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Abstract— A large fraction of an XML document typically — possible to making just one pass over the data, while using
consists of text data. The XPath query language allows text as little main memory as possible to hold intermediate tesul
search via the equal, contains, and starts-with predicatesSuch and data structures. Instead, the indexed approach peszes

predicates can be efficiently implemented using a compresse . . .
self-index of the document’s text nodes. Most queries, hower, the XML collection to build a data structure on it, so that

contain some parts querying the text of the document, plus soe  later queries can be solved without t'raversing the Who'_e
parts querying the tree structure. It is therefore a challerge to collection. A serious challenge of the indexed approach is

choose an appropriate evaluation order for a given query, with  that the index can use much more space than the original
optimally leverages the execution speeds of the text and ®e 515 and thus may have to be manipulated on disk. There are

indexes. Here the SXSI system is introduced. It stores the ¢e . - . .
structure of an XML document using a bit array of opening and two approaches for dealing with this problem: (1) to load the

closing brackets plus a sequence of labels, and stores thexte index only partially (by using clever clustering technigiie
nodes of the document using a global compressed self-inde@n  or (2) to use less powerful indexes which require less space.

top of these indexes sits an XPath query eng_ine that_ is based Examples of systems using these approaches are Qizx/DB [1],
on tree automata. The engine uses fast counting queries of éh MonetDB/XQuery [2] and Tauro [3].

text index in order to dynamically determine whether to evaliate . h . .
top-down or bottom-up with respect to the tree structure. The In this work we aim at an index for XML that uses little

resulting system has several advantages over existing systs: (1) Space compared to the size of the data, so that the indexed
on pure tree queries (without text search) such as the XPathlirk  collection can fit in main memory for moderate-sized data,

queries, the SXSI system performs on par or better than the thereby solving XPath queries without any need of resorting
fastest known systems MonetDB and Qizx, (2) on queries that 1, gisk. An in-memory index should outperform streaming

use text search, SXSI outperforms the existing systems by 3— a
orders of magnitude (depending on the size of the result set) approaches, even when the data fits in RAM. Note that

and (3) with respect to memory consumption, SXSI outperforns  usually, main memory XML query systems (such as Saxon [4],
all other systems for counting-only queries. Galax [5], Qizx/Open [1], etc.) use machine pointers to eepr

sent XML data. We observed that on various well-established
DOM implementations, this representation blows up memory
As more and more data is stored, transmitted, queriezhnsumption to about 5-10 times the size of the original XML
and manipulated in XML form, the popularity of XPathdocument.
and XQuery as languages for querying semi-structured dataAn XML collection can be regarded essentially ageat
spreads faster. Solving those queries efficiently has préwe collection (that is, a set of strings) organized into teee
be quite challenging, and has triggered much research.yTodgructure so that the strings correspond to the text data and the
there is a wealth of public and commercial XPath/XQueryee structure corresponds to the nesting of tags. The @mobl
engines, apart from several theoretical proposals. of manipulating text collections within compressed spaxe i
In this paper we focus on XPath, which is simpler and formsow well understood [6]-[8], and also much work has been
the basis of XQuery. XPath query engines can be roughtarried out on compact data structures for trees (see,[8]g.,
divided into two categoriessequentialand indexed In the and references therein). In this paper we show how both types
former, which follows astreamingapproach, no preprocessingof compact data structures can be integrated into a congafess
of the XML data is necessary. Each query must sequentialiydex representation for XML data, which is able to efficlgnt
read the whole collection, and the goal is to be as close s@ve XPath queries.

I. INTRODUCTION



A feature inherited from its components is that the conusing our data structures (bottom), which serves as a rgnnin
pressed indexeplacesthe XML collection, in the sense thatexample for the rest of the paper. In the model, the tree is
the data (or any part of it) can be efficiently reproduced frofiormed by the solid edges, whereas dotted edges display the
the index (and thus the data itself can be discarded). Thétregonnection with the set of texts. We created a dummy root
is called aself-index as the data is inextricably tied to itslabeled & as well as dummy internal nodes @ and %
index. A self-index for XML data was recently proposed [10]Note how the attributes are handled. There are 6 texts, which
[11], yet its support for XPath is reduced to a very limitedire associated to the tree leaves and receive consecutive te
class of queries that are handled particularly well. numbers (marked in italics at their right). Global identiie

The main value of our work is to provide the first practicahre associated to each node and leaf (drawn at their left).
and public tool for compressed indexing of XML data, dubbe@ihe conversion between tag names and symbols, drawn within
Succinct XML Self-IndeXSXSl), which takes little space, the bottom-left component, is used to translate queriestand
solves a significant portion of XPath (currently we supporecreate the XML data, and will not be further mentioned.
at leastCore XPath[12], i.e., all navigational axes, plus the Some notation and measures of compressibility follow,
three text predicates- (equality), contains and starts-wit), preceding a rough description of our space complexities.
and largely outperforms the best public softwares suppgrtiLogarithms will be in base 2. Thempirical k-th order
XPath we are aware of, namely MonetDB and Qizx. Thentropy[13] of a sequencé over alphabetr, H,(S) < logo,
main challenges in achieving our results have been to obtigna lower bound to the output size per symbol of dnth
practical implementations of compact data structurestéets, order compressor applied . We will build on self-indexes
trees, and others) that are at a theoretical stage, to gevedble of handling text collectiong’ of total lengthu within
new compact schemes tailored to this particular problerd, anH(T')+o(ulog o) bits [6], [8], [14]. On the other hand, rep-
to develop query processing strategies tuned for the specii&senting an unlabeled tree ofnodes require@n — O(logn)
cost model that emerges from the use of these compact daits, and several representations using+ o(n) bits support
structures. The limitations of our scheme are that it is irmany tree query and navigation operations in constant time
memory (this is a basic design decision, actually), thasit (e.g., [9]). The labels require in principle otherlogt bits.
static (i.e., the index must be rebuilt when the XML dat&equences can be stored withinS|log o(1+0(1)) bits (and
changes), and that it does not handle XQuery. The last twwen|S|Hy(S)+o(]S|log o)), so that any elemerfi[i] can be

limitations are subject of future work. accessed, and they can also answer queties.(S,¢) (the
number ofc’s in S[1,4]) andselect.(S, j) (the position of the
Il. BASIC CONCEPTS ANDMODEL j-th ¢ in S) efficiently [14]-[16]. These are essential building

