDoc, and existential and counting queries
can be answered inO(log d) time. Matching text identifiers
can be reported inO(log d) time per identifier.

2) ends-with(P, [x, y]): Backward searching is localized to
texts[x, y] by choosing[sp, ep] = [x, y] as the starting interval.
After the backward search, the resulting range[sp, ep] contains
all possible matches, thus, existential and counting queries can
be answered in constant time. To find out text identifiers for
each occurrence, text must be traversed backwards to find a
sampled position. Cost isO(l log σ) per answer.

3) operator= (P, [x, y]): texts that are equal toP , and in
range, can be found as follows. Do the backward search as in
ends-with, then map to the$-terminators like instarts-with.
Time complexities are same as instarts-with.

4) contains(P, [x, y]): To find texts that containP , we start
with the normal backward search and finish like inends-with.
In this case there might be several occurrences inside one
text, which have to be filtered. Thus, the time complexity is
proportional to the total number of occurrences,O(l log σ)
for each. Existential and counting queries are as slow as
reporting queries, but theO(|P | log σ)-time counting of all the
occurrences ofP can still be useful for query optimization.

5) operators≤, <, >, ≥: The operator≤ matches texts
that are lexicographically smaller than or equal to the given

pattern. It can be solved like thestarts-withquery, but updating
only theep of each backward search step, whilesp = 1 stays
constant. If at some point there are no occurrences ofP [i] = c
within the prefixL[1, ep], we find those of smaller symbols,
ep = C[c], and continue forP [1, i − 1]. Other operators can
be supported analogously, and costs are as forstarts-with.

The new XPath extension,XPath Full Text 1.0[22], sug-
gests a wider selection of functionality for text searching.
Implementation of these extensions requires regular expres-
sion and approximate searching functionalities, which canbe
supported within our index using the generalbacktracking
framework[23]: The idea is to alter the backward search to
branch recursively to different ranges[sp′, ep′] representing
the suffixes of the text prefixes (i.e. substrings). This is done
by computingsp′c = C[c] + rankc(L, sp − 1) + 1 andep′c =
C[c] + rankc(L, ep) for all c ∈ Σ at each step and recursing
on each[sp′c, ep

′
c]. Then the pattern (or regular expression)

can be compared with all substrings of the texts, allowing to
search for approximate occurrences [23]. The running time
becomes exponential in the number of errors allowed, but
different branch-and-bound techniques can be used to obtain
practical running times [24], [25]. We omit further details, as
these extensions are out of the scope of this paper.

C. Construction and Text Extraction

The FM-index can be built by adapting any BWT construc-
tion algorithm. Linear time algorithms exist for the task, but
their practical bottleneck is the peak memory consumption.
Although there exist general time- and space-efficient con-
struction algorithms, it turned out that our special case of
text collection admits a tailored incremental BWT construction
algorithm [26] (see the references and experimental compar-
ison therein for previous work on BWT construction): The
text collection is split into several smaller collections,and
a temporary index is built for each of them separately. The
temporary indexes are then merged, and finally converted into
a static FM-index.

The BWT allows extracting thei-th text by successively
applying LF from T bwt[i], at O(log σ) cost per extracted
symbol. To enable faster text extraction, we allow storing the
texts in plain format inn log σ bits, or in an enhanced LZ78-
compressed format (derived from the LZ-index [27]) using
uHk(T )+o(u log σ) bits. These secondary text representations
are coupled with a delta-encoded bit vector storing starting
positions of each text inT . This bitmap requiresO(d log u

d
)

more bits.

IV. T REE REPRESENTATION

A. Data Representation

The tree structure of an XML collection is represented
by the following compact data structures, which provide
navigation and indexed access to it. See Fig. 1 (bottom left).

1) Par: The balanced parenthesesrepresentation [28] of
the tree structure. This is obtained by traversing the tree in
depth-first-search(DFS) order, writing a"(" whenever we
arrive at a node, and a")" when we leave it (thus it is



easily produced during the XML parsing). In this way, every
node is represented by a pair of matching opening and closing
parentheses. A tree node will be identified by the position of
its opening parenthesis inPar (that is, a node will be just
an integer index withinPar). In particular, we will use the
balanced parentheses implementation of Sadakane [9], which
supports a very complete set of operations, including finding
the i-th child of a node, in constant time. OverallPar uses
2n + o(n) bits. This includes the space needed for constant-
time binaryrank on Par, which are very efficient in practice.

2) Tag: A sequence of the tag identifiers of each tree node,
including an opening and a closing version of each tag, to mark
the beginning and ending point of each node. These tags are
numbers in[1, 2t] and are aligned withPar so that the tag of
nodei is simply Tag[i].

We will also needrank andselect queries onTag. Several
sequence representations supporting these are known [20].
Given that Tag is not too critical in the overall space, but
it is in time, we opt for a practical representation that favors
speed over space. First, we store the tags in an array using
⌈log 2t⌉ bits per field, which gives constant time access to
Tag[i]. The rank and select queries over the sequence of
tags are answered by a second structure. Consider the binary
matrix R[1..2t][1..2n] such thatR[i, j] = 1 if Tag[j] = i.
We represent each row of the matrix using Okanohara and
Sadakane’s structuresarray [29]. Its space requirement for
each rowi is ki log 2n

ki

+ ki(2 + o(1)) bits, whereki is the
number of times symboli appears inTag. The total space of
both structures adds up to2n log(2t) + 2nH0(Tag) + n(2 +
o(1)) ≤ 4n log t + O(n) bits. They support access andselect
in O(1) time, andrank in O(log n) time.

