Rotation and Lighting Invariant Template
Matching *

Kimmo Fredriksson ®!, Veli Mikinen "2, Gonzalo Navarro ¢?

& Department of Computer Science and Statistics, University of Joensuu, Finland
b Department of Computer Science, University of Helsinki, Finland

¢Department of Computer Science, University of Chile

Abstract

We address the problem of searching for a two-dimensional pattern in a two-dimen-
sional text (or image), such that the pattern can be found even if it appears ro-
tated and it is brighter or darker than its occurrence. Furthermore, we consider
approximate matching under several tolerance models. We obtain algorithms that
are almost optimal both in the worst and the average cases simultaneously. The
complexities we obtain are very close to the best current results for the case where
only rotations, but not lighting invariance, are supported. These are the first results
for this problem under a combinatorial approach.

Key words: approximate pattern matching, rotation invariance, lighting
invariance, transposition invariance

* A short version of this paper appeared in Proc. LATIN 2004, pp. 39-48, LNCS
2976.

Email addresses: kfredrik@cs. joensuu.fi (Kimmo Fredriksson),
vmakinen@cs.helsinki.fi (Veli Mékinen), gnavarro@dcc.uchile.cl (Gonzalo
Navarro).

1 Supported by the Academy of Finland.

2 Part of this work was done while visiting University of Chile under a researcher
exchange grant from University of Helsinki.

3 Funded by Millennium Nucleus Center for Web Research, Grant P04-067-F, Mide-
plan, Chile.

Preprint submitted to Elsevier 6 March 2007

1 Introduction

We consider the problem of finding the occurrences of a two-dimensional pat-
tern of size m x m cells in a two-dimensional text of size n x n cells, when
all possible rotations of the pattern are allowed and also the pattern and the
text may have differences in brightness. This stands for rotation and lighting
wmvariant template matching. Text and pattern are seen as images formed by
cells, each of which has a gray level value, also called a color.

Template matching has numerous important applications from science to mul-
timedia, for example in image processing, content based information retrieval
from image databases, geographic information systems, and processing of
aerial images, to name a few. In all these cases, we want to find a small
subimage (the pattern) inside a large image (the text) permitting rotations
(a small degree or any). Furthermore, pattern and text may have been pho-
tographed under different lighting conditions, so one may be brighter than the
other.

The traditional approach to this problem [1] is to compute the cross correlation
between each text location and each rotation of the pattern template. This can
be done reasonably efficiently using the Fast Fourier Transform (FFT), requir-
ing time O(Kn?logn) where K is the number of rotations sampled. Typically
K is O(m) in the two-dimensional (2D) case, and O(m?) in the 3D case, which
makes the FF'T approach very slow in practice. In addition, lighting-invariant
features may be defined in order to make the FF'T insensitive to brightness.
Also, in many applications, “close enough” matches of the pattern are also
accepted. To this end, the user may specify, for example, a parameter s such
that matches that have at most x differences with the pattern should be ac-
cepted, or a parameter ¢ such that gray levels differing by no more than 9
are considered equal. The definition of the matching conditions is called the
“matching model” in this paper.

Rotation invariant template matching was first considered from a combina-
torial point of view in [2,3]. Since then, several fast filters have been devel-
oped for diverse matching models [4-9]. These represent large performance
improvements over the FFT-based approach. The worst-case complexity of
the problem was also studied [10,7,9]. However, lighting invariance has not
been considered in this scenario.

On the other hand, transposition invariant string matching was considered in
music retrieval [11,12]. The aim is to search for (one-dimensional) patterns in
texts such that the pattern may match the text after all its characters (notes)
are shifted by some value. The reason is that such an occurrence will sound like
the pattern to a human, albeit in a different scale. In this context, efficient

algorithms for several approximate matching functions were developed [13].
Recently, average-optimal algorithms for several variants of the problem have
appeared [14,15].

We note that transposition invariance becomes lighting invariance when we
replace musical notes by gray levels of cells in an image. This is of course just
a general statement. Not only human perception of light is not linear with the
gray level value, but also lighting involves a non-linear transformation of gray
levels. There exist, however, several well-known techniques to transform the
gray level values to another scale so that perceptual changes due to lighting
conditions become approximately linear in the transformed gray level [16].
Two examples of such techniques are histogram equalization and variance
normalization. In this paper we disregard this aspect and assume that lighting
introduces a constant shift in the gray level values.

The aim of this paper is to enrich the existing algorithms for rotation invari-
ant template matching [7,9] with the techniques developed for transposition
invariance [13-15] so as to obtain rotation and lighting invariant template
matching. It turns out that lighting invariance can be added at very little
extra cost. The key technique exploited is incremental distance computation:
We show that several lighting-invariant distances can be computed incremen-
tally by taking the computation done for the previous rotation into account in
the next rotation angle. This problem cannot be solved by straightforwardly
combining techniques from previous work.

Let us now determine which are reasonable matching models for our case. In
[7,9], some of the models considered were useful only for binary images, a case
where obviously we are not interested in in this paper. We will consider mod-
els that make sense for gray level images. We define three lighting-invariant
distances: Hamming distance dt}’l‘s, which counts how many pattern and text
cells differ by more than &; Mazimum Absolute Differences distance dyfyp,
which is the maximum color difference between pattern and text cells when
up to k outliers are permitted; and Sum of Absolute Differences distance d'é’ZD,
which is the sum of absolute color differences between pattern and text cells

permitting up to s outliers.

We consider two types of cell values. General values means that the cell con-
tents are real numbers, while discrete values means that the cell contents
belong to a range of integers of size 0. Any complexity achieved for general
cell values is valid for discrete cell values as well. Table 1 shows the time
complexities (under the word RAM computation model) of our algorithms for
computing these distances for every possible rotation of a pattern centered at
a fixed text position. We remark that a lower bound to this problem is Q(m?),
and an algorithm whose time complexity matches this lower bound was given
in [7,9] without lighting invariance (see Section 3 for more on lower bounds).

On the other hand, in the integer case it is trivial to obtain O(om?) time by
trying out each possible transposition (i.e., difference among gray levels).

Distance General Discrete

dy m3 logm m3(5 +1)
dyfap | m* (s + (loglogm)?) | m3(k + loglog o)
dgnp | mP(k + (loglogm)?) | m®(x + loglog o)

Table 1
Worst-case time complexities (O(+) omitted) to compute the different distances de-
fined. We give complexities for general and discrete cell values, under the word RAM
model.

We also define three search problems, consisting in finding all the lighting-
invariant rotated occurrences of P in T such that: there are at most x cells
of P differing by more than ¢ from their corresponding text cell (§-matching);
the sum of absolute differences between cells in P and T, except for x outliers,
does not exceed v (vy-matching); and P matches both criteria at the same
time, for a given transposition and set of outliers ((d, v)-matching).

Table 2 shows our worst-case and average-case search complexities (the latter
are valid only for integer cell values independently and uniformly distributed
over their o possible contents). Without transposition invariance the worst
cases are all O(m?3n?), which are optimal [7,9] *. Again, it is trivial to ob-
tain O(om®n?) on integer cell values, by simply trying out every possible
transposition. Algorithms for é-matching with § = 0 (but permitting x out-
liers) and for y-matching with k = 0, without lighting invariance in both
cases, are given in [9] (see also [15]). The respective average complexities are
O(n?(k + log, m)/m?) and O(n*(vy/o + log_ _ m)/m?). Both are average-
optimal [9,15]. Thus our complexities are rather close to be optimal.

2 Definitions

Let T = T[l..m,1..n] and P = P[l..m,1..m| be arrays of unit squares, called
cells, in the (z,y)-plane. Each cell has a value in an alphabet called ¥, some-
times called its gray level or its color. Two types of alphabets are of inter-
est: general alphabets assume ¥ C R; while discrete alphabets assume finite
¥ C Z and max(¥) — min(X) = o. The corners of the cell for Ti,j] are

4 Recently, an algorithm whose worst case scanning time is O(m?n?) was obtained
[17]. The algorithm is for exact matching only, and it is based on linearizing all
the pattern rotations, and then relying on one-dimensional linear time dictionary
matching algorithms. However, if all the occurrences at their angles must be re-
ported, any algorithm still requires Q(m>®n?) time in the worst case.