We regard an XML collection a¢i) a set of strings and blocks for more complex functionalities, as seen later.
(77) a labeled tree. The latter is the natural XML parse tree The final space requirement of our index will include:
defined by the hierarchical tags, where the (normalized) tagl) uwHy(T) + o(ulog o) bits for representing the text col-
name labels the corresponding node. We add a dummy root lectionT in self-indexed form. This supports the string
so that we have a tree instead of a forest. Moreover, each text searches of XPath and can (slowly) reproduce any text.
node is represented as a leaf labefedttributes are handled  2) 2n + o(n) bits for representing the tree structure. This
as follows in this model. Each node with attributes is added a  supports many navigational operations in constant time.
single child labeled® and for each attribut@t t r =val ue 3) dlogd + o(dlogd) bits for the string-to-text mapping,
of the node, we add a child labelad t r to its @node, and a e.g., to determine to which text a string position belongs,
leaf child labeledsto theat t r -node. The text contewntal ue or restricting string searches to some texts.
is then associated to that leaf. Therefore, there is exactyy  4) Optionally, ulogo or uH(T) + o(ulogo) bits, plus
string content associated to each tree leaf. We will refer to  O(dlog %), to achieve faster text extraction than in 1).
those strings atexts 5) 4nlogt + O(n) bits to represent the tags in a way that

Let us callT the set of all the texts and its total length they support very fast XPath searches.
measured in symbols; the total number of tree node§; 6) 2n+o(n) bits for mapping between tree nodes and texts.
the alphabet of the strings and= |X|, ¢ the total number  As a practical yardstick: without the extra storage of texts
of different tag and attribute names, addthe number of (item 4) the memory consumption of our system is about
texts (or tree leaves). These recetegt identifierswhich are the size of the original XML file (and, being a self-index,
consecutive numbers assigned in a left-to-right parsinthef includes it!), and with the extra store the memory consuampti
data. In our implementatioR is simply the set of byte valuesis between 1 an@ times the size of the original XML file.
1 to 255, and 0 will act as a special terminator calfed his In Section Il we describe our representation of the set
symbol occurs exactly once at the end of each text'inMe of strings, including how to obtain text identifiers from tex
can easily support multi-byte encodings such as Unicode. positions. This explains items 1, 3, and 4 above. Section IV

To connect tree nodes and texts, we defjlobal identifiers describes our representation for the tree and the labedisthan
which give unique numbers to both internal and leaf nodesay the correspondence between tree nodes and text identifie
in depth-first preorder. Fig. 1 shows a toy collection (tofh)le works. This explains items 2, 5, and 6. Section V describes
and our model of it (top right), as well as its representatiomow we process XPath queries on top of these compact data
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Fig. 1.  Our running example on representing an XML collettio

structures. In Section VI we empirically compare our SXSI'*“![i], T***[LF (i)], T***[LF(LF(i))] etc. and finally, after
engine with the most relevant public engines we are aware af.steps, get the first symbol df. The valuesC|c] can be
stored in a small array of logu bits. Functionrank.(L, )
[1l. TEXT REPRESENTATION . . ;
can be computed i (log o) time with awavelet treedata

Text data is represented as a succinct full-text self-ind@xycture requiring onlyuHy (T) + o(ulog o) bits [14], [15].
[6] that is generally known as thEM-index[17]. The index Pattern matching is supported vimckward searchingn
supports efficient pattern matching that can be easily &e®n the BWT [17]. Given a patterd®[1, m], the backward search
to support different XPath predicates. starts with the rangésp, ep] = [1, u] of rows in M. At each
A. FM-Index and Backward Searching stepi € {m,m—1,...,1} of the backward search, the range
[sp, ep] is updated to match all rows o¥1 that haveP|[i, m]
as a prefix. New ranggsp’, ep'] is given bysp’ = C[PJi]] +
rankpp) (L, sp—1) + 1 andep’ = C[P[i]] + rankpp (L, ep).
Each step take®(log o) time [14], and finallyep — sp + 1
gives the number of time® occurs inT'.

Given a stringl” of total lengthu, from an alphabet of size
o, the alphabet-friendly FM-indeX14] requiresuHy(T) +
o(ulog o) bits of space. The index supports counting th
number of occurrences of a pattefhin O(|P|logo) time.

Locating the occurrences takes ext®log'™“u) time per . ) .
answer, for any constaat> 1. To find out the location of each occurrence, the text is tra-

The FM-index is based on the Burrows—-Wheeler transforﬁ?rsigfba(:kwards from eaqia_ S0 sp (wrtuglly, using L
(BWT) of stringT" [18]. AssumeT’ ends with the special end-°" T ") until asampleobosmo_n_ is found. This is a sam_plmg
marker$. Let M be a matrix whose rows are all the cycliccarr_"_ad out atbretgular text positions, so that the corredpan
rotations ofI" in lexicographic order. The last columiof M positions inT™"" are marked L?ma. b|_tma¢38[1,u],_and the
forms a permutation of” which is the BWT stringL, = 7%t text position corresponding 1§ . [2], it By[i] = 1, 'S. gtored
The matrix is only conceptual; the FM-index uses only on tHi & Samples array;[rank: (B, i)]. If every I-th position of
T string. See Fig. 1 (bottom right). Not&li] is the symbol * ' sampled, the extra spaced®(n/!) logn) (including the

preceding the-th lexicographically smallest row af. compressed; [19]) and the locating takeS(i log 7) time per

The resulting permutation is reversible. The first columfBCcurrence. Using :1+9(10g1+€ .u/ lo.gg) yields o(ulog o)
of M, denotedF, contains all symbols of" in lexicographic ©Xr@ space an@(log ™ u) locating time.
order. There exists a simple last-to-first mapping from sgtab
in L to F [17]: Let C|c| be the total number of symbols iA
that are lexicographically less than Now the LF-mapping  The textual content of the XML data is stored &s
can be defined as.F (i) = CI[L[i]] + rankr};)(L,i). The terminated strings so that each text corresponds to onegstri
symbols ofT" can be read in reverse order by starting from thieet 7" be the concatenated sequencéd téxts. The sampling is
end-marker location and applyingL F'(i) recursively: we get extended to include all text beginning positions, and t@rec

