
Storage and Retrieval of Individual Genomes

Veli Mäkinen1⋆, Gonzalo Navarro2⋆⋆, Jouni Sirén1⋆ ⋆ ⋆, and Niko Välimäki1†

1 Department of Computer Science, University of Helsinki, Finland.
{vmakinen,jltsiren,nvalimak}@cs.helsinki.fi

2 Department of Computer Science, University of Chile, Chile.
gnavarro@dcc.uchile.cl

Abstract. A repetitive sequence collection is one where portions of a
base sequence of length n are repeated many times with small variations,
forming a collection of total length N . Examples of such collections are
version control data and genome sequences of individuals, where the
differences can be expressed by lists of basic edit operations. Flexible
and efficient data analysis on a such typically huge collection is plausible
using suffix trees. However, suffix tree occupies O(N log N) bits, which
very soon inhibits in-memory analyses. Recent advances in full-text self-
indexing reduce the space of suffix tree to O(N log σ) bits, where σ is the
alphabet size. In practice, the space reduction is more than 10-fold, for
example on suffix tree of Human Genome. However, this reduction factor
remains constant when more sequences are added to the collection.
We develop a new family of self-indexes suited for the repetitive sequence
collection setting. Their expected space requirement depends only on
the length n of the base sequence and the number s of variations in its
repeated copies. That is, the space reduction factor is no longer constant,
but depends on N/n.
We believe the structures developed in this work will provide a fun-
damental basis for storage and retrieval of individual genomes as they
become available due to rapid progress in the sequencing technologies.

Key words: Comparative genomics, full-text indexing, suffix tree, com-
pressed data structures.

1 Introduction

1.1 Motivation

Self-indexing [15] is a new proposal for storing and retrieving sequence data. It
aims to represent the sequence (a.k.a. text or string) compressed in a way that
not only random access to the sequence is possible, but also pattern searches are
supported [7, 4, 20].

⋆ Funded by the Academy of Finland under grant 119815.
⋆⋆ Partially funded by Millennium Institute for Cell Dynamics and Biotechnology

(ICDB), Grant ICM P05-001-F, Mideplan, Chile.
⋆ ⋆ ⋆ Funded by the Research Foundation of the University of Helsinki.

† Funded by the Helsinki Graduate School in Computer Science and Engineering.

A special case of a text collection is one which contains several versions of one
or more base sequences. Such collections are soon becoming reality in the field of
molecular biology. As the DNA sequencing technologies become faster and more
cost-effective, the sequencing of individual genomes will become a feasible task
[3, 10, 17]. This is likely to happen in the near future, see for example the 1000
Genomes project3. With such data in hand, many fundamental issues become of
top concern, like how to store, say, one million Human Genomes, not to speak
about analyzing them. For the analysis of such collections, one would clearly
need to use some variant of a generalized suffix tree [9], which provides a variety
of algorithmic tools to do analyses in linear or near-linear time. The memory
requirement of such a solution, however, is unimaginable with current random
access memories, and also challenging in permanent storage.

Self-indexes should, in principle, cope well with genome sequences, as genomes
contain high amounts of repetitive structure. In particular, as the main building
blocks of compressed suffix trees [21, 19, 18, 6], self-indexes enable compressing
sequence collections close to their high-order entropy and enabling flexible analy-
sis tasks to be carried out4. Those indexes have been successful in bringing down
the space requirement of the suffix tree of one Human Genome to fit the capabil-
ities of a desktop computer. However, they suffer from a fundamental limit: The
high-order entropies they achieve are defined by the frequencies of symbols in
their fixed-length contexts, and these contexts do not change at all when more
identical sequences are added to the collection. Hence, these self-indexes are not
at all able to exploit the fact that the texts in the collection are highly similar.

1.2 Content

In this paper we propose a new family of self-indexes that are suitable for stor-
ing highly repetitive collections of sequences, and a new compressed suffix tree
based on it. Our scheme can also be thought of as a self-index for a given mul-
tiple alignment of a sequence collection, where one can retrieve any part of any
sequence as well as make queries on the content of all the aligned sequences. The
main technical contribution is a new strategy to store suffix array samples that
uses and improves a classical solution for persistent selection.