B. Tree Navigation

We define the following operations over the tree structure,
which will be useful to support XPath queries over the tree.
Most of these operations are supported in constant time, except
when arank overTag is involved. Lettag be a tag identifier.

1) Basic Tree Operations:These are direcly inherited from
Sadakane’s implementation [9]. We mention only the most
important ones for this paper;x is a node (a position inPar).

• Close(x): The closing parenthesis matchingPar[x]. If x
is a small subtree this takes a few local accesses toPar,
otherwise a few non-local table accesses.

• Preorder(x) = rank((Par, i): Preorder number ofx.
• SubtreeSize(x) = (Close(x)−x+1)/2: Number of nodes

in the subtree rooted atx.
• IsAncestor(x, y) = x ≤ y ≤ Close(x): Whetherx is an

ancestor ofy.
• FirstChild(x) = x + 1: First child of x, if any.
• NextSibling(x) = Close(x)+1: Next sibling ofx, if any.
• Parent(x): Parent ofx. Somewhat costlier than Close(x)

in practice, because the answer is less likely to be near
x in Par.

2) Connecting to Tags:The following operations are es-
sential for our fast XPath evaluation.

• SubtreeTags(x, tag): Returns the number of occurrences
of tag within the subtree rooted at nodex. This is
ranktag(Tag, Close(x)) − ranktag(Tag, x − 1).

• Tag(x): Gives the tag identifier of nodex. In our repre-
sentation this is justTag[x].

• TaggedDesc(x, tag): The first node labeled tag
strictly within the subtree rooted atx. This is
selecttag(Tag, ranktag(Tag, x) + 1) if it is ≤ Close(x),
and undefined otherwise.

• TaggedPrec(x, tag): The last node labeledtag with pre-
order smaller than that of nodex, and not an ancestor
of x. Let r = ranktag(Tag, x − 1). If selecttag(Tag, r)
is not an ancestor of nodex, we stop. Otherwise, we set
r = r − 1 and iterate.

• TaggedFoll(x, tag): The first node labeledtag with pre-
order larger than that ofx, and not in the subtree ofx.
This is selecttag(Tag, ranktag(Tag, Close(x)) + 1).

3) Connecting the Text and the Tree:Conversion between
text numbers, tree nodes, and global identifiers, is easily
carried out by usingPar and a bitmapB of 2n bits that
marks the opening parentheses of tree leaves containing text,
plus o(n) extra bits to support rank/select queries. BitmapB
enables the computation of the following operations:

• LeafNumber(x): Gives the number of leaves up tox in
Par. This is rank1(B, x).

• TextIds(x): Gives the range of text identifiers that de-
scend from nodex. This is simply[LeafNumber(x−1)+
1, LeafNumber(Close(x))].

• XMLIdText(d): Gives the global identifier for the text
with identifier d. This is Preorder(select1(B, d)).

• XMLIdNode(x): Gives the global identifier for a tree
nodex. This is just Preorder(x).

C. Displaying Contents

Given a nodex, we want to recreate its text (XML) content,
that is, return the string. We traverse the structure starting from
Par[x], retrieving the tag names and the text contents, from the
text identifiers. The time isO(log σ) per text symbol (orO(1)
if we use the redundant text storage described in Section III)
andO(1) per tag.

• GetText(d): Generates the text with identifierd.
• GetSubtree(x): Generates the subtree at nodex.

D. Handling Dynamic Sets

During XPath evaluation we need to handle sets of interme-
diate results, that is, global identifiers. Due to the mechanics
of the evaluation, we need to start from an empty set and later
carry out two types of operations:

• Insert a new identifier to the result.
• Remove a range of identifiers (actually, a subtree).

To remove a range faster than by brute force, we use a data
structure of2n−1 bits representing a perfect binary tree over
the interval of global identifiers, so that leaves of this binary
tree represent individual positions and internal nodes ranges
of positions (i.e., the union of their child ranges). A bit mark



at each such internal node can be set to zero to implicitly set
all its range to zero. A position is in the set if and only if all
of its path from the root to it is not zero. Thus one can easily
insert elements inO(log n) time, and remove ranges within
the same time, as any range can be covered withO(log n)
binary tree nodes.

V. XPATH QUERIES

The aim is to support a practical subset of XPath, while
being able to guarantee efficient evaluation based on the data
structures described before. As a first shot, we target the
“Core XPath” subset [12] of XPath 1.0. It supports all 12
navigational axes, all node tests, and filters with Boolean
operations (and, or, not). In our prototype implementation, all
axes have been implemented, but only part of the forward
fragment (consisting of child and descendant) has been fully
optimized. We therefore focus here only on these two axes. A
node test (non-terminal NodeTest below) is either the wildcard
(’*’), a tag name, or a node type test, i.e., one of text()
or node(); the node type tests comment() and processing-
instruction() are not supported in our current prototype. Of
course, we support all text predicates of XPath 1.0, i.e., the
=, contains, and starts-with predicates. Here is an EBNF for
Core XPath.