B. Text Collection and Queries



both the text identifier and the offset inside it. Since thenmgattern. It can be solved like tlstarts-withquery, but updating
are severalf’s in T, we fix a special ordering such that theonly theep of each backward search step, whije= 1 stays
end-marker of thei-th text will appear atF'[;] in M (see constant. If at some point there are no occurrenceB[df= ¢
Fig. 1, bottom right). This generates a valid** of all the within the prefix L[1, ep], we find those of smaller symbols,
texts and makes it easy to extract théh text starting from ep = C[c], and continue forP[1,i — 1]. Other operators can
its $-terminator. The type of wavelet tree actually used waskse supported analogously, and costs are astamts-with
Huffman-shaped one using uncompressed bitmaps inside [20][The new XPath extensioXPath Full Text 1.0{22], sug-
Now T*** contains all end-markers in some permuted ordegests a wider selection of functionality for text searching
This permutation is represented with a data structixg, Implementation of these extensions requires regular expre
that maps from positions of $s i*™* to text numbers, and sion and approximate searching functionalities, which lsan
also allows two-dimensional range searching [21] (see Eig. supported within our index using the genefadcktracking
bottom right). Thus the text corresponding to a terminatdramework[23]: The idea is to alter the backward search to
TP'i] = $ is Doc[rankg(T*"* i)]. Furthermore, given a branch recursively to different rangésy’, ep’] representing
range [sp, ep] of T*** and a range of text identifiers, y], the suffixes of the text prefixes (i.e. substrings). This iaelo
Doc can be used to output identifiers of dlHterminators by computingsp’, = Clc] + rank.(L,sp — 1) + 1 andep/, =
within [sp, ep] x [z, y] range inO(log d) time per answer. In C|[c] + rank.(L,ep) for all ¢ € ¥ at each step and recursing
practice, because we only use the simpler functionalitthin ton each[sp., epl]. Then the pattern (or regular expression)
current implementation)Doc is implemented as a plain arraycan be compared with all substrings of the texts, allowing to
usingdlogd bits. search for approximate occurrences [23]. The running time
The basic pattern matching feature of the FM-index can Ibecomes exponential in the number of errors allowed, but
extended to support XPath functions sucts&sts-with ends- different branch-and-bound techniques can be used torobtai
with, contains and operators-, <, <, >, > for lexicographic practical running times [24], [25]. We omit further detailss
ordering. Given a pattern and a range of text identifiers to ltieese extensions are out of the scope of this paper.
searched, these functions return all text identifiers thatcin
the query within the range. In addition, existential (isrthe
a match in the range?) and counting (how many matchesThe FM-index can be built by adapting any BWT construc-
in the range?) queries are supported. Time complexities &@n algorithm. Linear time algorithms exist for the taskitb
O(|P|log o) for the search phase, plus an extra for reportingfieir practical bottleneck is the peak memory consumption.
1) starts-wit{P, [z, y]): The goal is to find texts ifz,y] Although there exist general time- and space-efficient con-
range prefixed by the given patterR. After the normal struction algorithms, it turned out that our special case of
backward search, the range, ep] in Tt contains the end- text collection admits a tailored incremental BWT constiare
markers of all the texts prefixed by. Now [sp,ep] x [z,y] @algorithm [26] (see the references and experimental compar
can be mapped t®oc, and existential and counting queriedson therein for previous work on BWT construction): The
can be answered i (log d) time. Matching text identifiers text collection is split into several smaller collectiorend
can be reported iD(log d) time per identifier. a temporary index is built for each of them separately. The
2) ends-withiP, [z, y]): Backward searching is localized totemporary indexes are then merged, and finally converted int
texts[x, y] by choosingsp, ep] = [z, y] as the starting interval. @ static FM-index.
After the backward search, the resulting rafge ep] contains ~ The BWT allows extracting the-th text by successively
all possible matches, thus, existential and counting gsezan applying LF from T*“![i], at O(logo) cost per extracted
be answered in constant time. To find out text identifiers f@ymbol. To enable faster text extraction, we allow storing t
each occurrence, text must be traversed backwards to fingexts in plain format inz log o bits, or in an enhanced LZ78-
sampled position. Cost i©(Ilog o) per answer. compressed format (derived from the LZ-index [27]) using
3) operator= (P, [z,y]): texts that are equal t&, and in uH,(T)+o(ulog o) bits. These secondary text representations
range, can be found as follows. Do the backward search asii¢ coupled with a delta-encoded bit vector storing stgrtin
ends-with then map to thes-terminators like instarts-with ~ positions of each text iff". This bitmap require€)(dlog 4)
Time complexities are same as starts-with more bits.
4) containgP, [x,y]): To find texts that contai®, we start
with the normal backward search and finish likeeimds-with .
In this case there might be several occurrences inside dhePata Representation
text, which have to be filtered. Thus, the time complexity is The tree structure of an XML collection is represented
proportional to the total number of occurrencé¥logo) by the following compact data structures, which provide
for each. Existential and counting queries are as slow mavigation and indexed access to it. See Fig. 1 (bottom left)
reporting queries, but th@(| P|log o)-time counting of allthe 1) Par: The balanced parenthese®presentation [28] of
occurrences of? can still be useful for query optimization. the tree structure. This is obtained by traversing the tree i
5) operators<, <, >, >: The operator< matches texts depth-first-searcHDFS) order, writing a" (" whenever we
that are lexicographically smaller than or equal to the givearrive at a node, and &) " when we leave it (thus it is

C. Construction and Text Extraction

IV. TREEREPRESENTATION



easily produced during the XML parsing). In this way, every « SubtreeTags,tag): Returns the number of occurrences

node is represented by a pair of matching opening and closing of tag within the subtree rooted at node. This is

parentheses. A tree node will be identified by the position of rank;q(Tag Clos€x)) — rankiqq(Tag x — 1).

its opening parenthesis iRar (that is, a node will be just « Tag(z): Gives the tag identifier of node. In our repre-

an integer index withinPar). In particular, we will use the sentation this is jusTagz].

balanced parentheses implementation of Sadakane [9]hwhice TaggedDes,tag): The first node labeled tag

supports a very complete set of operations, including figdin  strictly within the subtree rooted atc. This is

the ¢-th child of a node, in constant time. Over&ar uses selectiqq(Tag rankiaq(Tag x) + 1) if it is < Closex),

2n + o(n) bits. This includes the space needed for constant- and undefined otherwise.

time binaryrank on Par, which are very efficient in practice. « TaggedPre,tag): The last node labelethg with pre-
2) Tag: A sequence of the tag identifiers of each tree node, order smaller than that of node, and not an ancestor

including an opening and a closing version of each tag, tkmar  of . Let r = ranki.q(Tag z — 1). If selectiqq(Tag r)

the beginning and ending point of each node. These tags are is not an ancestor of node we stop. Otherwise, we set

numbers in[1, 2¢] and are aligned wittPar so that the tag of r=r —1 and iterate.
nodei is simply Tagj]. « TaggedFollz, tag): The first node labeledag with pre-
We will also needrank andselect queries oriTag Severall order larger than that of, and not in the subtree af.

sequence representations supporting these are known [20]. This is selectiqy(Tag rank:qq(Tag Closgx)) + 1).

Given thatTag is not too critical in the overall space, but 3) Connecting the Text and the Tre€onversion between

it is in time, we opt for a practical representation that i&vo text numbers, tree nodes, and global identifiers, is easily
speed over space. First, we store the tags in an array usgagried out by usingPar and a bitmapB of 2n bits that
[log 2t] bits per field, which gives constant time access tmarks the opening parentheses of tree leaves containing tex
Tagli]. The rank and select queries over the sequence glis o(n) extra bits to support rank/select queries. Bitmiap
tags are answered by a second structure. Consider the biraigibles the computation of the following operations:

matrix R[1..2¢][1..2n] such thatR[i,j] = 1if Tadj] = i.  , |eafNumbefz): Gives the number of leaves up 1oin
We represent each row of the matrix using Okanohara and p,,. This is rank: (B, z).