We show analytically that the expected space requirement of our new self-
indexes improves upon the existing ones on highly repetitive collections. We also
provide experiments on a collection of resequenced yeast genomes, showing that
our indexes behave in practice as predicted by our analysis.

1.3 Definitions and Background

A string S = S1,n = s1s2 · · · sn is a sequence of symbols (a.k.a. characters or
letters). Each symbol is an element of an alphabet Σ = {1, 2, . . . , σ}. A substring

3 http://www.1000genomes.com
4 For a concrete example, the SUDS Genome Browser at http://www.cs.helsinki.fi/
group/suds/cst, runs a compressed suffix tree of the Human Genome using 8.8 GB
of main memory.

of S is written Si,j = sisi+1 . . . sj . A prefix of S is a substring of the form S1,j ,
and a suffix is a substring of the form Si,n. If i > j then Si,j = ε, the empty string
of length |ε| = 0. A text string T = T1,n is a string terminated by the special
symbol tn = $ 6∈ Σ, smaller than any other symbol in Σ. The lexicographical
order “<” among strings is defined in the obvious way.

We use the standard notion of empirical k-th order entropy Hk(T). For formal
definition, see e.g. [14]. For our purposes, it is enough to know the basic property
0 ≤ Hk(T) ≤ Hk−1(T) ≤ · · · ≤ H0(T) ≤ log σ.

The compressors to be discussed are derivatives of the Burrows-Wheeler
transform (BWT) [2]. The transform produces a permutation of T , denoted
by T bwt, as follows: (i) Build the suffix array [13] SA[1, n] of T , that is an array
of pointers to all the suffixes of T in the lexicographic order; (ii) The trans-
formed text is T bwt = L, where L[i] = T [SA[i] − 1], taking T [0] = T [n]. The
BWT is reversible, that is, given T bwt = L we can obtain T as follows: (a)
Compute the array C[1, σ] storing in C[c] the number of occurrences of char-
acters {$, 1, . . . , c − 1} in the text T ; (b) Define the LF mapping as follows:
LF (i) = C[L[i]] + rankL[i](L, i), where rankc(L, i) is the number of occurrences
of character c in the prefix L[1, i]; (c) Reconstruct T backwards as follows: set
s = 1, for each n − 1, . . . , 1 do ti ← L[s] and s ← LF [s]. Finally put the end
marker tn ← $.

Let a point mutation (or just mutation) denote the event of a symbol changing
into another symbol inside a string. We study the following problem (other types
of mutations are considered later).

Definition 1. Given a collection C of r sequences T k ∈ C such that |T k| = n for
1 ≤ k ≤ r and

∑r

k=1 |T
k| = N , where T 2, T 3, . . . , T r are mutated copies of the

base sequence T 1 containing overall s point mutations, the repetitive collection
indexing problem is to store C in as small space as possible such that the following
operations are supported as efficiently as possible: count(P) (how many times
P appears as a substring of the texts in C?); locate(P) (list the occurrence
positions of P in C); and display(k, i, j) (return T k

i,j).

The above is an extension of the well-known basic indexing problem, where
the collection only has one sequence T . We call a solution to the basic indexing
problem a self-index if it does not need T to solve the three queries above. Thus
a self-index replaces T .

A classical solution to the basic indexing problem uses T and the suffix
array SA[1, n]. Two binary searches find the interval SA[sp, ep] pointing to all
the suffixes of T starting with P , that is, to all the occurrences of P in T (this
solves count and locate) [13], and T is at hand for display. The solution is
not space-efficient, since array SA requires n log n bits (compared to n log σ bits
used by T), and it is not a self-index, since T is needed.

The FM-index [4] is a self-index based on the BWT. It solves count by finding
the interval SA[sp, ep] that contains the occurrences of P . The FM-index uses
the array C and function rankc(L, i) in the so-called backward search algorithm,
calling function rankc(L, i) O(|P |) times. The two other basic queries are solved
using sampling of SA and its inverse SA

−1, and the LF -mapping to derive the

unsampled values from the sampled ones. Many variants of the FM-index have
been derived that differ mainly in the way the rankc(L, i)-queries are solved [15].
For example, on small alphabets, it is possible to achieve nHk + o(n log σ) bits
of space, for moderate k, with constant time support for rankc(L, i) [5].