Core ::= LocationPath| ‘/’ LocationPath
LocationPath ::= LocationStep (‘/’ LocationStep)*
LocationStep ::= Axis ‘::’ NodeTest

| Axis ‘::’ NodeTest ‘[’ Pred ‘]’
Pred ::= Pred ‘and’ Pred| Pred ‘or’ Pred

| ‘not’ ‘(’ Pred ‘)’ | Core | ‘(’ Pred ‘)’

A data valueis the value of an attribute or the content of
a text node. Here, all data values are considered as strings.
If an XPath expression selects only data values, i.e., its final
location step is the attribute-axis or a text() test, then wecall it
a value expression. Our XPath fragment (“Core+”), consists of
Core XPath plus the following data value comparisons which
may appear inside filters (that is, may be generated by the
nonterminal Pred of above). Letw be a string andp a value
expression; ifp equals . (dot) or self and the XPath expression
to the left of the filter is a value expression, thenp is a value
expression as well.

• p = w (equality): tests if a string selected byp is equal
to w.

• contains(w, p): tests if the stringw is contained in a string
selected byp.

• starts-with(p, w): tests if the stringw is a prefix of a
string selected byp.

A. Tree Automata Representation

It is well-known that Core XPath can be evaluated using
tree automata; see, e.g., [30] and [31]. Here we use alternating
tree automata (as in [32]). Such automata work with Boolean
formulas over states, which must become satisfied for a transi-
tion to fire. This allows much more compact representation of
queries through automata, than ordinary tree automata (without
formulas). Our tree automata work over a binary tree view of

R1,R2, t′ ⊢A ⊤ = (⊤, ∅)
(true) R1,R2, t′ ⊢A φ = (b, R)

R1,R2, t′ ⊢A ¬φ = (b, ∅)
(not)

R1,R2, t′ ⊢A φ1 = (b1, R1)
R1,R2, t′ ⊢A φ2 = (b2, R2)

R1,R2, t′ ⊢A φ1 ∨ φ2 = (b1, R1) 6 (b2, R2)
(or)

R1,R2, t′ ⊢A φ1 = (b1, R1)
R1,R2, t′ ⊢A φ2 = (b2, R2)

R1,R2, t′ ⊢A φ1 ∧ φ2 = (b1, R1) 7 (b2, R2)
(and)

q ∈ dom(Ri)
R1,R2, t′ ⊢A↓i q = (⊤,R(q))

for i ∈ {1, 2} (left,right)

R1,R2, t′ ⊢A mark = (⊤, {t′})
(mark)

eval pred(p)=b
R1,R2, t′ ⊢A p = (b, ∅)

(pred) when no other rule applies
R1,R2, t′ ⊢A φ = (⊥, ∅)

where:

⊤ = ⊥ ⊥ = ⊤

(b1, R1) > (b2, R2) =

8

>

<

>

:

⊤, R1 if b1 = ⊤, b2 = ⊥
⊤, R2 if b2 = ⊤, b1 = ⊥

⊤, R1 ∪ R2 if b1 = ⊤, b2 = ⊤
⊥, ∅ otherwise

(b1, R1) ? (b2, R2) =



⊤, R1 ∪ R2 if b1 = ⊤, b2 = ⊤
⊥, ∅ otherwise

Fig. 2. Inference rules defining the evaluation of a formula

the XML tree where the left child is the first child of the XML
node and the right child is the next sibling of the XML node.

Definition 5.1 (Non-deterministic marking automaton):
An automatonA is a tuple(L,Q, I, δ), whereL is the infinite
set of all possible tree labels,Q is the finite set of states,
I ⊆ Q is the set of initial states, andδ : Q× 2L → F is the
transition function, whereF is a set of Boolean formulas. A
Boolean formulaφ is generated by the following EBNF.

φ ::= ⊤ | ⊥ | φ ∨ φ | φ ∧ φ | ¬φ | a | p (formula)
a ::= ↓1 q | ↓2 q (atom)

wherep ∈ P is a built-in predicateand q is a state. We call
F the set of well-formed formulas.

Definition 5.2 (Evaluation of a formula):
Given an automatonA and an input tree t, the
evaluation of a formula is given by the judgement

R1,R2, t
′ ⊢A φ = (b, R)

whereR1 andR2 are mappings from states to sets of subtrees
of t, t′ is a subtree oft, φ is a formula,b ∈ {⊤,⊥} and
R is a set of subtrees oft. We define the semantics of this
judgment by the mean of inference rules, given in Fig. 2.

These rules are pretty straightforward and combine the
rules for a classical alternating automaton, with the rulesof
a marking automaton. Rule(or) and (and) implements the
Boolean connective of the formula and collect the marking
found in their true sub-formulas. Rules(left) and (right)
(written as a rule schema for concision) evaluate to true if the
stateq is in the corresponding set. Intuitively,R1 (resp.R2) is



the set of states accepted in the left (resp. right) subtree of the
input tree. Rule(pred) supposes the existence of an evaluation
function for built-in predicates. Among the latter, we suppose
the existence of a special predicate,mark which evaluates to
⊤ and returns the singleton set containing the current subtree.
We can now give the semantics of an automaton, by the means
of a run function.