Problem Worst case (general) Worst case (discrete)

d-matching m3n?logm m3n2(§ +1)
m3n?(k + (loglog m)?) m3n?(xk + loglog o)
y-matching | m3n?(xk + (loglogm)?) m3n?(k + log log o)
(0,v)-matching m*n?((k +1),/7 + loglog o)
Problem Average case (discrete)
d-matching ;‘L—z(ﬁ +(1+) log%ﬂ((é +1)m)), if § < &2 and & < mTz
~-matching %(M + (k+1)log - - (v +m)),

if K <m/(2v2) and v/k < om/(2v/2¢)(1 — O(1/0)),
or m/(2v2) < k = O(m?/logm) and
vk/m* < om/(16v/2e)(1 — O(1/0))
~y-matching | 25 (k + (1+ 2 + £)log(om)), if & < m?/8 and v < ma/(8v/2)

(6, 7y)-matching Best of all the above
Table 2
Complexities for different search problems (conditions of applicability for average
cases are simplified).

(t—1,7—1),(i,5—1),(i — 1,7) and (4, 7). The center of the cell for TTi, j] is
(i — 3,7 — 3). The array of cells for pattern P is defined similarly. The center
of the whole pattern P is the center of the cell in the middle of P. Precisely,
assuming for simplicity that m is odd, the center of P is the center of cell
Pl 2

Assume now that P has been moved on top of T" using a rigid motion (transla-
tion and rotation), such that the center of P coincides exactly with the center
of some cell of T' (we call this the center-to-center assumption). The location
of P with respect to T can be uniquely given as ((4,7),6) where (i, 7) is the
cell of T' that matches the center of P, and # is the angle between the z-axis
of T" and the z-axis of P. The (approximate) occurrence between 7' and P
at some location is defined by comparing the values of the cells of T" and P
that overlap. We will use the centers of the cells of T for selecting the com-
parison points. That is, for the pattern at location ((4,7),6), we look which
cells of the pattern cover the centers of the cells of the text, and compare the
corresponding values of those cells. Figure 1 illustrates.

More precisely, we define a matching function M from the cells of T" to the
cells of P as follows. Assume that P is at location ((4,7),6). For each cell
T|r,s] of T whose center belongs to the area covered by P, let P[r’,s'] be the
cell of P such that the center of T'[r, s] belongs to the area covered by P[r', s'].

y A

00 ; i J ; =

Fig. 1. Each text cell is matched against the pattern cell that covers the center of
the text cell. As a consequence, some pattern cells may have to match several text

cells simultaneously, whereas some others may not have to match any text cell at
all (right).

Then M([r,s]) = [r', s'].

Now consider what happens to M when angle 6 grows continuously, starting
from § = 0. Function M changes only at the values of 6 such that some
cell center of T hits some cell boundary of P. It was shown [2] that this
happens O(m?) times as P rotates full 27 radians (or within any fixed angle).
A lower bound of Q(m?) was also proved [10]. Hence there are ©(m?) relevant
orientations of P to be checked. The set of angles for 0 < 0 < 7/2 is

h+1 :
— — arcsin

. J .
A:{/@,Tr/2—ﬁ, /QZELI'CSIII\/fJ2 W7
i=1,2,...,m/2];7=0,1,...,m/2];h=0,1,..., [\/i®+j2]}.

By symmetry, the set of possible angles 6, 0 < 6 < 27, is
A=A U (A+7/2) U (A+7) U (A+371/2) ,
where A + cm is the set of angles in A with cr added to each angle.

Furthermore, pattern P matches at location ((¢, j), 8) with lighting invariance
if there is some integer transposition ¢ such that T'[r,s] + ¢t = P(M|r, s]) for
all [r, s] covered by P.

Once the position and rotation ((7,7),6) of P in T define the matching func-
tion, we can compute different kinds of distances between the pattern and
the text. Lighting-invariant versions of the distances choose the transposition
minimizing the basic distance. The following distances are interesting for gray
level images.

Hamming Distance (H): The number of times T'[r, s|+t # P[r’, s'] occurs,

over all the covered cells of T, that is

du(i,7,0,t)=> if T[r,s] + t # P(M]r, s]) then 1 else 0

r,S

dy (i, j,0) =min du(i, j, 0,1)

This can be extended to distance d? and its transposition-invariant ver-
sion d;f, where colors must differ by more than ¢ in order to be considered
different, that is, T'[r, s] +t & [P(M]r, s]) — 6, P(M]r, s]) + 0].

Maximum Absolute Difference (M AD): The maximum value of |T'[r, s|+
t — P[r’,]| over all the covered cells of T', that is,

dMAD(i>j> 9>t) :H}aSX |T[T7 S] +1t— P(M[T> S])|

dypan (i, 5,6) = min dyap (i j, 0, 1)

This can be extended to distance dj;,p and its transposition-invariant
version dyfip, 50 that s pattern cells are freed from matching the text.
Then the problem is to compute the MAD distance with the best choice of
x outliers that are not included in the maximum.

Sum of Absolute Differences (SAD): The sum of the |T'[r, s|+t—Pr', s']|
values over all the covered cells of T, that is,

dSAD(iv.j797t) :Z ‘T[Tv S] +1t— P(M[T7 5])|

dsap(i, 4,0) = mtin dsap(i,7,0,1)

Similarly, this distance can be extended to d§,; and its transposition-
. . . t .
invariant version dgjp, where r cells can be removed from the summation.

Once the above distances are defined, we can define the following search prob-
lems:

d-Matching: Report triples (i, j, 0) such that dizp(4,7,60) < 0. A tolerance
% can be permitted, so that we only require dyfyp (i, j,6) < J. Observe that
this condition is the same as di’ (i, j,0) < k.

v-Matching: Report triples (i, j,6) such that di,p(4,7,0) < 7. Again, per-
mitting tolerance x means requiring dgap, (i, 7,6) < 7.

(0,v)-Matching: Report triples (i,7,6) such that dyap(i,7,6,t) < ¢ and
dsap (i, j,0,t) < v for some t. Tolerance x can be handled similarly, but
the k excluded cells must be the same for both distances.

Figure 2 illustrates some cases.

(0.0

(b)

Fig. 2. Some examples of matches. In (a) we show a 3 x 3 pattern over three gray
levels, a 5 x 5 text, and a rotated occurrence. Note that every text center covered
by some pattern cell matches the color of the corresponding pattern cell, with the
exception of the text cell in the third column and second row (counting from below).
This text cell is light gray and is aligned with a white pattern cell. This alignment
will be declared as an occurrence, for example, if we permit Hamming distance 1,
as dy(i,7,0,0) = 1. In (b) we illustrate matching with lighting invariance using four
gray levels. The matching cells are the same as in (a) provided we shift all the gray
levels of the text cells by t = 1 (assuming colors go from black = 0 to white = 3).
That is, du(4,7,6,1) = diy(i,5,0) = 1.

3 Efficient Worst-Case Algorithms

In [10] it was shown that the worst case lower bound for the problem of the
two dimensional pattern matching allowing rotations is Q(n?m?). A simple
way to achieve this lower bound for any of the distances under consideration
(without lighting invariance) is shown in [7,9].

The idea is that we check each possible text center, one by one. So we have to
pay O(m?) per text center to achieve the desired complexity. What we do is
to compute the distance we want for each possible rotation, by reusing most
of the work done for the previous rotation. Once the distances are computed,
it is easy to report the triples (i, 7, 8) where these values are smaller than the
given thresholds (d and/or «y). Only distances dy (with § = 0) and dsap (with
k = 0) were considered in [7,9].

Assume that, when computing the set of angles A = (01, (2, ...), we also
sort the angles so that 3; < [;11, and associate with each angle §; the set C;
containing the corresponding cell centers that hit a cell boundary at ;. This
is done in a precomputation step that depends only on m, not on P or T.
Hence we can evaluate the distance functions (such as dgap) incrementally for
successive rotations of P. That is, assume that the distance has been evaluated
for (3;, then to evaluate it for rotation (3;,1 it suffices to re-evaluate the cells
restricted to the set C;. This is repeated for each # € A. Therefore, the total
number of cell (re)evaluations when P is centered at some fixed position in 7T,
for all possible angles, is 3°, |C;|. This is O(m?) because each fixed cell center of
T, covered by P, can belong to at most O(m) different C; sets. To see this, note
that when P is rotated the whole angle 27, any cell of P traverses through
O(m) cells of T It is easy to update distances dy and dsap in constant time
upon a cell reevaluation, thus the overall cost is O(n?m?).