Sadakane’s structurgar r ay [29]. Its space requirement for | Textidgz): Gives the range of text identifiers that de-

each rowi is k; log 7 + k(2 + o(1)) bits, wherek; is the scend from node. This is simply[LeafNumbetz — 1) +
number of times symbal appears infag The total space of 1, LeafNumbefClosgx))).

both structures adds up ®nlog(2t) + 2nHo(Tag) +n(2+ | xMLIdText(d): Gives the global identifier for the text
o(1)) < 4nlogt + O(n) bits. They support access asdlect with identifier d. This is Preordeselect; (B, d)).

in O(1) time, andrankin O(log n) time. « XMLIdNode(z): Gives the global identifier for a tree

o nodez. This is just Preordétr).
B. Tree Navigation

We define the following operations over the tree structur&: Displaying Contents

which will be useful to support XPath queries over the tree. Given a noder, we want to recreate its text (XML) content,
Most of these operations are supported in constant timepgxcthat is, return the string. We traverse the structure stgtftiom
when arank overTagis involved. Lettag be a tag identifier. Par[z], retrieving the tag names and the text contents, from the

1) Basic Tree OperationsThese are direcly inherited from text identifiers. The time i§)(log o) per text symbol (00(1)
Sadakane’s implementation [9]. We mention only the mo#twe use the redundant text storage described in Sectign IlI
important ones for this paper;is a node (a position iPar). andO(1) per tag.

« Closgz): The closing parenthesis matchiftur|z]. If =  « GetTextd): Generates the text with identifiel
is a small subtree this takes a few local accesseRaig ~ + GetSubtregr): Generates the subtree at node
otherwise a few non-local table accesses.

o Preordefz) = rank(Par,i). Preorder number of.

« SubtreeSizer) = (Closgx)—z+1)/2: Number of nodes  During XPath evaluation we need to handle sets of interme-

D. Handling Dynamic Sets

in the subtree rooted at. diate results, that is, global identifiers. Due to the measan

« IsAncestofz,y) = = < y < Closgz): Whetherz is an 0f the evaluation, we need to start from an empty set and later
ancestor ofy. carry out two types of operations:

o FirstChild(xz) = « + 1: First child of z, if any. « Insert a new identifier to the result.

» NextSiblingz) = Clos€x) +1: Next sibling ofz, if any. « Remove a range of identifiers (actually, a subtree).

« Parentz): Parent ofz. Somewhat costlier than Closg§ 1o remove a range faster than by brute force, we use a data
in practice, because the answer is less likely to be negfycture of2n — 1 bits representing a perfect binary tree over
z in Par. the interval of global identifiers, so that leaves of thisasin
2) Connecting to TagsThe following operations are es-tree represent individual positions and internal nodegean
sential for our fast XPath evaluation. of positions (i.e., the union of their child ranges). A bit tkha



at each such internal node can be set to zero to implicitly set

all its range to zero. A position is in the set if and only if al R)

. i | e (tue) DRl Ea 0= O (g
of its path from the root to it is not zero. Thus one can easily %1% #Fa T=(T.0) R1,R2,t' Fa =g = (b,0)
insert elements irO(logn) time, and remove ranges within R1,Ra, ! a g1 = (b, Ra)
the same time, as any range can be covered Wittog n) Ry, Rat' Fa ¢z = (b2, Ro) (on)
binary tree nodes. Ri,Ra,t'Fa g1V g = (b1, R1) @ (b2, R2)

R1,Ra,t' Fa ¢1 = (b1, R)
V. XPATH QUERIES R1,Ra, t' Fa ¢2 = (b, R2) (and)
. . . R1,Re,t" Fa ¢1 A g2 = (b1, R1) O (b2, R2)
The aim is to support a practical subset of XPath, while
q € dom(R;)

being able to guarantee efficient evaluation based on the dat
structures described before. As a first shot, we target the

R Rt T ali g = (T7R(q))for i € {1,2} (left,right)

“Core XPath” subset [12] of XPath 1.0. It supports all 12 Ry R, T Famark = (7,7 (Mmark)
navigational axes, all node tests, and filters with Boolean

operations (and, or, not). In our prototype implementatah eval _pred(p) =b when no other rule applies
b ( ) prototype imp a R Rt Fap= 00 Pe) R Ry 7 Fa o= (L0

axes have been implemented, but only part of the forward
fragment (consisting of child and descendant) has beenp full Where:

optimized. We therefore focus here only on these two axes|A T=1 1 =T

node test (non-terminal NodeTest below) is either the vaitdc T, Ry if by =T, b2 = i

(*), a tag name, or a node type test, i.e., one of text() (b, R,)© (bs, R2) = - ;71}52& :][ Zi z¥ Z; -

or node(); the node type tests comment() and processing- I Stherwise

instruction() are not supported i_n our current prototy_pé. Q , ) B T,R17U P i

course, we support all text predicates of XPath 1.0, i.ee, th (b1, R1) © (b2, R2) = 1.0 otherwise

=, contains, and starts-with predicates. Here is an EBNF for

Core XPath. ) . Fig. 2. Inference rules defining the evaluation of a formula
Core LocationPath ‘/ LocationPath

LocationPath  ::= LocationStep (‘/' LocationStep)*
LocationStep = Axis .’ NodeTest
| Axis ‘' NodeTest ‘' Pred T’
Pred n= Pred ‘and’ PredPred ‘or Pred ~ the XML tree where the left child is the first child of the XML
| ‘not” *( Pred )" | Core| *(' Pred ) node and the right child is the next sibling of the XML node.
A data valueis the value of an attribute or the content of Definition 5.1 (Non-deterministic marking automaton):
a text node. Here, all data values are considered as stringa.automatonA is a tuple(£, Q, Z, §), whereL is the infinite
If an XPath expression selects only data values, i.e., itd firset of all possible tree label® is the finite set of states,
location step is the attribute-axis or a text() test, thercaléit 7 C Q is the set of initial states, anfl: Q x 2£ — F is the
avalue expressiarOur XPath fragment (“Core+"), consists oftransition function, whereé is a set of Boolean formulas. A
Core XPath plus the following data value comparisons whidoolean formulap is generated by the following EBNF.
may appear inside filters (that is, may be generated by the

nonterminal Pred of above). Let be a string and a value n= T|L|oVe|oAd|[ ¢ [al|p (formula)

expression; ifp equals . (dot) or self and the XPath expression ¢ == lig] l2q (atom)
to the left of the filter is a value expression, theis a value wherep € P is a built-in predicateand ¢ is a state. We call
expression as well. F the set of well-formed formulas.
o p = w (equality): tests if a string selected hyis equal Definition 5.2 (Evaluation of a formula):
to w. Given an automaton.4 and an input treet, the
« containgw, p): tests if the stringv is contained in a string evaluation of a formula is given by the judgement
selected byp. Ri,Ro,t' Fa ¢ = (b,R)
« starts-with{p, w): tests if the stringw is a prefix of a whereR; andR, are mappings from states to sets of subtrees
string selected by. of ¢, t' is a subtree of, ¢ is a formula,b € {T, L} and
) R is a set of subtrees af We define the semantics of this
A. Tree Automata Representation judgment by the mean of inference rules, given in Fig. 2.