Now, the repetitive collection indexing problem can be solved using the nor-
mal self-index for the concatenation T 1$T 2$ · · ·T r$. However, the space require-
ment achieved, even with a high-entropy compressed index, is not attractive
for the case of repetitive collections. For example, an FM-index [5] requires
NHk(C) + o(N log σ) bits. Notice that with the collection of Def. 1 and even
with s = 0, it holds Hk(C) ≈ Hk(T 1), and hence the space is about r times that
for the base sequence, not taking any advantage of repetitiveness.

In the sequel, we derive solutions whose space requirements depend on n and
s instead of N . Let us first consider a natural lower bound that takes into account
these specific problem parameters. Consider a two-part compression scheme that
compresses T 1 with a high-order compressor, and the rest of the sequences by
encoding the mutations needed to convert each other sequence into T 1. The
lower bound for any such compressor is

nHk(T 1) + log

(

N − n

s

)

+ s log σ ≈ nHk(T 1) + s log
N

s
+ s log σ (1)

where the first part is the lower bound of encoding T 1 with any high-order
compressor, the second part is the lower bound for telling the positions of the
mutations among the N − n possibilities, and the third part is the lower bound
for listing the s mutated values.

Notice that it is not difficult to achieve just plain compression approaching
the bound of Eq. (1) (omitting alphabet-dependent factors), but we aim higher:
Our goal is to solve the repetitive collection indexing problem within the same
space. We do not yet achieve that goal, but the space of our indexes can be
expressed in similar terms; we encourage the reader to compare our final result
with Eq. (1) to see the connection.

The abstract problem with point mutations studied here is much simpler than
the real variations occurring in genome sequences. However, all the techniques
introduced can be extended to the full set of mutation events, as is done in our
implementation. This will be discussed in Sect. 3.

2 Methods

2.1 Analysis of Runs

Self-repetitions are the fundamental source of redundancy in suffix arrays, en-
abling their compression. A self-repetition is a maximal interval SA[i, i+l] of suf-
fix array SA having a target interval SA[j, j+l] such that SA[j+r] = SA[i+r]+1
for all 0 ≤ r ≤ l. Let Ψ(i) = SA

−1[SA[i] + 1]. The intervals of Ψ corresponding
to self-repetitions in the suffix array are called runs. The name stems from the

Fig. 1. An example of the significant prefix concept. Let (a repeated collection with)
base text S1 = T 1 contain a significant prefix X. Substring X becomes repeated in
the mutated copies T 2, T 3, T 4, T 5, and T 7, of T 1. Text T 6 has a mutation inside X.
Due to other mutations, texts T 5 and T 7 now contain X in some other positions, and
hence X is no longer a significant prefix of the mutated collection. However, extending
X with string α makes Xα unique to the original position of X, while the other two
occurrences of X are succeeded by string β 6= α. Hence, Xα is a significant prefix,
being α the shortest extension having the required property. The significant prefixes
starting at the effect zones shown are affected by the mutations.

fact that Ψ(i + 1) = Ψ(i) + 1 when both Ψ(i) and Ψ(i + 1) are contained in the
same run (see [12, 15] for more details).

Let RΨ (T) be the number of runs in Ψ of text T = T1,n and Rbwt(T) the
number of equal-letter runs in T bwt, the BWT of T . If the text is evident from
the context, we will usually drop T and write just RΨ and Rbwt. It is known that
RΨ ≤ Rbwt ≤ RΨ + σ, making the two types of runs almost equal [12]. Hence,
we may simplify the notation further by denoting just R = Rbwt(T). In addition
to the trivial bound R ≤ n, we also have R ≤ nHk + σk for all k [12].

We will now prove some further bounds for texts obtained by repeating and
mutating substrings of a base sequence. To simplify the analysis, we add a new
character # such that # < $ < c for all c ∈ Σ. We use # as a separator between
texts in the collection, and assume that the ordering between two occurrences of
character # is decided by their positions in the sequence, making each occurrence
of # a different character in practice.