Algorithm 5.1 (Top-down run function):
Input: A = (L,Q, I, δ), t, r Output: R
whereA is the automaton,t the input tree,r a set of states andR
a mapping from states ofQ to sets of subtrees oft and such that
dom(R) ⊆ r.

1 function top down run A t r =
2 if t is the empty treethen return ∅ else
3 let trans = {(q, ℓ) → φ | q ∈ r and Tag(t) ∈ ℓ} in
4 let ri = {q | ↓i q ∈ φ,∀φ ∈ trans} in
5 let R1 = top downrun A FirstChild(t) r1

6 and R2 = top downrun A NextSibling(t) r2

7 in return

8 {q 7→ R |
R1,R2, t ⊢A, φ = (⊤,R),
∀(q, ℓ → φ) ∈ trans }

This algorithm works in a very general setting. Considering
any subtreet of our input tree, letR be the result of
top down run(A, t,Q). Then dom(R) is the set of states
which acceptst and∀q ∈ dom(R), R(q) is the set of subtrees
of t marked during a run starting fromq on the treet. It
is easy to see that the evaluation oftop down run(A, t, r)
takes timeO(|A|×|t|), provided that the operations>, ? and
eval pred can be evaluated in constant time.

B. From XPath to Automata

The translation from XPath to alternating automata is
simple and can be done in one pass through the parse tree
of the XPath expression. Roughly speaking, the resulting
automaton is “isomorphic” to the original query (and
has approximately the same size). All our optimization
discussed later areon-the-fly algorithms; for instance, we
only determinize the automaton during its run on the
input tree. We illustrate the process by giving a query
and its corresponding automaton. Consider the query
/descendant::listitem/descendant::keyword.
The corresponding automaton isA = (L, {q0, q1}, {q0}, δ)
whereδ contains the following transitions:

1 q0, {listitem}→↓1 q1

2 q0,L − {@, #} →↓1 q0

3 q0,L →↓2 q0

4 q1, {keyword}→mark
5 q1,L − {@, #} →↓1 q1

6 q1,L →↓2 q1

The automaton starts in state{q0} and traverses the tree until it
finds a subtree labeledlistitem. At such a subtree, the au-
tomaton changes to state{q0, q1} on the left subtree (because
it is non-deterministic and two transitions fire), looking for a
tagkeyword or possibly another taglistitem and it will
recurse on the right subtree in state{q0} again. Transitions
2 and 5 make sure that, according to the semantics of the
descendant axis, only element nodes (and not text or attributes)
are considered. If, in state{q0, q1} it finds a node labeled
keyword then this node is marked as a result node.

C. General Optimizations, On-the-fly Determinisation

In Algorithm 5.1 the most expensive operation is in Line 11,
which is evaluating the set of possible transitions and accu-
mulating the mappings. First, note that only the states outside
of filters actually accumulate nodes. All other states always
yield empty bindings. Thus we can split the set of states into
marking and regular states. This reduces the number of> and
? operations on result sets. Note also that given a transition
qi, ℓ →↓1 qj∨ ↓2 qk whereqi, qj and qk are marking states,
all nodes accumulated inqj are subtrees of the left subtree
of the input tree. Likewise, all the nodes accumulated inqk

are subtrees of the right subtree of the input tree. Thus both
sets of nodes are disjoint. Therefore, we do not need to keep
sorted sets of nodes but only need sequences which support
O(1) concatenation. Thus, computing the union of two result
setsRj andRk can be done in constant time and therefore>

and? can be implemented in constant time.
Another important practical improvement exploits the fact

that the automata are very repetitive. For instance if an XPath
query does not contain any data value predicate (such as
contains) then its evaluation only depends on the tags of
the input tree. We can use this to our advantage tomemoize
the results based on the tag of the input tree and the setr.
Indeed, the setr and the tag of the input treet uniquely
define the settrans of possible transitions. So instead of
computing such a set at every step, we can cache it in a hash-
table where the key is the pair (Tag(t),r); this corresponds
to an on-the-fly determinization of automata. We can apply
a similar technique for the other expensive operation, that
is, the evaluation of the set of formulas. This operation
can be split in two parts: the evaluation of the formulas
and the propagation of the result sets for the corresponding
marking states. Again, if the formulas do not contain data
value predicates, then their value only depends on the states
present inR1 and R2, the results of the recursive calls.
Using the same technique, we can memoize the results in
a hash table indexed by the key (dom(R1), dom(R2)). This
hash table contains the pair dom(R) of the states in the
result mapping and a sequence of affectation to evaluate, of
the form[qi:=concat(qj , qk), . . . ], which represents results
that need to be propagated between the different marking
states. Another optimization is for the result set associated
with the initial state of the automaton, which is answer of the
query. This result set is “final” in the sense that anything that
was propagated up to it will be in the result of the query. We
can exploit this fact and use a more compact data-structure for
this set of results (for instance the one described in Section IV-
D). Thus we can trade time complexity (since insertion is
O(log(n)) in this structure) for space. Using this scheme, we
are able to answer queries containing billions of result nodes
using little memory.