It is well-known that Core XPath can be evaluated using These rules are pretty straightforward and combine the
tree automata; see, e.g., [30] and [31]. Here we use altegnatrules for a classical alternating automaton, with the rués
tree automata (as in [32]). Such automata work with Booleanmarking automaton. Ruléor) and (and) implements the
formulas over states, which must become satisfied for aitranBoolean connective of the formula and collect the marking
tion to fire. This allows much more compact representation &und in their true sub-formulas. Rule@eft) and (right)
gueries through automata, than ordinary tree automatadwit (written as a rule schema for concision) evaluate to trubef t
formulas). Our tree automata work over a binary tree view atateq is in the corresponding set. Intuitivelg; (resp.Rs) is



the set of states accepted in the left (resp. right) subtigleeo C. General Optimizations, On-the-fly Determinisation

input tree. Rulgpred) supposes the existence of an evaluation |, Algorithm 5.1 the most expensive operation is in Line 11,
function for built-in predicates. Among the latter, we SOBP which is evaluating the set of possible transitions and accu
the existence of a special predicater k which evaluates to yy|ating the mappings. First, note that only the statesideits
T and returns the singleton set containing the current sebtrgs fjjters actually accumulate nodes. All other states alway
We can now give the semantics of an automaton, by the MegRAd empty bindings. Thus we can split the set of states into

of arun function marking and regular states. This reduces the number and
Algorithm 5.1 (Top-down run function): ® operations on result sets. Note also that given a transition
Input: A=(£,09,Z,6),t,r Output: R qi,¢ —11 ¢;V |2 g1 Whereg;, g; and g, are marking states,

where A is the automaton; the input tree; a set of states an® all nodes accumulated ip; are subtrees of the left subtree
a mapping from states of to sets of subtrees df and such that of the input tree. Likewise, all the nodes accumulatedyin

dom(R) & . are subtrees of the right subtree of the input tree. Thus both
1 functi on top.downrun A ¢ r = sets of nodes are disjoint. Therefore, we do not need to keep
: Ltt t'rsa:]r;e:e&‘g%tfe (;"e;' éit:r: dnT@agl)See Nin sorted sets of nodes but only need sequences which support
4 letri={q| liq€ o, Voéctrans)in O(1) concatenation. Thus, computing the union of two result
5 let R = top.downrun A FirstChildg) r; setsR; and R, can be done in constant time and therefore
6 and R = top.downrun A NextSiblingf) r2 and ® can be implemented in constant time.
7 inreturn Another important practical improvement exploits the fact
8 {¢—R] RiRa.tta,é=(T,R), } that the automata are very repetitive. For instance if antXPa

Y(q,l — t . .
(a ¢) € trans query does not contain any data value predicate (such as

This algorithm works in a very general setting. Consideringont ai ns) then its evaluation only depends on the tags of
any subtreet of our input tree, letR be the result of the input tree. We can use this to our advantagenemoize
t op_down.run(A,¢, Q). Then donR) is the set of states the results based on the tag of the input tree and the-.set
which accepts andvq € dom(R), R(q) is the set of subtrees |ndeed, the set and the tag of the input tree uniquely
of ¢ markedduring a run starting fromy on the treet. It define the setrans of possible transitions. So instead of
is easy to see that the evaluationtafp_down.run(A,¢,7) computing such a set at every step, we can cache it in a hash-
takes timeO(|.A| x [t]), provided that the operations, ® and table where the key is the pair (Tagr); this corresponds
eval _pred can be evaluated in constant time. to an on-the-fly determinization of automata. We can apply
a similar technique for the other expensive operation, that
B. From XPath to Automata is, the evaluation of the set of formulas. This operation
The translation from XPath to alternating automata isan be split in two parts: the evaluation of the formulas
simple and can be done in one pass through the parse &€ the propagation of the result sets for the corresponding
of the XPath expression. Roughly speaking, the resultimgarking states. Again, if the formulas do not contain data
automaton is “isomorphic” to the original query (andsalue predicates, then their value only depends on thesstate
has approximately the same size). All our optimizatiopresent inR; and Rq, the results of the recursive calls.
discussed later ar@n-the-fly algorithms; for instance, we Using the same technique, we can memoize the results in
only determinize the automaton during its run on the hash table indexed by the key (d@® ), dom(R2)). This
input tree. We illustrate the process by giving a quergash table contains the pair dfR) of the states in the
and its corresponding automaton. Consider the quemgsult mapping and a sequence of affectation to evaluate, of

/ descendant::listitem descendant:: keyword. theform[¢;: =concat (g;, gx),...], which represents results
The corresponding automaton 4 = (£, {q0,q1},{q0},d) that need to be propagated between the different marking
whered contains the following transitions: states. Another optimization is for the result set assediat

1 g {listitem—1l1q 4 g1, {keywor d} —mar k with the ir_1itia| state of_ the_ auto_maton, which is answer a th
9 qO:£ —{@# —liq 5 qlzﬁ (@# —la qguery. This result set is “fmal“ in the sense that anythinaft th
3 g, L — 2 qo 6 q.L —l.q  Was propagated up to it will be in the result of the query. We
can exploit this fact and use a more compact data-structure f
The automaton starts in stafe, } and traverses the tree until itihjs set of results (for instance the one described in Set¥io
finds a subtree labeldd st it em At such a subtree, the au-p). Thus we can trade time complexity (since insertion is
tomaton changes to stafeo, ¢1} on the left subtree (becauseg(jo4(n)) in this structure) for space. Using this scheme, we

it is non-deterministic and two transitions fire), lookingrfa  are able to answer queries containing billions of resultesod
tagkeywor d or possibly another tafi sti t emand it will ysing little memory.