Definition 2. The r times repeated collection of base text S = S1,n is Sr =
S1S2 · · ·Sr, where Sr = S = S1,n−1$ and Si = S1,n−1# for all i < r.

Definition 3. Let T r be a collection of r texts, each derived by mutations from
a base sequence T = T 1. The significant prefix SPi,j of the suffix starting at
position j of sequence T i is the shortest prefix not occurring anywhere else in
T r as a substring except possibly as a prefix of some T k

j,n, k 6= i.

Notice that significant prefix concept is well-defined also a repeated collec-
tion, since it is a collection with no mutations. In that case, significant prefixes
are identical to those of a collection consisting only of the base text. Figure 1
illustrates the definitions.

We now show some basic results concerning the number of runs in repeated
and mutated texts. Proofs are sketched here for conciseness. Full proofs will
appear in the full version. Expected case proofs extend those in [23, pp.263–
265].

Lemma 1. For all texts S and all r ≥ 1, RΨ (S) = RΨ (Sr).

Proof. (Sketch) All suffixes corresponding to the same suffix of S are grouped
together in the suffix array of Sr. Each group is further ordered from the suffix
of S1 to the suffix of Sr. Hence there is one-to-one correspondence between the
self-repetitions of suffix arrays of S and Sr.

Lemma 2. Let Sr = S1S2 · · ·Sr be a repeated collection and T r the collection
created by transforming si

j, for some 1 < i ≤ r and 1 ≤ j < n, into another
character. Then RΨ (T r) ≤ RΨ (Sr) + 2c + 2 = RΨ (S) + 2c + 2, where c is the
number of significant prefixes covering tij.

Proof. (Sketch) The relative position of a suffix in the suffix array can change
only if its significant prefix has mutated. Each such suffix can interfere with a
constant number of runs. The ordering of suffixes sharing a significant prefix can
change, but this does not create additional runs.

Lemma 3. Let S = S1,n be a random text. The expected length of the longest
repeated substring is O(logσ n).

Proof. (Sketch) The expected number of non-overlapping repeats of length l
is O(n2/σl). Markov’s inequality bounds the probability of having a repeat of
length c·logσ n exponentially in c−1. Overlapping repeats are handled in a similar
manner.

Lemma 4. Let Sr be the repeated collection of random text S = S1,n with total
length N = nr. Let T r be Sr after s point mutations at random positions in
S2S3 · · ·Sr. The expected value of RΨ (T r) is at most RΨ (S) + O(s logσ N).

The above analysis can be extended to other types of mutations. When we
insert a new copy of an existing substring, the significant prefixes completely
within the new copy remain unchanged. Only the significant prefixes covering
either end of the inserted copy change. Hence the insertion is essentially equiv-
alent to two point mutations. Similarly the deletion of a substring is equivalent
to one point mutation.

2.2 Backward Search for Repetitive Collections

Our prior work [22] introduced three solutions to the repetitive collection index-
ing problem, restricted to count(P) query. The three indexes are Run-Length
Compressed Suffix Array (RLCSA), Run-Length Encoded Wavelet Tree (RLWT),
and Improved Run-Length FM-Index (RLFM+). They achieve different space vs.
time trade-offs. For example, RLFM+ requires space (R log σ + 2R log N

R
)(1 +

o(1)) + O
(

R log log N
R

)

bits. Query rankc(T
bwt, i), and retrieving symbol tbwt

i ,
are solved in O(tLF) time, where tLF = O(log R).5 Hence, RLFM+ supports

5 One can achieve o((log log N)2) time by adding O(R log N

log R
) further bits of space [8].

count(P) in time O(|P |tLF). Lemma 4 can be used to bound R with n +
O(s logσ N) in the expected case (even for an incompressible T 1), which gives a
space bound close to the terms of Eq. (1).

2.3 Suffix Array Samples

Supporting the other two functions of the repetitive collection indexing problem,
namely, display() and locate(), is the main contribution of this paper. We
address this now.