If we want to add lighting invariance to the above scheme, a naive approach
is to run the algorithm for every possible transposition, for a total cost of
O(n*m?30) on discrete alphabets. In case of a general alphabet there are O(m?)
relevant transpositions at each rotation (that is, each pattern cell can be made
to match its corresponding text cell). Hence the cost raises to O(n?*m®).

In order to do better, we must be able to compute the optimal transposition
for the initial angle and then maintain it when some characters of the text
change (because the pattern has been aligned over a different text cell). If
we take f(m) time to do this, then our lighting invariant algorithm becomes
worst-case time O(n*m3f(m)). In the following we show how we can achieve
this for each of the distances under consideration. Additionally, some of our
results give relevant complexities for the case of no transpositions, for example
for dyap distance.

This technique can be inserted into the filters that we present later in order
to make them near optimal in the worst case. All our filtration algorithms are
based on discarding most of the possible (i, 7, 0) locations and leaving a few of
them to be verified. If we avoid verifying a given text center more than once,
then we can apply our verification technique and ensure that, overall, we do
not pay more than O(n*m?f(m)).

3.1 Distance d% and §-Matching

In this section we show how to compute distance d%’é between a pattern and
a text center in time O((6 + 1)m?), as well as to perform d-matching with
tolerance r in overall time O((d 4+ 1)m3n?), on integer alphabets of size o. On
general alphabets, we show how to compute distances in O(m?logm) time,

and how to perform d-matching in O(n*m3logm) time. Note that the search
times are independent on k.

As proved in [13], the optimal transposition for Hamming distance is obtained
as follows. Each cell P[r’,s'], aligned to T'[r, s], votes for a range of transposi-
tions [P[r', s'| = T'|r,s] — 9, P[r', s'| — T'[r, s] + 9], for which it would match. If
a transposition receives v votes, then its Hamming distance is m? — v. Hence,
the transposition that receives most votes is the one yielding distance d;{"s. The
problem is equivalent to the so-called point of mazximum overlap in the liter-
ature. We are in particular interested in the dynamic version of the problem,
and give different solutions for integer and general alphabets.

3.1.1 Integer Alphabet

The algorithm in [13], for one-dimensional transposition invariant string match-
ing, obtains O(o + |P|) time on integer alphabet, by bucket-sorting the range
extremes and then traversing them linearly so as to find the most voted trans-
position (a counter is incremented when a range starts and decremented when
it finishes).

We will use a different method to find, in O((§+1)m?) time, the optimal trans-
position for the first rotation angle. This method will enable us to recompute,
in O(d + 1) time, the optimal transposition once some text cell T'[r, s] changes
its value (due to a small change in rotation angle). The net effect of such a
change is that the range of transpositions given by the old cell value loses a
vote and a new range gains a vote.

We use the fact that the alphabet is an integer range, so there are at most 20—1
possible transpositions. An array .S; of size 20 —1 tells the number of votes each
transposition has. There are also m? + 1 counters L;, 0 < i < m?, maintaining
the number of transpositions that currently have ¢ votes. Hence, when a range
of transpositions loses/gains one vote, at most 20 4+ 1 transpositions are moved
to refer to the lower/upper counter (that is, if ¢ loses/gains one vote and
Sy = i, then S, is decremented /incremented, L; is decremented and L; 1/L; 1
incremented). We need to keep control of which is the highest-numbered non-
zero L; counter, which is easily done in constant time per operation because
transpositions move from one counter to the next/previous.

Arrays S and L are initialized in constant time [18, Section III.8.1], so that
we assume that all uninitialized S; values are zero, and all L; values are also
zero except for Ly = 20 — 1. Then, we spend O((§ + 1)m?) time to process
the votes of all the cells in angle # = 0, and then process O(d + 1) changes
for each cell that changes as we rotate P. Overall, when we consider all the
O(m?) cell changes, the total complexity is O((d + 1)m?).

10

Thus the overall complexity to compute distance d}{"s between a pattern and
a text center, considering all possible rotations and transpositions, is O((d +
1)m?). 6-Matching can be done simply by computing dt}’fS distances at each
text center and reporting triples (i,7,0) where dﬁ’é(i, J,0) < k. The overall
search time is thus O((§ + 1)n?m3).

3.1.2 General Alphabet

Our problem is a slight variant of the dynamic point of maximum overlap of
a set of intervals. Given a multiset S of one-dimensional closed ranges, we
are interested in obtaining a point p that is included in most ranges, that is
maxvote(S) = max, [{[(,r] € S, ¢ < p < r}|. Each update consists of a new
range that is added to or an old range that is deleted from S, and we must
return maxvote(S) after each update.

Given an algorithm for this problem, we can easily compute d;f from one
rotation angle to the next. Our multiset is S = {[P(M]r,s]) — Tlr,s] —
0, P(M[r,s]) —T'[r, s] +6]}. From one rotation angle to the next, some M]r, s]
changes its value and thus we have to delete the old range and add the
new one, after which maxvote(.S) is requested in order to compute distance
A%’ = m? — maxvote(S) for the new angle.

The problem of maintaining the point of maximum overlap upon interval in-
sertions and deletions can be found, for example, in [19, Problem 14-1]. We
present here a solution that differs from the one suggested in there and thus
can be of independent interest, yet it achieves the same O(log|S|) time per
operation. This immediately gives an O(m?logm) time algorithm for comput-
ing d‘ﬁé between a pattern and a text center, considering all possible rotations
and transpositions, as well as an O(log(m)m3n?) worst-case time solution for

d-matching with tolerance s (the complexity is independent of k).

First, notice that the point that gives maxvote(S) can always be chosen among
the endpoints of ranges in S. We store each endpoint e in a balanced binary
search tree with key e. Let us denote the leaf whose key is e simply by (leaf)
e. With each endpoint e we associate a value vote(e) (stored in leaf €) that
gives the number |{[(,7], ¢ < e < [l,r] € S}|, where the set is considered as
a multiset (same ranges can have multiple occurrences). In each internal node
v, value maxvote(v) gives the maximum of the vote(e) values of the leaves e in
its subtree. After all the endpoints e are added and the values vote(e) in the
leaves and values maxvote(v) in the internal nodes are computed, the static
case is solved by taking the value maxvote(root) = maxvote(S) in the root
node of the tree.

A straightforward way of generalizing the above approach to the dynamic

11

case would be to recompute all values vote(e) that are affected by the inser-
tion/deletion of a range. This would, however, take O(|S|) time in the worst
case. To get a faster algorithm, we only store the changes of the votes in the
roots of certain subtrees so that vote(e) for any leaf e can be computed by
summing up the changes from the root to the leaf e.

For now on, we refer to vote(e) and maxvote(v) as virtual values, and imple-
ment them with counters diff(v) and values maxdiff(v). Counters diff(v) are
defined implicitly so that for all leaves of the tree it holds

vote(e) = > diff(v), (1)

vepath(root,e)

where path(root, e) is the set of nodes in the path from the root to a leaf e
(including e). We note that there are several possible ways to choose diff(v)
values so that they satisfy the definition. Values maxdiff(v) are defined as the
maximum sum of differences across a path from a child of v to a leaf. It is
easy to see that

maxdiff(v) = max(maxdiff(v.left) + diff(v.left),

(2)
maxdiff(v.right) + diff(v.right)),

where v.left and wv.right are the left and right child of v, respectively. In
particular, maxdiff(e) = 0 for any leaf node e. One also easily notices that

maxvote(v) = maxdiff(v) + > diff(v"),

v’ €path(root,v)

which also gives as a special case Equation (1) once we notice that maxvote(e) =
vote(e) for each leaf node e.

Our goal is to maintain diff() and maxdiff() values correctly during insertions
and deletions. We have three different subproblems to consider: (i) How to
compute the value diff(e) for a new endpoint of a range, (i) how to update
the values of diff() and maxdiff() when a range is inserted/deleted, and (i)
how to update the values during rotations to rebalance the tree. An insertion
involves subproblems (i—iii), while a deletion involves only (i) and (7iz).