recurse on the right subtree in stafe,} again. Transitions

2 and 5 make sure that, according to the semantics of tHe Leveraging the Speed of the Low-Level Interface
descendant axis, only element nodes (and not text or agpu  Conventionally, the run of a tree automaton visits every
are considered. If, in statq, ¢;} it finds a node labeled node of the input tree. This is for instance the behaviour
keywor d then this node is marked as a result node. of the tree automata presented in [30], which performs two



scans of the whole XML document (the latter being storedlith states dorfiR;). Once we arrive at a nod# which
on disk in a particular format). For highly efficient XPathis an ancestor of the next potential matching subtrgeve
evaluation, this is not good enough and we must find ways $top at¢} and start the algorithm o, until it reachest].
restrict the run to the nodes that are “relevant” for the gue©Once this is done, we can merge both mappings and continue
(this is precisely what is also done through “partitioningipwards until we reach the root or a common ancestat; of
and pruning” in the staircase join [33]). Consider the quemndts, and so on. The idea ahergingthe runs at the lowest
/descendant::listitem descendant::keyword common ancestor makes sure that we never touch any node
of before. Clearly, we only care about listitem and keyworthore than once, during a bottom-up run. We now give formally
nodes for this query, and how they are situated with respehe bottom up algorithm.
to each other. This is precisely the information that is Algorithm 5.2 (Bottom-up run function):
provided through the TaggedDesc and TaggedFoll functiopgut: 4, s  Output: R
of the tree representation. These functions allow us to hawkere A is an automatons a sequence of subtrees of the input tree,
a “contracted” view of the tree, restricted to nodes witAnd R a mapping from states oft to subtrees of the input tree.
certain labels of interest (but preserving the overall tree; function bottomuprun A s =
structure). For instance, to solve the above query we cdncat if s=[thenreturn o el se
TaggedDesc(Root, listitem) which selects the first ligtileode 3 et ts"=hd(9), ti(9in
z. Now we can apply recursively TaggedDesc(x,keyword)* |€t R =topdownrun At Qin =

. l et R',s"” = matchabove At s" R #in
and TaggedFoII(y,keyword) in qrdgr t_o selegt aII. keyword-o 57, (bottomup.run A ")
descendants of. We do this optimization of “jumping run” -
based on the automaton: for a given set of states of the functi on matchaboveA t s R stop=

automaton we compute the set of relevant transitions whicl§ i f ¢ =stopthen R,,s el se
cause a state change. 10 let pt=Parent)in

Bottom-up run: While the previous technique works 1 let Res =

) I ) h 12 i f s =[] or not(IsAncestorpthd(s)))

well for tree-based queries it still remains slow forqs then 0, s el se
value-based queries. For instance, consider the quety | et to,s’ =hd(s),tl(9)in
/1listitem/keyword[contains(.,"Unique")]. 15 l'et R =topdownrun A ¢, Qin
The text interface described in Section Il can answet® matchaboveA » s" R ptin ,
the string query very efficiently returning the set of textiz  let trans= {q,{ — ¢ | Iagbild&?)(zigs't' liged }
nodes matching thisontainsquery. It is also able to count ;5 n

globally the number of such results. If this number is low,
and in particular smaller than the number bi stitem _
or keyword tags in the document (which can also be?® 'n o
determined efficiently through the tree structure integjac 2=  MaichaboveA pt s" R stop
then it would be faster to take these text nodes as startingThe first function in Algorithm 5.2 iterates the func-
point for query evaluation and test if their path to the roaion mat ch_above on every tree in the sequence The
matches the XPath expressidri | i stitem /keyword. match_above function is the one “climbing-up” the tree.
This scheme is particularly useful for text oriented querieNe assume that the Paréntfunction returns the empty tree
with low selectivity. However, it also applies for tree onlywhen applied to the root node. If the input tree is not equal
gueries: imagine the query/ | i stitem /keyword on a to the treestop (which is initially the empty tree#, allowing
tree with many listitem nodes but only a few keyword nodeso stop only after the root node has been processed) then we
We can start bottom-up by jumping to the keyword nodefst check whether the next (we use the functioh andt |
and then checking their ancestors for listitem nodes. which returns the first element of the list and its tail) paigin

To achieve this goal, we devise a rdmbtt om up eval- tree is a descendant of our parent (Line 14). If it is so, then w
uation algorithm of an automaton. The algorithm takes grause for the current branch and recursively oaditchabove
automaton and a sequence of potential matching nodes (in aiith our parent asstop tree. Once it returns, we compute
example, the text nodes containing the stririgni que™ ). It all the possible transitions that the automata can take from
then moves up to the root, using tipar ent function and the parent node to arrive on the left and right subtree with
checks that the automaton arrives at the root node in it&initthe correct configuration (Line 21). Once this is done, we
stateg;. The technique used is similar to shift-reduce parsingnerge both configuration using the same computation as in
Consider a sequenckt,...t,] (ordered in pre-order) of the top-down algorithm (Line 23). Finally, we recursivelgllc
potentially matching subtrees. In our previous examplsehemat ch_above on the parent node, with the new configuration
were text nodes but this is not a necessary condition. Thad sequence of potential matching nodes (Line 25).
algorithm starts on tree,. First, if the tree is not a leaf, we
call thet op_down_run function ont; with » = Q. This
returns the mappingR; of all states accepting;. We now We have implemented a prototype XPath evaluator based
want to move fromi; upwards to the document root, startingon the data structures and algorithms presented in previous

Ri,Ra,tba, ¢ =(T,R),

! —
let R"={q— R V(q,¢ — ¢) € trans }

VI. EXPERIMENTAL RESULTS



sections. Both the tree structure and the FM-Index were 1000 2128 Of the Index (MB)
developed in C++, while the XPath engine was written using B el document
the Objective Caml language. o

[ FM-Index
[l Tree Index

600

A. Protocol

To validate our approach, we benchmarked our implemen- 400
tation against two other well established XQuery implemen-
tations, namely MonetDB/XQuery and Qizx/DB. We describe

200 -

our experimental settings hereafter. 0 i e s yve P
Test machine:Our test machine features an Intel Core2 Size of the original document (MB)
Xeon processor at 3.6Ghz, 3.8 GB of RAM and a S-ATA Dt()jcument Size (MB) 1é6 2223 323;)5 42497 53569
; ; ; ; ; Index construction time (min 1
Eal’d cljrlve. .The. OZS |52a 64;jbl':1veflj|SI0n of UbuntudLmux' Thah Index construction mem.( use) (MB)296|568| 844| 1085| 1387
ernel version is 2.6.27 and the file system used to store the [Tndex loading time (s) [2.0[38[5.7] 81101