D. Leveraging the Speed of the Low-Level Interface

Conventionally, the run of a tree automaton visits every
node of the input tree. This is for instance the behaviour
of the tree automata presented in [30], which performs two



scans of the whole XML document (the latter being stored
on disk in a particular format). For highly efficient XPath
evaluation, this is not good enough and we must find ways to
restrict the run to the nodes that are “relevant” for the query
(this is precisely what is also done through “partitioning
and pruning” in the staircase join [33]). Consider the query
/descendant::listitem/descendant::keyword
of before. Clearly, we only care about listitem and keyword
nodes for this query, and how they are situated with respect
to each other. This is precisely the information that is
provided through the TaggedDesc and TaggedFoll functions
of the tree representation. These functions allow us to have
a “contracted” view of the tree, restricted to nodes with
certain labels of interest (but preserving the overall tree
structure). For instance, to solve the above query we can call
TaggedDesc(Root,listitem) which selects the first listitem-node
x. Now we can apply recursively TaggedDesc(x,keyword)
and TaggedFoll(y,keyword) in order to select all keyword-
descendants ofx. We do this optimization of “jumping run”
based on the automaton: for a given set of states of the
automaton we compute the set of relevant transitions which
cause a state change.

Bottom-up run: While the previous technique works
well for tree-based queries it still remains slow for
value-based queries. For instance, consider the query
//listitem//keyword[contains(.,"Unique")].
The text interface described in Section III can answer
the string query very efficiently returning the set of text
nodes matching thiscontainsquery. It is also able to count
globally the number of such results. If this number is low,
and in particular smaller than the number oflistitem
or keyword tags in the document (which can also be
determined efficiently through the tree structure interface),
then it would be faster to take these text nodes as starting
point for query evaluation and test if their path to the root
matches the XPath expression//listitem//keyword.
This scheme is particularly useful for text oriented queries
with low selectivity. However, it also applies for tree only
queries: imagine the query//listitem//keyword on a
tree with many listitem nodes but only a few keyword nodes.
We can start bottom-up by jumping to the keyword nodes
and then checking their ancestors for listitem nodes.

To achieve this goal, we devise a realbottom-up eval-
uation algorithm of an automaton. The algorithm takes an
automaton and a sequence of potential matching nodes (in our
example, the text nodes containing the string"Unique"). It
then moves up to the root, using theparent function and
checks that the automaton arrives at the root node in its initial
stateqi. The technique used is similar to shift-reduce parsing.
Consider a sequence[t1,. . . ,tn] (ordered in pre-order) of
potentially matching subtrees. In our previous example these
were text nodes but this is not a necessary condition. The
algorithm starts on treet1. First, if the tree is not a leaf, we
call the top down run function on t1 with r = Q. This
returns the mappingR1 of all states acceptingt1. We now
want to move fromt1 upwards to the document root, starting

with states dom(R1). Once we arrive at a nodet′1 which
is an ancestor of the next potential matching subtreet2, we
stop at t′1 and start the algorithm ont2 until it reachest′1.
Once this is done, we can merge both mappings and continue
upwards until we reach the root or a common ancestor oft′1
andt3, and so on. The idea ofmergingthe runs at the lowest
common ancestor makes sure that we never touch any node
more than once, during a bottom-up run. We now give formally
the bottom up algorithm.

Algorithm 5.2 (Bottom-up run function):
Input: A, s Output: R
whereA is an automaton,s a sequence of subtrees of the input tree,
andR a mapping from states ofA to subtrees of the input tree.

1 function bottomup run A s =
2 if s = [] then return ∅ else
3 let t,s′ = hd(s), tl(s) in
4 let R = top down run A t Q in
5 let R′, s′′ = matchaboveA t s′ R # in
6 R′∪ (bottomup run A s′′)
7

8 function matchaboveA t s R1 stop=
9 if t = stopthen R1, s else

10 let pt = Parent(t) in
11 let R2, s

′ =
12 if s = [] or not (IsAncestor(pt,hd(s)))
13 then ∅, s else
14 let t2,s′ = hd(s), tl(s) in
15 let R = top down run A t2 Q in
16 matchaboveA 2 s′ R pt in

17 let trans = {q, ℓ → φ |
∃q′ ∈ dom(Ri)s.t. ↓i q′ ∈ φ
label(pt) ∈ ℓ

}

18 in

19 let R′ = {q 7→ R |
R1,R2, t ⊢A, φ = (⊤, R),
∀(q, ℓ → φ) ∈ trans }

20 in
21 matchaboveA pt s′ R′ stop

The first function in Algorithm 5.2 iterates the func-
tion match above on every tree in the sequences. The
match above function is the one “climbing-up” the tree.
We assume that the Parent( ) function returns the empty tree
when applied to the root node. If the input tree is not equal
to the treestop (which is initially the empty tree#, allowing
to stop only after the root node has been processed) then we
first check whether the next (we use the functionhd andtl
which returns the first element of the list and its tail) potential
tree is a descendant of our parent (Line 14). If it is so, then we
pause for the current branch and recursively callmatchabove
with our parent asstop tree. Once it returns, we compute
all the possible transitions that the automata can take from
the parent node to arrive on the left and right subtree with
the correct configuration (Line 21). Once this is done, we
mergeboth configuration using the same computation as in
the top-down algorithm (Line 23). Finally, we recursively call
match above on the parent node, with the new configuration
and sequence of potential matching nodes (Line 25).