Problem (i) is handled by storing in each leaf an additional counter end(e)
that gives the number of ranges whose rightmost endpoint is e. Assume that
this value is computed for all existing leaves. When we insert a new endpoint
e, we either find a leaf labeled e or otherwise there is a leaf ¢ after which e
is inserted. In the first case vote(e) remains the same and in the latter case
vote(e) = vote(e’) — end(€’), because e is included in the same ranges as €

12

except those that end at €’. Notice also that vote(e) = 0 in the degenerate case
when e is the leftmost leaf. To make vote(e) = 3=, cpath(root,e) diff(v'), we define
diff(e) = vote(e) — X epath(root,v) diff(v"), where v is the parent of e. Once the
maxdiff() values are updated in the path from e to the root, we have solved
the subproblem in O(log|S|) time. Note that the +1 vote induced by the new
range whose endpoint is e has not yet been considered, as it is handled as
subproblem (7).

Let us then consider subproblem (ii). Recall the one-dimensional range search
on a balanced binary search tree (see, e.g., [20, Section 5.1]). We use the fact
that one can find in O(log|S|) time the minimal set of nodes F' such that
the range [¢, 7] of S is partitioned by F: The subtrees starting at nodes of F
contain all the points in [¢,7]N.S and only those. It follows that when inserting
(deleting) a range [¢, 7], we can set diff(v) = diff(v) + 1 (diff(v) = diff(v) — 1)
at each v € F. This is because all the values vote(e) in these subtrees change
by 1 (including leaves ¢ and 7). Note that some diff(v) values may go below
zero, but this does not affect correctness.

To keep also the maxdiff() values correctly updated, it is enough to recompute
the values in the nodes in the paths from each v € F' to the root using
Equation (2); other values are not affected by the insertion/deletion of the
range [(,r]. The overall number of nodes that need updating is O(log|S|).
To see this, note that the nodes in F are either left children of a unique
rightwards path, or right children of a unique leftwards path. Therefore the
set of ancestors of F' is of size O(log|S5]).

Finally, let us consider subproblem (ii7). Counters diff(v) are affected by tree
rotations, but in case a tree rotation involving e.g. subtrees v.left, v.right.left
and v.right.right takes place, values diff(v) and diff(v.right) can be “pushed”
down to the roots of the affected subtrees, and hence they become zero. Then
the tree rotation can be carried out without further considerations. Note that
here we are taking advantage of the fact that the diff(v) values need not be
unique as long as we maintain their path sums. Subtree maxima are easily
maintained through tree rotations.

Hence, each insertion/deletion takes O(log|S|) time, and

maxvote(S) = maxdiff(root) + diff(root)

is readily available in the root node.

13

3.2 Distance d5},,, and 6-Matching

In this section we show how to compute distance dyfy, between a pattern and
a text center in time O((x + (loglogm)?)m?) on general alphabets. On integer
alphabets we can also obtain O((k + loglogo)m?®). These methods yield a
d-matching algorithm alternative to that of Section 3.1, needing overall time
O((k+ (loglog m)?)n?*m3) on general alphabets and O((x + loglog o)n*m?) on
integer alphabets. This time the complexities are sensitive to k.

Let us start with x = 0. As proved in [13], the optimal transposition for
distance dj;ap is obtained as follows. Each cell P[r',s], aligned to Tr, s],
votes for transposition ¢ = Plr’, s'| — Tr, s]. Then, the optimal transposition
is the average between the minimum and maximum votes. The corresponding
diap distance is the difference of maximum minus minimum, divided by two.
Hence an O(|P|) algorithm is immediate.

In our case, we need O(m?) time to obtain the optimal transposition for the
first angle, # = 0. Then, in order to address changes of text characters (be-
cause, due to angle changes, the pattern cell was aligned to a different text
cell), we must be able to maintain the minimum and maximum votes. Ev-
ery time a text character changes, a vote disappears and a new vote appears.
This can be solved with min- and max-priority queues supporting insertion,
deletion, and min/max operations.

In the case of integer alphabets, the transpositions belong to a universe of
size O(c¢). Thus van Emde Boas priority queues [21,22] permit implementing
each operation in time O(loglog o), using O(o) space. On general alphabets,
it is possible to obtain O((loglogm)?) time per operation on the word RAM
model [23] °. Hence di;, distance between a pattern and a text center can be
computed in O(m?loglogo) time on integer alphabets or O(m3(loglogm)?)
time on general alphabets, for all possible rotations and transpositions.

In order to account for up to x outliers, it was shown [13] that it is optimal to
choose them from the pairs that vote for maximum or minimum transpositions.
That is, if all the votes are sorted into a list ¢, . . . t,,2, then distance dyyp is the
minimum among distances d};,, computed in sets t1...tpn2 x, to. . tp2_ i1,
and so on until ¢, ...%,,2. Moreover, the optimum transposition of the i-th
value of this list is simply the average of maximum and minimum, that is,

5 This solution is in ACY. If we wish to stick to a weaker computation model, we can
still solve the problem using a balanced search tree in O(log(m?)) = O(logm) time.
Note in passing that this weaker computation model is assumed for the results in
[13]. In particular, the O(m logm) complexity for d;f and O(k log k) terms for d;\’/&D
and dtS’ZD in [13] correspond to sorting, and they become respectively O(m loglogm)
and O(kloglog k) on the stronger model [24].

14

(th—n—l—i-i + tz)/2

So our algorithm for dyfyp is as follows. We maintain plain sorted arrays S
and L with the x + 1 smallest and largest votes, respectively. All the other
votes not in SU L are maintained in a priority queue). Upon an insertion, we
determine in constant time which of the three cases apply: (i) the element must
be inserted into S and the largest element of S must be moved to @, (ii) the
element must be inserted into L and the smallest element of L must be moved
to @, (i27) the element must be inserted into (). Similarly, upon a deletion we
might have to delete from S or L (in which case the minimum or maximum
of must be moved to S or L), or we might have just to delete the element
from Q. In any case the cost of the insertion/deletion is O(k + loglogo) on
integer alphabets and O(x + (loglogm)?) on general alphabets.

After each cell change (deletion plus insertion), we retraverse the s + 1 pairs
in S and L and recompute the minimum among the ¢,,2_,._1,; —t; differences.
Overall, the process takes O((k+loglog o)m?) on integer alphabets and O((k+
(loglogm)?*)m?3) on general alphabets. Note that on integer alphabets the
result is interesting only if x < o, as otherwise a trivial algorithm obtains
O(om?) time, by just trying out each transposition.

The d-matching problem can be alternatively solved by computing this dis-
tance for every text cell, and reporting triples (i, j,#) where dyfsp (i, 5, 0) < 4.
This gives an alternative O((k + loglog o)n?m?) or O((k + (loglog m)?)n?*m?)
time algorithm to solve the J-matching problem.

Note, on the other hand, that a similar algorithm solves the problem of com-
puting dy;sp and doing 6-matching, without lighting invariance, with the same
complexity. Instead of votes, we maintain all the |P[r’, s'] — T'[r, s]| values in
a max-priority queue and find the smallest maximum across all rotations.
Outliers are handled similarly by using an array L of largest differences.

3.8 Distance d%, and v-Matching

In this section we show how to compute distance dgip, between a pattern and a
text center within the same time complexities obtained for dyfy, in Section 3.2.
This in turn yields a v-matching algorithm with the same complexity of the
d-matching algorithm of Section 3.2.

Let us first consider case k = 0. This corresponds to the SAD model of [13],
where it was shown that, if we collect votes P[r’, s'| — T'[r, s], then the median
vote (either one if |P] is even) is the transposition that yields distance df,p.
The actual distance can be obtained by using the formula for dsap. Hence an
O(|P|) time algorithm was immediate.

15

In this case we have to pay O(m?) to compute the distance for the first rotation
(0 = 0), and then have to maintain the median transposition and current
distance when some text cell changes its value due to a small rotation.

We maintain a max-priority queue S and a min-priority queue L. The first
contains the smallest [m?/2] votes and the second the largest |m?/2] votes.
Then the median vote is always the maximum element in S.