various files is ext3, with default settings. All tests weua r
on a minimal environment where only the tested program apd
essential services were running. We used the standard ympi
and libraries available on this distribution (namely g+38.2,
libxml2 2.6.32 for document parsing and OCaml 3.11.0). .
Qizx/DB: We used version 3.0 of Qizx/DB engine (fref@renthesis structure, as well as the tag structure. Setoad
edition), running on top of the 64-bit version of the JymMFM-Index encoding the text collection. Third, the auxiiar
(with the- ser ver flag set as recommended in the Qizx uséfXt representation allowing fast extraction of text corte
manual). The maximal amount of memory of the JVM set !t iS easy to determine from the query which parts of
to the maximal amount of physical memory (using thénx  the index are needed in order to solve it, and thus load
flag). We also used the flagr of the Qizx/DB command Only those into main memory. For instance, if a query only
line interface, which allows us to re-run the same queipvolves tree navigation, then having the FM-Index in meynor
without restarting the whole program (this ensures that tfig Unnecessary. On the other hand, if we are interested in
JVM's garbage collector and thread machinery do not impa¥g'y Selective text-oriented queries, then only the tred pa
the performances). We used the timing provided by QiZnd FM-Index are needed (both for counting and serializing
debugging flags, and reported tiserialization time(which the results). In this case, serialization is a bit slowere(to
actually includes the materialization of the results in rogm the Cost of text extraction from the FM-Index) but remains
and the serialization). acceptable since the number of results is low.
MonetDB/XQuery: We used version Feb2009-SP2 of Figure 3 reports the construction time and memory con-
MonetDB, and in particular, version 4.28.4 of MonetDB#uUMmption of the indexing process, the loading time from disk
server and version 0.28.4 of the XQuery modyathfindej. into main memory of a constructed index and a comparison
We used the timing reported by the t* flag of MonetDB between the size of the original document and the size of our

client program,cl i ent . We kept the materialization time in-memory structures. For these indexes, a sampling factor
and the serialization time separated. [ = 64 (cf. Section Ill) was chosen. It should be noted that
Running times and memory reportingfor each query, the size of the tree index plus the size of the FM-index is
we kept the best of five runs. For Qizx/DB, each individua/ways less than the size of the original document.
run consists of two repeated runs (* 2”), the second one It should be noted that aIthough Ioading time is acceptable,
being always faster. For MonetDB, before each batch of fife dominates query answering time. This is however not a
runs, the server was exited properly and restarted. We éedlu Problem for the use case we have targeted: a main memory
from the running times the time used for loading the indetuery engine where the same large document is queried many
into main memory (based on the engines timing reports). \Wiges. As mentioned in the Introduction, systems such as
monitored the memory theesident set sizef each process, MonetDB load their indexes only partially; this gives super
which correspond to the amount of process memory actuaR¢rformance in a cold-cache scenario than our system.
mapped in physical memory. For MonetDB, we kept track Tree Queries

of the memory usage of both server and client. The peak ofW benchmarked t . ing th . . .
memory reported was the maximum of the sum of client’s, € benchmarked lree queries using the quernes given In

memory plus server's memory use, at the same instant. Fig. 4. Queries QOl_ to Q11 were taken from the XPathMark
For the tests where serialization was involved, we segdliz benchmark [34], derived T‘rom the XM"ark XQuery _benchr_nark
to the /dev/nul | device (that is, all the results weredSuite. Q12 to Q16 are “crash tests” that are either simple

discarded without causing any output operation). (Q12 selectg only _the root since it always has at least one
descendant in our files) or generate the same amount ofgesult

B. Indexing but with various intermediate result sizes. For this experit
Our implementation features a versatile index. It is dididewe used XMark documents of size 116MB and 1GB. In the
into three parts. First, the tree representation compoééiieo cases of MonetDB and Qizx, the files were indexed using

Fig. 3. Indexing of XMark documents




QO1 /site/regions components of SXSI contribute to the efficient evaluation
Q02 /site/closechuctions model. First, queries Q01 to Q06 —which are fully qualified
Q03 /site/regions/europe/item/mailbox/mail/text/keyd/ paths— illustrate the sheer speed of the tree structure and
Q04 /site/closeductions/closegwction/annotation/description/ in particular the efficiency of its basic operations (such as
parlistlistitem  irstChild and NextSibling, which are used for tiodi | d

QO5 /site/closeductions/closeguction/annotation/description/ __. . . .
parlist/listitem/parlist/listitem/*//keyword axis), as well as the efficient execution scheme provided by

Q06 /site/regions/*/item the automaton. Query Q07 to Q11 illustrate the impact of the
Q07 /Nistitem//keyword jumping. Moreover, it shows that filters do not impact the
Q08 /site/regions/*/item//keyword execution speed: the conditions they express are effigientl
Q09 /site/regions/*/person[ address and (phone or hom&pAg checked by the formula evaluation procedure. Finally, Q12
Q10 /listiteml.//keyword and //emph}//parlist ; to Q16 illustrate the robustness of our automata model. In-
Q11 /site/regions/*/item[ mailbox/mail/date J/mailboxail . . ) o )
Q12 /[ descendant::* | deed while such queries might seem unrealistic, the good
Q13 /I* performances that we obtain are only the consequence of
Q14 /i1 using an automata model, which factors in its states all the

Q15 /I*II11+l1*

necessary computation and thus do not materialize unneeded
QL6 /I*II*I*II*I*I*I*[[* Y P

intermediate results. This, coupled together with the cachp
Fig. 4. Tree oriented queries dynamic set of Section IV-D, allows us to keep a very low
memory footprint even when the query returns a lot of results
or that each step generates a lot of intermediate results (cf
Fig. 6).

Peak Memory Use (MB) (Count queries) PRI : ) )
BSPLIC L\ It is well-known that MonetDB’s policy is to use as much
230 0 memory as available to answer queries efficiently and to
200 T I I i i I I preserve memory only if there is not enough physical memory
150 I I I I I i available. Our goal by providing memory use experiment
100 — I was not to argue that we would use less memory than e.g.
50 TITITITITITIﬂT ﬂ—[ - I MonetDB but rather to show that even though we remain mem-
pliNINININININEE T SINIRINiNInIE ory conscious, we can outperform engines using a “greedier”
PSP ELS R PFPFFFTFS memory policy.
Peak Memory Use (MB) (w. materialization and serialization) PO .
Lo0o VYA D. Text Queries
800 . We tested the text capabilities of our XPath engine against
600 B the most advanced text oriented features of other query en-
gines.
400 B Qizx/DB: We used the newly introduceBull-Text ex-
200 ﬂ. '1' I-I Ii rI ﬁ |1I Ii Ii ﬂl I> — i i tension of XQuery available in Qizx/DB v. 3.0. We tried to
o AN NN NN NN NN NN NN NN N W NN RN RN RN NN write queries as efficiently as possible while preserving th
IS FPES PP IS same semantics as our original queries. The query we used
W sxsi [ Monetbe M Qizx/DB always gave better results than their pure XPath countefpar

particular, we used thét cont ai ns text predicate [22] im-
plemented by Qizx/DB. Thé&t cont ai ns predicate allows
one to express not onlgontainslike queries but also Boolean
operations on text predicates, regular expression majicrial

so on. It is more efficient than the standardnt ai ns. In

the default settings. Fig. 5 reports the running times fahboparticular we used regular expression matching instead of
counting and materialization (construction of a result iset of the st art s-wi t h andends- wi t h operators since the
memory) and serialization (the output of a result set). Agatter were slower in our experiments.