We need to be able to map the suffixes of the text into suffix array indexes
and vice versa. The standard solution [15] in self-indexes is to sample every
d-th suffix of each text in the collection in an array D[1, N/d + 1], such that
D[i] = SA

−1(i · d), mark the locations D[i] in a bit-vector B[1, N], such that
B[D[i]] = 1 for all 1 ≤ i ≤ N/d + 1, and store the samples in the suffix array
order in a table S[1, N/d + 1], such that S[rank1(B, D[i])] = i · d.

Then display(k, i, j) works as follows. Let St[k] be the starting position of
T k in the concatenated sequence T = T 1T 2 · · ·T r. Value D[(St[k]+j)/d+2] = e
tells us that the nearest sampled suffix after TSP [k]+j,N is pointed from SA[e].
Following LF -mapping from position e reveals us backwards a substring that
covers T k

i,j in time O(tLF(d + j − i)).
Function locate(P) works as follows. First, backward search finds the range

SA[sp, ep] containing the occurrences of P , and then and SA[i] is computed for
each sp ≤ i ≤ ep as follows. If suffix SA[i] is not sampled (B[i] = 0), then LF -
mapping is applied until an index j is found where SA[j] is sampled (B[j] = 1).
Then SA[i] = S[rank1(B, j)]+c, where c < d is the number of times LF -mapping
was applied. This takes time tSA = O(tLF · d).

The space required by the standard solution is O((N/d) log N+N) bits, which
can be reduced to O((N/d) log N) by using the binary searchable dictionary
(BSD) representation [8]; this changes the time for locate() into tSA = O((tLF +
tSA)d), where tSA = O(log d).

Our objective is to have all time requirements in O(polylog(N)), which holds
only with the above approaches if we assume r = O(polylog(N)); then d can be
chosen as r log N to make O((N/d) log N) = O(n), i.e., independent of N as we
wish.

Improving Space for display() We will store samples only for T 1, that is,
table D[1, n/d + 1] has the suffix array entry of every d-th suffix T 1

i·d,n stored at

D[i] = SA
−1[i · d].

To be able to use the same samples for other texts in the collection, we mark
the locations of mutations into bit-vectors. Let Mk[1, |T k|] be a bit-vector where
the locations of the mutations inside T k are marked. The mutated symbols are
stored in another array MSk[1, rank1(M

k, |T k|)] in their order of occurrence in
T k.

Consider now a query display(k, i, j). The substring T 1
i,j is extracted using

the samples just like in the standard approach. It is easy to see that while

extracting T 1
i,j, the mutations stored for T k can also be extracted using rank-

function on Mk. Table MSk occupies overall s log σ bits. Bit-vectors Mk can be
represented using BSD [8] in overall s log N−n

s
(1+o(1))+O

(

s log log N−n
s

)

bits.
What we gain is that O((N/d) log N) becomes O((n/d) log n).

Improving Space for locate() We use the same strategy as for display(),
sampling only T 1, but this time we need to sample also parts of the other texts,
as discussed next.

Let us first consider the case of r identical texts. We know that the suffixes
T 1

p,n, T 2
p,n, . . . , T r

p,n will all be consecutive and in the same order in SA. Assume
every d-th suffix of T 1 is sampled and those sampled SA positions are marked in
a bit vector B. Then we can reveal any SA[i] by applying LF -mapping at most
d times until finding an entry j such that SA[j′] is sampled for some j′ < j and
j − j′ ≤ r. The candidate j′ < j to check is j′ = select1(B, rank1(B, j)), where
select1(B, x) gives the position of the x-th 1 in B. Then SA[j] corresponds to
suffix T k

S[rank1(B,j′)]+c,n
, where S is the table storing the sampled suffixes in the

order they appear in SA, c < d is the number of times LF -mapping was applied,
and k = j − j′ + 1.

Generalizing the scheme to work under mutations is non-trivial. We introduce
a strategy that splits the suffixes into two classes A and B such that class A
suffixes are computed via T 1 samples and for class B we add new samples from
all the texts. Recall Lemma 2; Class B contains the c suffixes whose significant
prefixes overlap one or more mutations. Class A contains all other suffixes.