Each time a vote changes because a pattern cell aligns to a new text cell, we
must remove the old vote and insert the new one. In either case, we determine
which priority queue the insertion and deletion belong to. If they occur at
different halves of the set of votes (that is, one is larger and the other is
smaller than the median), then we must transfer one element from S to L or
vice versa to maintain the invariant on their sizes. This requires a constant
number of priority queue operations.

The distance value df,p itself change upon two events. One event is that
any of the votes changes its value. Given a fixed transposition, it is trivial to
remove the appropriate summand and introduce a new one in the formula for
dsap (Section 2). The other event is that the median position changes from
a transposition in the sorted list to the next or previous. It was shown in
[13] how to modify in constant time distance df,p, in this case. The idea is
very simple: If we move from transposition ¢; to ¢;41, then all the j smallest
|P[r',s'] = T[r,s] —t;| summands of dsap increase their value by t;11 —t; (as
they become |P[r’,s'| — T[r,s] — t;41]), while the m? — j largest summands
decrease by t;1 —t;. Hence distance dsap at the new transposition is the value
at the old transposition plus (25 — m?)(t;j+1 — t;). Thus the distance can be
updated in constant time.

Hence, we can traverse all the rotations in time O(m®loglogc) on integer
alphabets and O(m3(loglogm)?) on general alphabets.

If we want to compute distance ngD, we have again that the optimal values to
free from matching are those voting for minimum or maximum transpositions.
If we remove those values, then the median lies at positions between [m?/2] —
|k/2] and |[m?/2] + [k/2] in the sorted list of votes.

We add a new plain array M holding the x + 1 intermediate votes
trm2/21=|k/2) - - - t|m2/2]+x/2]- The remaining smallest and largest values are
maintained in priority queues S and L, respectively. As in Section 3.2, it
is easy to perform the insertions/deletions in the appropriate set S, M, or L,
and move elements among them to maintain the size invariants.

We need now to maintain all the x + 1 possible median values. Those can be
updated one by one in constant time each, and we can choose the minimum
distance among the x + 1 options. This gives us an O(m?(x + loglog o)) time

16

algorithm to compute dgap, on integer alphabets, and O(m?(x + (loglogm)?))
on general alphabets. In addition, this gives us O((k + loglogo)m3n?) and
O((k + (loglogm)?)m3n?) time algorithms for y-matching. It is a matter of
computing dtS’ZD at each text position and reporting triples (i, j,) such that

ngD(iu% 9) S -
3.4 (9,7v)-Matching with Tolerance k

In this section we show how to perform (4,~)-matching with tolerance x in
time O((k 4 1),/7 + loglog o)n*m?), on integer alphabets. We have no result
for general alphabets.

There are two reasons why solving this problem is not a matter of computing
dyfip and dghp at each text position and reporting triples (i, j,) where both
conditions dyfyp(i,,60) < & and d§ip(i,7,0) < v hold. One is that the trans-
position achieving this must be the same, and the other is that the s outliers
must be the same.

Let us first consider the case k = 0. A simple (4, y)-matching algorithm is as
follows. We run the d-matching algorithm based on df;,, distance, and the
v-matching algorithm based in df,, distance at the same time. Every time
we find a triple (7,7,0) that meets both criteria, we compute the range of
transpositions ¢ such that dyap(i,7,6,t) < 6. This is very simple: Say that
d{ap(i, j,0) < 0, which is obtained at the optimal transposition t™4P. Then,
duap(i, 5,0,t) < 6 for t € [BMAP MAP] = [tMAD _(§ — a8, ,,(4,7,0)), tMAP +
(6 — diga(i. . 0))].

The problem is now to determine whether dsap(z,7,6,t) < ~ for some t in
the above range. As a function of ¢, dsap(i,j,6,t) has a single minimum at
its optimum transposition t34P (which does not have to be the same tMAD).
Hence, we have three choices: (i) tMAP < ¢5AD < ¢MAD i which case the
occurrence can be reported; (ii) t5AP < £MAD in which case we report the
occurrence only if dsap (4, 7,0, ML) < ~; (iii) t54P > t3AD in which case we
report the occurrence only if dsap(i, j, 0, ty"4P) < ~.

As in the worst case we may have to check O(m?n?) times for a (4, y)-match,
and computing dsap(i, j,0,t) takes O(m?) time, we could pay as much as
O(m®n?), which is as bad as the naive approach. However, on integer alpha-
bet, we can do better. As we can recompute in constant time dsap from one
transposition to the next (as explained in Section 3.3), we can move stepwise
from 54D to £1AD or)AD Moreover, as we move away from t94P | distance
dsap increases and it quickly exceeds v. As we move j votes away from the me-
dian, say from t; to ¢;11, we have j summands contributing each t;,1 —¢; > 1
to dsap, so after we move j times dsap has increased by €(j2) (this assumes

17

that the alphabet is integer and that we pack equal votes so as to process
them in one shot). Hence we cannot work more than O(,/y) before having
dsap out of range. Overall, the search time is O((\/7 + loglog o)n*m?).

The situation is more complex if we permit x outliers. Fortunately, both in
dyfvp and dgip it turns out that the relevant outliers are those yielding the
Kk minimum or maximum votes, so the search space is small. That is, even
when the selection of outliers that produces distance dyfyp is not the same
producing distance dgip, it holds that if there is a selection that produces a
dyfvp distance of at most § and a dgh;, distance of at most ~y, then the same
is achieved by a selection where only those producing minimum or maximum
votes can be chosen. This is easily seen because distances dyfyp, and dghp
can only increase if we replace the votes in their initial selection by excluded
minimum or maximum votes.

Now we compute dyjap and dgap, distances and consider every triple (i, j, 6)
where both matching criteria are met. There are only x+ 1 relevant selections
of outliers (that is, choosing ' smallest and k" largest votes such that ' +
K" = k). For each such selection we have dyfy, and dgi, distances already
computed. Hence we have to run the above verification algorithm for each
triple (i, 7,6) and each of the xk + 1 selections of outliers. This gives a worst-
case search algorithm of complexity O(((xk+1),/7+loglog o)n*m?). We remark
that this works only for integer alphabets and that it is interesting only when

K <oO.

4 Features

As shown in [2,7,9], any match of a pattern P in a text T" allowing arbitrary ro-
tations must contain some so-called “features”, that is, one-dimensional strings
obtained by reading a line of the pattern in some angle. These features are
used to build a filter for finding the position and orientation of P in T'. Fig-
ure 3 shows features of different lengths taken at different positions. In our
algorithms we will take all features of the same length.

The length of a particular feature is denoted by u, and the feature for angle 6
and row ¢ is denoted by F'7(f). Assume for simplicity that u is odd. To read a
feature F'7(0) from P, let P be on top of T, on location ((4, j),). Consider cells
Tli—"4q, j -], ... Tli— ™= +q, j+“5*]. Denote them as ¢{, 15, ... 4.
Let ¢! be the value of the cell of P that covers the center of t!. The feature
of P with angle § and row ¢ is the string F9(0) = c¢{ci---cZ. Note that this
value depends only on ¢, # and P, not on T.

The sets of angles for the features are obtained the same way as the set of

18

(0.0 X

Fig. 3. Some features read from P at angle §. We show F%(a), F!(«), and F?(«).

angles for the whole pattern P. Note that the set of angles BY for the feature
set F'? is subset of A, that is B C A for any q. The size of B varies from O(u?)
(the features crossing the center of P) to O(um) (the features at distance ©(m)
from the center of P). In other words, the matching function M can change
as long as F'9(#) does not change.

More precisely, assume that B? = (71, ...,7k), and that 7; < 7;11. Therefore,
feature F(~;) = F(0) can be read using any 6 such that v; < 6 < ~;4q. If
there is an occurrence of F'%(f), then P may occur with any angle § € A such
that v, < 0 < v,.1. We say that those angles 3 are compatible with 6, that is,
they belong to the same range [, Vi+1)-

The idea of using features is as follows. Assume we read from P a range of
features F'(6), 251 < i < ™ for some odd r. Then, if we scan one text row
out of r, every occurrence of P at an angle compatible with 6 will contain
some feature F(#) within some scanned row. Moreover, if we scan one text
row out of [r/j], then every occurrence of P at an angle compatible with 6
will contain at least j features F*(6) within some scanned row ¢. Therefore, a
multipattern search for the features in the selected text rows will spot all the

possible occurrences of P in T

These results can be extended to account for v tolerance and x outliers in the
occurrences. The following lemmas are a generalization of other well-known
results in approximate string matching [25].