previously mentioned, since Qizx interleaves serial@a@nd MonetDB: MonetDB supports some full-text capabilities
materialization, therefore the timing we report includetbdn  through the use of the PF/Tijah text index ( [35]). However,
this table, we marked iibold font the lowest materialization this index only supports a complebout operator, similar to
time for a given query and we_underlinéile materialization cont ai ns but returningrankedresults by order of relevance.
and serialization time whose sum was the lowest (or in OthR[though its semantics does not exacﬂy match the one of
words underlined numbers correspond to the lowest overglynt ai ns, its execution is often faster while providing richer

Fig. 6. Peak memory use of the three engines (116 MB XMark file

~

execution time, excluding index loading). results. We measured MonetDB timings both for standard
We report in Fig. 6 the peak memory usage for each queiPath operator andbout .
for the 116MB document. Experiments were made on a 122MB Medline file. This

From the results of Fig. 5, we see how the differerflle contains bibliographic information about life sciesce



Q14 | Q15 [ Q16 |

| [ Q01 [ Q02 ] Q03 ] Q04 [ Q05 Q06 | Q07 [ Q08 [ Q09| Q10 [ Q11 | Q12 | Q13
116 MB Document, counting

SXSI 1 1 14 16 24 12 36 31 5 70 34 1 309 309 | 313 | 330
MonetDB 7 7 28 24 40 16 24 30 87 61 60 183 75 239 | 597 | 957
Qizx 1 1 26 29 31 17 19 39 48 109 | 158 1 2090 | 8804 | 28005 34800
116 MB Document, materializing and serializing
SXsI 1 1 15 21 26 | 120 | 64 65 5 83 52 1 974 | 975 | 987 | 465
198 66 7 36 7 256 | 74 8 | 01| 43 96 | 566 | 5847 | 5295 | 4076 | 573
MonetDB 7 7 28 27 40 16 25 25 29 88 60 179 71 238 591 | 966
672 208 10 76 10 671 90 81 0.1 | 104 | 181 | 1653 | 10023 | 8288 | 4959 | 667
Qizx 3153 | 1260 65 567 103 | 3487 | 1029 | 307 | 50 991 | 1179 | 8387 | 45157 | 44264| 8181 | 21680
1 GB Document, counting
SXSI 2 2 107 149 207 79 665 | 342 5 990 | 317 2 4376 | 4371 | 4382 | 4500
MonetDB 8 8 519 576 597 | 1557 | 3383 | 1623 | 1557 | 3719 | 1799 | 16274| 7779 | 25493| 60555| 77337
Qizx 1 1 185 135 230 45 101 | 302 | 291 | 185 | 186 14 17368 | ++ ++ ++
1 GB Document, materializing and serializing
SXSI 2 2 140 238 256 | 1110 | 1654 | 771 5 1372 | 543 2 15246 | 15254 15461| 6567
1920 | 637 74 359 69 | 2488 | 727 | 835 | 0.1 | 411 | 927 | 5413 | 57880 | 51915 40103| 5662
MonetDB 8 8 587 617 648 | 1554 | 3405 | 1710 | 1600| 3739 | 1810 | 18203 * * * 80394
20999| 200770| 22586| 158548| 37469| 11740| 53067| 16360| 0.1 | 43688| 16882| 26858 * * * 31818
Qizx 29998| 9363 | 368 | 4517 | 417 [ 29543] 9061 | 1989 | 317 | 8452 | 9424 | 74843| 414086] ** *ok Hok

++: Running time exceeded 20 minutes x: MonetDB server ran out of memory. *x: Qizx/DB ran out of memory.
We mark inbold face the fastest query execution time and we undertime fastest execution and serialization time.

Fig. 5. Running time for the tree based queries (in millisets)

T1 //MedlineCitation//*/text()[contains( ., "brain”)] | [ TL[T2[T3[ T4[T5[T6[ T7 [T8[T9|
T2 //MedlineCitation//Country/text()[ Text query 69 [0.1]0.1] 0.20.2]0.00 23 [0.07]0.01]
contains(., "AUSTRALIA")] Automaton run | 27 | 7| 4 [ 0.9]1.2] 18| 110] 95| 2.5
T3  //Country/text()[ contains(. , "AUSTRALIA")] SXSI: Total 96 [7.1]4.1] 1.1|1.4] 18] 133]95.1] 2.5
T4 [Pitext()[ contains( . , "19307)] MonetDB 1769 72| 811203301 180| 256 473| 505
T5 //IMedlineCitation//*/text()[ contains( . , "1930") ] MonetDBl/tijah |336(|118117252| - | - | - | - | -
T6 //MedlineCitation/Article/AuthorList/Author/ Qizx/DB 108| 10| 6 | 99 [107/244| 259(24691397
LastName/text()[startswith(., "Bar”)] [#ofresults  [149343§439 32 [ 32]680]69356685 36 |
T7 //MedlineCitation[ MedlineJournallnfo/ Peak Memory Use (MB)
Country/text()[ ends-with(.,"LAND")]]
T8 //*[ Year = "2001"]
T9 /I LastName = "Nguyen”]
Fig. 7. Text oriented queries

T4 T5 T6 T7 T8 T9

and biomedical publications. This test file featured 5,139, Fhig- 8. Running times (in ms) and memory consumption (in Mé&) f
text elements, for a total amount of 95MB of text contenf, e textoriented queries
Fig. 7 shows the text queries we tested. We used count
queries for both MonetDB and Qizx —enclosing the query
in anf n: count () predicate— while in our implementation L .
we ran the queries in “materialization” mode but without _(Automaton rurine in the_table of Fig. 8)

serializing the output. The table in Fig. 8 summarizes tH§S it is clear from the experiments the bottom-up strategy
running times for each query. As we target very selective teRaYS Off. The only down-side of this approach is that the
queries, we also give, for each query, the number of resuftdtomaton uses Parent moves, which are less efficient than

it returned. Since for these queries our automata worked fiffStChild and NextSibling. This is clear in queries T7 and
“hottom-up” mode, we detail the two following operations: 18 Where the increase in number of results makes the relative

slowness of the automata more visible. However our evatuato
« Calling the text predicatglobally on the text collection, || outperforms the other engines even in those cases.
thus retrieving all the probable matches of the quésx(
queryline in the table of Fig. 8) E. Remarks
« Running the automaton bottom up from the set of proba- We also compared with Tauro [3]. Yet, as it uses a tailored
ble matches to keep those satisfying the path expressmunery language, we could not produce comparable results.
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