VI. EXPERIMENTAL RESULTS

We have implemented a prototype XPath evaluator based
on the data structures and algorithms presented in previous



sections. Both the tree structure and the FM-Index were
developed in C++, while the XPath engine was written using
the Objective Caml language.

A. Protocol

To validate our approach, we benchmarked our implemen-
tation against two other well established XQuery implemen-
tations, namely MonetDB/XQuery and Qizx/DB. We describe
our experimental settings hereafter.

Test machine:Our test machine features an Intel Core2
Xeon processor at 3.6Ghz, 3.8 GB of RAM and a S-ATA
hard drive. The OS is a 64-bit version of Ubuntu Linux. The
kernel version is 2.6.27 and the file system used to store the
various files is ext3, with default settings. All tests were run
on a minimal environment where only the tested program and
essential services were running. We used the standard compiler
and libraries available on this distribution (namely g++ 4.3.2,
libxml2 2.6.32 for document parsing and OCaml 3.11.0).

Qizx/DB: We used version 3.0 of Qizx/DB engine (free
edition), running on top of the 64-bit version of the JVM
(with the-server flag set as recommended in the Qizx user
manual). The maximal amount of memory of the JVM set
to the maximal amount of physical memory (using the-Xmx
flag). We also used the flag-r of the Qizx/DB command
line interface, which allows us to re-run the same query
without restarting the whole program (this ensures that the
JVM’s garbage collector and thread machinery do not impact
the performances). We used the timing provided by Qizx
debugging flags, and reported theserialization time(which
actually includes the materialization of the results in memory
and the serialization).

MonetDB/XQuery: We used version Feb2009-SP2 of
MonetDB, and in particular, version 4.28.4 of MonetDB4
server and version 0.28.4 of the XQuery module (pathfinder).
We used the timing reported by the “-t” flag of MonetDB
client program,mclient. We kept the materialization time
and the serialization time separated.

Running times and memory reporting:For each query,
we kept the best of five runs. For Qizx/DB, each individual
run consists of two repeated runs (“-r 2”), the second one
being always faster. For MonetDB, before each batch of five
runs, the server was exited properly and restarted. We excluded
from the running times the time used for loading the index
into main memory (based on the engines timing reports). We
monitored the memory theresident set sizeof each process,
which correspond to the amount of process memory actually
mapped in physical memory. For MonetDB, we kept track
of the memory usage of both server and client. The peak of
memory reported was the maximum of the sum of client’s
memory plus server’s memory use, at the same instant.

For the tests where serialization was involved, we serialized
to the /dev/null device (that is, all the results were
discarded without causing any output operation).

B. Indexing

Our implementation features a versatile index. It is divided
into three parts. First, the tree representation composed of the

Document Size (MB) 116 223 335 447 559
Index construction time (min) 6 12 20 29 36
Index construction mem. use (MB)296 568 844 1085 1387

Index loading time (s) 2.0 3.8 5.7 8.1 10.1

Fig. 3. Indexing of XMark documents

parenthesis structure, as well as the tag structure. Second, the
FM-Index encoding the text collection. Third, the auxiliary
text representation allowing fast extraction of text content.

It is easy to determine from the query which parts of
the index are needed in order to solve it, and thus load
only those into main memory. For instance, if a query only
involves tree navigation, then having the FM-Index in memory
is unnecessary. On the other hand, if we are interested in
very selective text-oriented queries, then only the tree part
and FM-Index are needed (both for counting and serializing
the results). In this case, serialization is a bit slower (due to
the cost of text extraction from the FM-Index) but remains
acceptable since the number of results is low.

Figure 3 reports the construction time and memory con-
sumption of the indexing process, the loading time from disk
into main memory of a constructed index and a comparison
between the size of the original document and the size of our
in-memory structures. For these indexes, a sampling factor
l = 64 (cf. Section III) was chosen. It should be noted that
the size of the tree index plus the size of the FM-index is
always less than the size of the original document.

It should be noted that although loading time is acceptable,
it dominates query answering time. This is however not a
problem for the use case we have targeted: a main memory
query engine where the same large document is queried many
times. As mentioned in the Introduction, systems such as
MonetDB load their indexes only partially; this gives superior
performance in a cold-cache scenario than our system.