Lemma 1 Assume we read from P a range of features F*(6), et < < ’”TJ”"

for some odd r. Then, if we scan one text row out of |r/j|, every occurrence
of P at an angle compatible with 6 with up to x non-matching positions will
contain at least p features F*(#) matching with at most [5=+ non-matching
positions each, within some scanned row. This holds for any 1 < p < j.

Proof. Assume otherwise. Consider a particular occurrence of P. As we scan
one text row out of |r/j|, there are j features of P that appear in the scanned
rows, corresponding to this occurrence. If the lemma does not hold, then there

are at least j—p+1 features requiring at least 1+ =] > mismatches

K
J—p+l

6 There is no guarantee that those features will be different if they repeat in P.

19

to occur. Therefore, just matching those features requires strictly more than
r mismatches in total, and therefore the whole P cannot match with just s
mismatches. a

We note that Lemma 1 holds verbatim if we consider -tolerance instead of x
outliers. In addition, d-tolerance and transposition invariance do not affect at
all its correctness.

Lemma 1 is the key to the algorithms of the next section, where we rely on
existing one-dimensional string matching algorithms. Let us first review the
non-transposition invariant algorithms. In [26] it is shown how to perform
approximate searching (under edit distance) of r patterns of length u in a
text of length n, with distance at most k, in optimal average time O(n(k +
log, (ru))/u), for k/u < 1/2—0(1/+/0). In [9] the same technique is applied to
Hamming distance, obtaining the same (optimal) complexity for k/u < 1/2 —
O(1/0). In [14,15], 0-matching is considered, as well as d-matching combined
with edit, Hamming, and other distances. The resulting average complexity
is O(n(k + log#l(ru))/u), with the same limits as before on k/u, and the
constraint 20 + 1 < o. This result is shown to be average-optimal. On the
other hand, y-matching is considered in [9], where they obtain O(n(vy/o +
10g1+§/m (ru))/u) average time” for v/m < o/(4e) — O(1). In [14,15] they

show that it is difficult to combine this y-matching algorithm with & outliers.

Several transposition-invariant versions of the above algorithms are given in
[14,15]. They obtain, with the same restrictions as above on §, v and k,
O(n(k + log «_(ru(d + 1)))/u) for 6-matching with outliers and O(n(vy/o +

o+

log_o_(r(y+wu)))/u) for y-matching. On the other hand, the approximate

14+6/m
search algorithms with edit, Hamming, and other similar distances, stay with
their optimal average complexity O(n(k + log,(ru))/u) when transpositions

are allowed.

5 Efficient Average-Case Time Algorithms

Following [9], we choose features of length w from r pattern rows around
the center, at all relevant rotation angles #, and search for them all using
different multipattern one-dimensional search algorithms permitting transpo-
sitions [14,15]. To simplify the presentation we assume from the beginning

" They give the base of the logarithm in the form 1/z and then quickly switch to
the worst case x = ©(1). We present here a more refined version.

20

u=r=m/ v/2, which are in fact the optimal values®. The number of rele-
vant rotations is O(rumax(r,u)) = O(m?) [7,9].

The results of this section are valid only for integer alphabets where text and
pattern cell values are independently and uniformly chosen over o different
values. We remind that, as the techniques consist essentially on leaving a
few (i,7) text centers to check, we can maintain the worst cases of all the
algorithms of this section within the bounds obtained in Section 3. It is a
matter of running the worst-case-oriented distance computation algorithms
only for the text centers (i, 7) we could not discard, taking care of not verifying
the same text center twice. As there are at most n? text centers to verify, the
worst-case complexities follow.

5.1 6-Matching with Tolerance k

In this section we show how to perform transposition-invariant J-matching
with tolerance x on integer alphabets of size o in average time O(n?(k + (1 +
k/m)log _» ((6 + 1)m))/m?), whenever (roughly) 46 + 2 < o and k < m?/4.
By following the same procedure without transposition invariance, we obtain
O(n?(k + log_-_m)/ m?), which is shown to be average-optimal.

We follow Lemma 1. We extract r = O(m) features from P, at all the possible
O(m?) rotations for each, totalizing O(m?) one-dimensional strings to search
for. Then we scan one text row out of r with the one-dimensional transpo-
sition invariant algorithm that permits multiple patterns, J-matching, and s
mismatches. According to Lemma 1 (with j = p = 1), every occurrence of P
will be spotted by the occurrence of a feature in our one-dimensional search.
Thus, it is enough to check for a complete occurrence of P in T only upon
finding the occurrence of a feature. The matching feature and its position in-
dicates the text center cell that must be considered, as well as the range of
angles [7;,vi+1) N A to try.

Note, however, that 0 < x < m?, and thus searching for a feature of length
u permitting x outliers might be too permissive (in particular the feature will
match everywhere if k >). In this case, we scan one text row out of |r/j],
for some j to be determined soon. Now Lemma 1 guarantees that at least one
feature (p = 1) will appear with at most |x/j] mismatches. Thus we have to
use the one-dimensional algorithm with tolerance |x/j]|, which gives us the
possibility of adjusting j so that the tolerance is low enough.

To analyze this algorithm we have to consider both the scanning and the

8 Actually these are the maximum possible values that guarantee that we can take
r features of length w at any possible rotation.

21

verification cost. Let us start with the latter. Every time a feature matches
we have to verify the possible occurrence of the complete pattern. We start
by analyzing the probability of matching.

Let us consider a given feature F' of length u. To upper bound the number of
strings that d-match F' with tolerance k, we note that there are (Z) ways to

choose the nonmatching positions, and then o* ways to choose the characters
at those nonmatching positions. The other u — k positions must é-match the
feature and thus there are (26 + 1)“~* ways to choose them. If we consider
in addition transposition invariance, each of those strings matches at most
20 — 1 other strings, for a grand total of at most (25 + 1)“~* (Z) 20%*+1. As each
of those strings match with probability 1/c%, the probability of each feature
matching at a given text position is at most

(25+1>u—k(z)20 _ 5 ((25 +1)m(l—a)/\/io-)
Jo ’

o
ouk at (1l -«

where we have defined a = k/u (0 < o < 1) and used Stirling’s approximation
to convert (Z) = (ﬁ)u ©(1). For @ bounded away from 1, the proba-

a*(l—-«a
bility has the form O((ama), and we are interested in determining the condition
on a to ensure a™o = O(c™) for some constant ¢ < 1, that is, a < ¢ o~'/™.
We simplify the formula by noting that aTa > 1/2if 0 < a < 1/2 (the
method is not used beyond this limit), and then it is easy to obtain condition
a < 1—% =1—-0((6+1)/0). Note that it is necessary that 40+2 < o
for the limit on « to be nonempty (asymptotically on m).

Let us now consider the cost of a verification. Even if we check all the O(m?)
possible rotations (instead of restricting to the relevant angle [y;,vit1)), we
would pay O(m3(loglogm)?) = o(m*) time by using the algorithm of Sec-
tion 3.2 to compute dyjap at the proper text center. On the other hand, we
are searching for O(m3) features, each of which triggers verifications indepen-
dently. Therefore, the total average cost of verifications, run over n/r text rows
of length n, is o(n?m*m3a™o /r) = o(n®*mSca™). This is negligible whenever
a<c (20)7Y™ thatis, a <1— % and o < 1/2.

Let us now consider scanning time. The transposition-invariant multipattern
one-dimensional §-matching scanning algorithm given in [14,15] will search for
the O(rumax(r,u)) = O(m?) (rotated) features of length u = ©(m) permit-
ting k mismatches in O(n(k+logﬁ ((0+1)m))/m) average time per text row,

provided a = k/u <1/2—-0(1/0) and 26 + 1 < 0.