C. Tree Queries

We benchmarked tree queries using the queries given in
Fig. 4. Queries Q01 to Q11 were taken from the XPathMark
benchmark [34], derived from the XMark XQuery benchmark
suite. Q12 to Q16 are “crash tests” that are either simple
(Q12 selects only the root since it always has at least one
descendant in our files) or generate the same amount of results
but with various intermediate result sizes. For this experiment
we used XMark documents of size 116MB and 1GB. In the
cases of MonetDB and Qizx, the files were indexed using



Q01 /site/regions
Q02 /site/closedauctions
Q03 /site/regions/europe/item/mailbox/mail/text/keyword
Q04 /site/closedauctions/closedauction/annotation/description/

parlist/listitem
Q05 /site/closedauctions/closedauction/annotation/description/

parlist/listitem/parlist/listitem/*//keyword
Q06 /site/regions/*/item
Q07 //listitem//keyword
Q08 /site/regions/*/item//keyword
Q09 /site/regions/*/person[ address and (phone or homepage) ]
Q10 //listitem[.//keyword and .//emph]//parlist
Q11 /site/regions/*/item[ mailbox/mail/date ]/mailbox/mail
Q12 /*[ descendant::* ]
Q13 //*
Q14 //*//*
Q15 //*//*//*//*
Q16 //*//*//*//*//*//*//*//*

Fig. 4. Tree oriented queries
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Fig. 6. Peak memory use of the three engines (116 MB XMark file)

the default settings. Fig. 5 reports the running times for both
counting and materialization (construction of a result setin
memory) and serialization (the output of a result set). As
previously mentioned, since Qizx interleaves serialization and
materialization, therefore the timing we report include both. In
this table, we marked inbold font the lowest materialization
time for a given query and we underlinedthe materialization
and serialization time whose sum was the lowest (or in other
words underlined numbers correspond to the lowest overall
execution time, excluding index loading).

We report in Fig. 6 the peak memory usage for each query,
for the 116MB document.

From the results of Fig. 5, we see how the different

components of SXSI contribute to the efficient evaluation
model. First, queries Q01 to Q06 —which are fully qualified
paths— illustrate the sheer speed of the tree structure and
in particular the efficiency of its basic operations (such as
FirstChild and NextSibling, which are used for thechild
axis), as well as the efficient execution scheme provided by
the automaton. Query Q07 to Q11 illustrate the impact of the
jumping. Moreover, it shows that filters do not impact the
execution speed: the conditions they express are efficiently
checked by the formula evaluation procedure. Finally, Q12
to Q16 illustrate the robustness of our automata model. In-
deed while such queries might seem unrealistic, the good
performances that we obtain are only the consequence of
using an automata model, which factors in its states all the
necessary computation and thus do not materialize unneeded
intermediate results. This, coupled together with the compact
dynamic set of Section IV-D, allows us to keep a very low
memory footprint even when the query returns a lot of results
or that each step generates a lot of intermediate results (cf.
Fig. 6).

It is well-known that MonetDB’s policy is to use as much
memory as available to answer queries efficiently and to
preserve memory only if there is not enough physical memory
available. Our goal by providing memory use experiment
was not to argue that we would use less memory than e.g.
MonetDB but rather to show that even though we remain mem-
ory conscious, we can outperform engines using a “greedier”
memory policy.

D. Text Queries

We tested the text capabilities of our XPath engine against
the most advanced text oriented features of other query en-
gines.

Qizx/DB: We used the newly introducedFull-Text ex-
tension of XQuery available in Qizx/DB v. 3.0. We tried to
write queries as efficiently as possible while preserving the
same semantics as our original queries. The query we used
always gave better results than their pure XPath counterpart. In
particular, we used theftcontains text predicate [22] im-
plemented by Qizx/DB. Theftcontains predicate allows
one to express not onlycontains-like queries but also Boolean
operations on text predicates, regular expression matching and
so on. It is more efficient than the standardcontains. In
particular we used regular expression matching instead of
of the starts-with andends-with operators since the
latter were slower in our experiments.

MonetDB: MonetDB supports some full-text capabilities
through the use of the PF/Tijah text index ( [35]). However,
this index only supports a complexabout operator, similar to
contains but returningrankedresults by order of relevance.
Although its semantics does not exactly match the one of
contains, its execution is often faster while providing richer
results. We measured MonetDB timings both for standard
XPath operator andabout.

Experiments were made on a 122MB Medline file. This
file contains bibliographic information about life sciences



Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 Q16
116 MB Document, counting
SXSI 1 1 14 16 24 12 36 31 5 70 34 1 309 309 313 330
MonetDB 7 7 28 24 40 16 24 30 87 61 60 183 75 239 597 957
Qizx 1 1 26 29 31 17 19 39 48 109 158 1 2090 8804 28005 34800
116 MB Document, materializing and serializing
SXSI 1 1 15 21 26 120 64 65 5 83 52 1 974 975 987 465

198 66 7 36 7 256 74 85 0.1 43 96 566 5847 5295 4076 573
MonetDB 7 7 28 27 40 16 25 25 29 88 60 179 71 238 591 966

672 208 10 76 10 671 90 81 0.1 104 181 1653 10023 8288 4959 667
Qizx 3153 1260 65 567 103 3487 1029 307 50 991 1179 8387 45157 44264 8181 21680
1 GB Document, counting
SXSI 2 2 107 149 207 79 665 342 5 990 317 2 4376 4371 4382 4500
MonetDB 8 8 519 576 597 1557 3383 1623 1557 3719 1799 16274 7779 25493 60555 77337
Qizx 1 1 185 135 230 45 101 302 291 185 186 14 17368 ++ ++ ++

1 GB Document, materializing and serializing
SXSI 2 2 140 238 256 1110 1654 771 5 1372 543 2 15246 15254 15461 6567

1920 637 74 359 69 2488 727 835 0.1 411 927 5413 57880 51915 40103 5662
MonetDB 8 8 587 617 648 1554 3405 1710 1600 3739 1810 18203 ⋆ ⋆ ⋆ 80394

20999 200770 22586 158548 37469 11740 53067 16360 0.1 43688 16882 26858 ⋆ ⋆ ⋆ 31818
Qizx 29998 9363 368 4517 417 29543 9061 1989 317 8452 9424 74843 414086 ⋆⋆ ⋆⋆ ⋆⋆

++: Running time exceeded 20 minutes ⋆: MonetDB server ran out of memory. ⋆⋆: Qizx/DB ran out of memory.

We mark inbold face the fastest query execution time and we underlinethe fastest execution and serialization time.

Fig. 5. Running time for the tree based queries (in milliseconds)

T1 //MedlineCitation//*/text()[contains( ., ”brain”)]
T2 //MedlineCitation//Country/text()[

contains(., ”AUSTRALIA”)]
T3 //Country/text()[ contains(. , ”AUSTRALIA”)]
T4 //*/text()[ contains( . , ”1930”)]
T5 //MedlineCitation//*/text()[ contains( . , ”1930”) ]
T6 //MedlineCitation/Article/AuthorList/Author/

LastName/text()[startswith(., ”Bar”)]
T7 //MedlineCitation[ MedlineJournalInfo/

Country/text()[ ends-with(.,”LAND”)]]
T8 //*[ Year = ”2001”]
T9 //*[ LastName = ”Nguyen”]

Fig. 7. Text oriented queries

and biomedical publications. This test file featured 5,732,159
text elements, for a total amount of 95MB of text content.
Fig. 7 shows the text queries we tested. We used count
queries for both MonetDB and Qizx —enclosing the query
in anfn:count() predicate— while in our implementation
we ran the queries in “materialization” mode but without
serializing the output. The table in Fig. 8 summarizes the
running times for each query. As we target very selective text
queries, we also give, for each query, the number of results
it returned. Since for these queries our automata worked in
“bottom-up” mode, we detail the two following operations:

• Calling the text predicateglobally on the text collection,
thus retrieving all the probable matches of the query (Text
query line in the table of Fig. 8)

• Running the automaton bottom up from the set of proba-
ble matches to keep those satisfying the path expression

T1 T2 T3 T4 T5 T6 T7 T8 T9

Text query 69 0.1 0.1 0.2 0.2 0.01 23 0.07 0.01
Automaton run 27 7 4 0.9 1.2 18 110 95 2.5

SXSI: Total 96 7.1 4.1 1.1 1.4 18 133 95.1 2.5
MonetDB 1769 72 81 1203301 180 256 473 505
MonetDB/tijah 336 118117 252 - - - - -
Qizx/DB 108 10 6 99 107 244 259 24691397

# of results 1493438438 32 32 680 69356685 36

T1 T2 T3 T4 T5 T6 T7 T8 T9
0

40

80

120

160

200

Peak Memory Use (MB)

SXSI MonetDB QizX/DB

Fig. 8. Running times (in ms) and memory consumption (in MB) for
the text-oriented queries

(Automaton runline in the table of Fig. 8)
As it is clear from the experiments the bottom-up strategy
pays off. The only down-side of this approach is that the
automaton uses Parent moves, which are less efficient than
FirstChild and NextSibling. This is clear in queries T7 and
T8 where the increase in number of results makes the relative
slowness of the automata more visible. However our evaluator
still outperforms the other engines even in those cases.

E. Remarks

We also compared with Tauro [3]. Yet, as it uses a tailored
query language, we could not produce comparable results.



We limited the experiments to natural language XML,
although our engine (unlike the inverted file based engines)
supports as well queries on XML databases of continuous
sequences such as DNA and proteins. Realistic queries on such
biosequence XMLs require approximate / regular expression
search functionalities, that we already support but whose
experimental study is out of the scope of this paper.

VII. CONCLUSIONS ANDFUTURE WORK

We have presented SXSI, a system for representing an XML
collection in compact form so that fast indexed XPath queries
can be carried out on it. Even in its current prototype stage,
SXSI is already competitive with well-known efficient systems
such as MonetDB and Qizx. As such, a number of avenues
for future work are open. We mention the broadest ones here.

Handling updates to the collections is possible in principle,
as there are dynamic data structures for sequences, trees, and
text collections [7]–[9]. What remains to be verified is how
practical can those theoretical solutions be made.

As seen, the compact data structures support several fancy
operations beyond those actually used by our XPath evalu-
ator. A matter of future work is to explore other evaluation
strategies that take advantage of those nonstandard capabilities.
As an example, the current XPath evaluator does not use
the range search capabilities of structureDoc of Section III.
An interesting challenge is to support XPath string-value
semantics, where strings spanning more than one text node
can be searched for. This, at least at a rough level, is not hard
to achieve with our FM-index, by removing the $-terminators
and marking them on a separate bitmap instead. Beyond that,
we would like to extend our implementation to full XPath 1.0,
and add core functionalities of XQuery.
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