If k/u<1-0((0+1)/0)and k/u < 1/2—0(1/0), then we can use j = 1 and
traverse one text row out of r. Adding the scanning time over all the O(n/r)

22

text rows, we obtain the final complexity O(n?(x + logéLH((é + 1)m))/m?).

As explained, if k turns out to be too large, we must scan one text row out of
|7/7], for some sufficiently large j. As we use the one-dimensional algorithm
with tolerance k = |k/j], the total scanning time becomes O(% n(k/j +

log »((6 + 1)m))/m) = O(n*(k + jlog « ((6 + 1)m))/m?). A j value that
satisfies both restrictions on k/u is ©((k/m)/(1—(d+1)/0)). Using this value
the scanning time is O(n?(x 4+ £ logﬁ(((s + 1)m))/m?.

Considering both cases, we get complexity O(n*(k+(14L£) log#1 ((6+1)m))/m2.
The limit of applicability of this method is reached when j = r, as we can-
not increase it anymore. At this point we can apply the algorithm provided
k/u<1/2—0(1/o) where k = |x/r], that is, for k < mTz(l —O(1/0)). The
other condition on 7 yields k < %2(1 —O((0+1)/0)). All the limits are con-
stant on x/m?. Finally, it is necessary that 45 + 2 < o. The space required by
the algorithm is polynomial in mo.

Finally, we note that, if we do not wish to allow lighting invariance and use
the one-dimensional algorithm of [14,15] without transpositions, the complex-
ity becomes O(n?(xk + log o m)/m?). Tt is easy to see that this is average-

optimal by following previous arguments [9,15]: On one hand, we have that
O(n?log,(m)/m?) complexity is average-optimal for two-dimensional exact
matching (allowing rotations or not) [9]. On the other hand, if we can do 4-

matching in less than Q(|7| log#1 (IP])/|P]) (in one or two dimensions), a sim-

ple trick [15] permits doing exact matching in less than Q(|T'|log,(|P])/|P]|),
which is optimal. Finally, it is impossible to match in two dimensions allowing
x mismatches in less than Q(n%k/m?): We must access at least £+ 1 characters
in each m x m text area in order to discard it. Adding both lower bounds, we
have the average-case lower bound Q(n?(k + log o m)/ m?).

5.2 ~-Matching with Tolerance k

In this section we show how to perform ~-matching with tolerance x on integer
alphabets of size o in average time O(n*((k+vy+rvy/m)/o+(k+1)log_- _(y+

TF~/m
m))/m?), whenever (i) x < m/(2v/2) and 7/k < om/(2v/2¢)(1 — O(1/7)), or
(41) m/(2v2) < k = O(m?/logm) and yx/m? < om/(16v2¢)(1 — O(1/7)).
We then present an alternative complexity based on d-matching and discuss
how to do (0,)-matching.

We now make use of the full potential of Lemma 1. We scan one text row out
of |[r/(j +h—1)], for j and h to be determined. Then Lemma 1 (with its j
being our 7 + h — 1 and p being h) guarantees that each occurrence of P will

23

trigger at least h feature occurrences, each with & = |x/j| mismatches. If the
occurrence of P «-matches the text, then at least one of those h features must
7/-match the text, where v/ = [v/h].

Yet, we are unable to combine ~/-matching and mismatches with an efficient
one-dimensional algorithm. Thus, let us partition the features into k+ 1 pieces
(substrings) of length |u/(k + 1)|. Each feature occurrence must contain the
occurrence of at least one piece without any mismatch.

Therefore, we search for the r(k + 1) = O(r(k/j + 1)) pieces permitting ~'-
matching and no mismatches. Upon the occurrence of any piece, we verify the
corresponding text center(s). Using the multipattern transposition invariant
7' matching algorithm in [15] for n(j + h — 1)/r text rows we get complex-
ity O(n*(j + h)(k/j +1)(v/(ch) +1log__o___(v/h+m))/m?), subject to the

1+~/(mh)

conditions j + h < r and (y/h)/(u/(k/7)) = v&/(huj) < o/(2¢) — O(1).

By expanding the first summations we get that the term accompanying n?/m?

1S
@) +@+'+h <l+l (v/h+))
" J J oh Oguw/"wv m '

Any j between ©(min(h, x)) and ©(max(h,k)) yields the same complexity,
O(k + h), for the expanded sum. We will manage to maintain j within those
bounds, so substituting and expanding again we get

e Y
0] <E + - + (k+h) loglﬂ/a(mh) (v/h+ m)) ,

where it is clear that h = ©(k) is the optimum, but maybe this optimum
is outside the bounds for h. The best choices turn out to be j = min(x +
1,m/(2v/2)) and h = min(x + 1,m/(2v/2),7 + 1). It is immediate that all
the conditions hold: j + h < m/\/ﬁ,j <k+4+1L,h<y+1,h<j<k+1
Substituting we obtain the complexity

g 1+~

O<7+H+7m/m—l—(/{—l—l)log a/m(7+m)>,

which applies as long as yx/(huj) < o/(2¢)—O(1). Thisis v/k < om/(2v/2e)(1—
O(1/0)) if Kk +1 < m/(2v/2), and yk/m? < om/(16v/2¢)(1 — O(1/0)) other-

wise.

We have considered, however, only scanning time. We must derive a sufficient
condition on 7 and x to make verification cost insignificant. In [9] it is shown

24

that the probability of two strings of length ¢ to «/-match each other (without
transpositions) is a = 2(1 + 3)(1 + 1/8)? /o < 2(1 + B)e/o, where 3 = ~'/{.

We consider O(m?) rotations, searching for r(x/j + 1) pieces from each, of
length ¢ = u/(k/7 + 1), with 4/ = v/(h + 1). Each such piece, in addition,
matches with transpositions, so we in practice generate o strings from each.
Therefore, the average number of verifications triggered is O(n*m?r(k/j +
Doa /ity = O(n?m*(k/§)oa™/ V),

According to Section 3.3, we can verify a text center in time O(m?(loglogm)?),
and thus the overall average verification cost is

O(n*m" (loglog m)?(k/j)oa™/ V),

For this not to affect the average scanning time, it is sufficient to make it
O(n?/m?). Thus the condition is oa™/®V2 = O(j/(km®(loglog m)?).

We wish to make a < co~ !, for some ¢ < 1, so that ca’ = ¢/ < 1. For this
sake, it is sufficient that 3 = (y/(h+1))/(u/(k/j+1)) < c*='/*/(2¢) — 1. This
is asymptotically the same condition we have been considering for the feature
scanning algorithm.

Once this holds, the condition to make the average verification cost negligible is
¢V = O(j /(km? (loglog m)?)). There are two cases: if k41 < m/(2v/2),
then j = x + 1 and the condition is ¢™V2 = O(m~?(loglogm)~2), always
true; yet if £ + 1 > m/(2v/2), then j = m/(2v/2) and the condition becomes
/5 = O(m~'0(loglog m)~2), that is x/m? < m(l +0(1)).

Let us consider some particular cases of our results. If we do not permit out-
liers, k = 0, the cost of our algorithm is O(n?(y/o +log_o (v+m))/m?) for

1+v/m

v < mao/(2v/2e)(1 — O(1/c)). This is the same complexity obtained without
transpositions in previous work [9], yet for a stricter condition on 7.

On the other hand, our results with s outliers without transposition invariance
are also relevant. By using the feature scanning algorithm of [9] (that does not
permit transpositions) we arrive at essentially the same complexity, except the
argument of the logarithm is m instead of v + m.

Finally, it is not hard to adapt the lower bounds in [15] to show that a lower
bound on the transposition-invariant version of this problem is Q(n?(k+ /o +
108,/ M)/ mM?), not far away from what we have obtained.

5.2.0.1 An alternative method based on §-matching. Another idea
for y-matching is to search for the features using J-matching, with 6 = |v/h].

25

This will obviously spot all the «'-occurrences, where ' = 0. Then, for each oc-
currence of a feature, we check the corresponding text center for a y-occurrence
of P. We can use the scanning algorithm of Section 5.1, as well as most of the
analysis because the verification costs are identical (Section 3.3). That is, we

obtain average search time O(nz(j+h)(/€/j+(1+%) logﬁ (om))/m?), pro-
vided j > 2v/2r/m(1—=0(1/0)), j > V2k/m(1 = O((1+~/h)/0)), 4v/h+2 <
o,and 7+ h <.

By calling L =log_. (om) and distributing the sums, we get that the term

(el
14+~/h
accompanying n?/m? is

h
O(k + hi/j + jL+hL + ~L + 2 L).
m jm

By setting j = h, the formula reduces to O(k 4 hL + = L). We choose h as
small as possible, h = 14 4v/(c —2). With this choice, the final complexity is

O <n2 (FL + (1 + g + %) log(am)> /m2) :

Let us check whether 5 and h satisfy the boundary conditions. It holds 7 +
h <rify < (m—2v2)(c —2)/(8v2). The strictest lower bound on j is
§ > 2v2k/m(1 — O(1/0)). If this does not hold, we instead increase j and
h to j = h = 2v/2k/m. The complexity stays the same, and now condition
j+h <r becomes x/m? < 1/8. Thus the (slightly simplified) final conditions
are v < mo/(8v/2) and K < m?/8, much looser on than with the previous
technique, and we have obtained an alternative complexity where x does not
multiply the logarithm. On the other hand, the logarithm is multiplied by
v/o, and we do not yet reach the lower bound we have proved.

Note also that we can use this algorithm without transposition invariance,
with the only difference that the ¢ inside the logarithm disappears.

5.2.0.2 (0,7)-matching with tolerance k. We can just use either the -
matching algorithm of Section 5.1 or the y-matching algorithm of Section 5.2,
using the verification algorithm of Section 3.4. The resulting complexity is the
minimum among those we obtained for J- or y-matching.

26

6 Conclusions and Future Work

We have presented the first combinatorial approach to the problem of two-
dimensional template matching permitting rotations and lighting invariance,
where in addition there is some tolerance for differences between the pattern
and its occurrences. We have defined a set of meaningful distance measures
and search problems, which extend previous search problems [7,9]. We have
built on top of previous rotation-invariant (but not lighting-invariant) search
techniques [7,9] and of previous one-dimensional transposition-invariant search
algorithms [13-15].

We have developed algorithms to compute the defined distances, as well as
algorithms for all the search problems, which are at the same time efficient in
the worst and average case. We have shown that adding lighting invariance
poses a small computational price on top of previous rotation invariant search
algorithms [7,9], several of which are already optimal. In particular, we have
obtained in some cases average complexities that match the optimal existing
results that do not permit lighting invariance.

The results can be extended to more dimensions. In three dimensions, for
example, there are O(m'?) different matching functions for P [4], and O(um?)
features of length u. The worst-case time algorithms retain their complexity as
long as we replace O(m?n?) by O(m'?n?). Average case algorithms also retain
their complexity if we replace O(n?/m?) by O(n?/m?).

It is also possible to remove some restrictions we have used for simplicity,
such as the center-to-center assumption. In this case the number of relevant
rotations and small displacements grows up to O(m”) [5], so the worst case
complexities shift to O(...m"n?). Average case complexities are not affected.

Future work involves trying to close the gap between our complexities and the
known lower bounds, pushing in either way, both for worst-case and average-
case complexities. Finally, it would be good to obtain an algorithm for (9,)-
matching that works for general alphabets, as the one we have proposed only
works for integer alphabet.

References

[1] L. G. Brown, A survey of image registration techniques, ACM Computing
Surveys 24 (4) (1992) 325-376.

[2] K. Fredriksson, E. Ukkonen, A rotation invariant filter for two-dimensional
string matching, in: Proc. 9th Combinatorial Pattern Matching (CPM’98),

27

LNCS 1448, 1998, pp. 118-125.

[3] K. Fredriksson, E. Ukkonen, Combinatorial methods for approximate image
matching under translations and rotations, Patt. Recog. Letters 20 (11-13)
(1999) 1249-1258.

[4] K. Fredriksson, E. Ukkonen, Combinatorial methods for approximate pattern
matching under rotations and translations in 3d arrays, in: Proc. 7th String
Processing and Information Retrieval (SPIRE 2000), IEEE CS Press, 2000, pp.
96-104.

[5] K. Fredriksson, Rotation invariant histogram filters for similarity and distance
measures between digital images, in: Proc. 7th String Processing and
Information Retrieval (SPIRE 2000), IEEE CS Press, 2000, pp. 105-115.

[6] G.N.K. Fredriksson, E. Ukkonen, An index for two dimensional string matching
allowing rotations, in: J. van Leeuwen, O. Watanabe, M. Hagiya, P. Mosses,
T. Tto (Eds.), IFIP TCS2000, LNCS 1872, 2000, pp. 59-75.

[7] K. Fredriksson, G. Navarro, E. Ukkonen, Optimal exact and fast approximate
two dimensional pattern matching allowing rotations, in: Proc. 13th Annual
Symposium on Combinatorial Pattern Matching (CPM 2002), LNCS 2373,
2002, pp. 235-248.

[8] K. Fredriksson, G. Navarro, E. Ukkonen, Faster than FFT: Rotation Invariant
Combinatorial Template Matching, Vol. II, Transworld Research Network, 2002,
pp. 75-112.

[9] K. Fredriksson, G. Navarro, E. Ukkonen, Sequential and indexed two-
dimensional combinatorial template matching allowing rotations, Theoretical
Computer Science A 347 (1-2) (2005) 239-275.

[10] A. Amir, A. Butman, M. Crochemore, G. Landau, M. Schaps, Two-dimensional
pattern matching with rotations, in: Proc. 14th Annual Symposium on
Combinatorial Pattern Matching (CPM 2003), LNCS 2676, 2003, pp. 17-31.

[11] T. Crawford, C. Iliopoulos, R. Raman, String matching techniques for musical
similarity and melodic recognition, Computing in Musicology 11 (1998) 71-100.

[12] K. Lemstrém, J. Tarhio, Detecting monophonic patterns within polyphonic
sources, in: Content-Based Multimedia Information Access Conference
Proceedings (RTAO 2000), 2000, pp. 1261-1279.

[13] V. Mékinen, G. Navarro, E. Ukkonen, Transposition invariant string matching,
Journal of Algorithms 56 (2) (2005) 124-153.

[14] K. Fredriksson, V. Mékinen, G. Navarro, Flexible music retrieval in sublinear
time, in: Proc. 10th Prague Stringology Conference (PSC’05), 2005, pp. 174—
188.

[15] K. Fredriksson, V. Mékinen, G. Navarro, Flexible music retrieval in sublinear
time, in: Proceedings of the 10th Prague Stringology Conference (PSC’05),
2005, pp. 174-188, extended version to appear in IJFCS.

28

[16] C. Russ, The Image Processing Handbook, 4th Edition, CRC Press, 2002.

[17) A. Amir, O. Kapah, D. Tsur, Fast two-dimensional pattern matching with
rotations, in: Proc. 15th Annual Symposium on Combinatorial Pattern
Matching (CPM 2004), LNCS v. 3109, 2004, pp. 409-419.

[18] K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching,
Springer Verlag, 1984.

[19] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, 2nd
Edition, The MIT Press, 2001.

[20] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computational
Geometry: Algorithms and Applications, 2nd Edition, Springer-Verlag, 2000.

[21] P. van Emde Boas, R. Kaas, E. Zijlstra, Design and implementation of an
efficient priority queue, Mathematical Systems Theory 10 (1977) 99-127.

[22] P. van Emde Boas, Preserving order in a forest in less than logarithmic time
and linear space, Information Processing Letters 6 (3) (1977) 80-82.

[23] A. Andersson, M. Thorup, Tight(er) worst-case bounds on dynamic searching
and priority queues, in: Proc. 32nd Annual ACM Symposium on Theory of
Computing (STOC’00), 2000, pp. 335-342.

[24] A. Andersson, T. Hagerup, S. Nilsson, R. Raman, Sorting in linear time?, in:
Proc. 27th Annual ACM Symposium on Theory of Computing (STOC’95),
1995, pp. 427-436.

[25] G. Navarro, A guided tour to approximate string matching, ACM Computing
Surveys 33 (1) (2001) 31-88.

[26] K. Fredriksson, G. Navarro, Average-optimal single and multiple approximate
string matching, ACM Journal of Experimental Algorithmics (JEA) 9 (1.4).

29