Let us first consider the case when SA[i] is a class B suffix. Class B suffixes
form at most s disjoint regions in texts T k, 2 ≤ k ≤ r. We sample every d-th
suffix inside each of these regions. The suffix array indexes containing these sam-
pled suffixes are marked in a bit-vector E[1, N], and a table SB[1, rank1(E, N)]
stores these sampled suffixes in the order they appear in SA. Retrieving SA[i]
is completely analogous to the standard sampling scheme by using SB in place
of S and E in place of B. The space is bounded by O((c/d) log N), which is
O(((s logσ N)/d) log N) in the average case.

Computing SA[i] for class A suffixes is more challenging than in the case
of r identical texts, when all suffixes were class A. The problem can be di-
vided into the following subproblems: (i) Not all sampled suffixes of T 1 will
have counterparts in all the other texts. Hence, we need to store explicitly a list
Q[rank1(B, SA

−1[i · d])] = k1k2 · · · kp denoting texts T k1 , T k2 , . . . , T kp , p ≤ r,
that correspond to a sampled suffix T 1

i·d,n. However, this takes too much space.
(ii) Class B suffixes break the order of the suffixes aligned to the same sampled
T 1 suffix, making it difficult to know, once at SA[j], whether there is a sampled
suffix of T 1 at some close enough position SA[j′].

Let us consider subproblem (ii) first. A solution is to explicitly mark all class
B suffixes in SA into a bit-vector F [1, N], and to store for each sampled suffix
T 1

i·d,n its lexicographic rank e among the suffixes in the list Q[rank1(B, SA
−1[i ·

d])] = k1k2 · · · kp, that is, e such that ke = 1. Now, consider again the situation
where SA[i] belongs to class A and LF mapping has brought us to entry SA[j].

Let us compute prev = select1(B, rank1(B, j)), succ = select1(B, rank1(B, j)+
1), dprev = (j − prev) − (rank1(F, j) − rank1(F, prev)), and dsucc = (succ −
j) − (rank1(F, succ) − rank1(F, j)). Let Q[rank1(B, prev)] = k1k2 · · ·kp and e
be such that ke = 1. If dprev ≤ p − e then ke+dprev is the number of the text
where suffix SA[j] belongs to. This follows from the fact that the effect of class
B suffixes is eliminated using rank, so it remains to calculate how many class
A suffixes there are between the sampled suffix and current position. If this
number is smaller than (or equal to the) the number of suffixes with rank higher
than that of SA[prev] in the list Q[rank1(B, prev)], then (and only then) SA[j]
belongs to the same list. Analogously, one can check whether SA[j] belongs to
the list Q[rank1(B, succ)] = k1k2 · · · kp′ of SA[succ]. After at most d steps of LF -
mapping the correct Q-list is found. The additional space needed is O(c log N−n

c
)

bits for the BSD of bit vector F .
Finally, we are left with subproblem (i): the lists Q[1], Q[2], . . . , Q[n/d] occupy

in total O((n/d)r log r) bits. We will next improve the space to O(s log s) bits
modifying a classical solution by Overmars [16] to kth element/rank searching in
the past. The original structure is reviewed in Theorem 1 and then Theorem 2
improves the space and makes the structure confluental persistent (see [11] for
background).

Definition 4. Let E(t) = et
1e

t
2 · · · e

t
pt
∈ R∗ = {1, 2, . . . , r}∗ be a sequence of

elements at time point t ∈ H, where H ⊆ H = {1, 2, . . . , h}, such that E(t)
can be constructed from E(tprev), tprev = max{t′ ∈ H | t′ < t}, by deleting
some etprev

k or inserting a new element e ∈ R between some etprev
k−1 and etprev

k (or

before etprev
1 or after etprev

pt
). The persistent selection problem is to construct a

static data structure D on {E(t)|t ∈ H} that supports operation select(t, k) = et
k.

The online persistent selection problem is to maintain D such that it supports
insert(t, e, k) and delete(t, k), where value t must be at least max(H). The con-
fluental persistent selection problem allows value t to be any t ∈ H also for
insertions and deletions.

Theorem 1 ([16]). There is a data structure D for the online persistent se-
lection problem occupying O(x(log x log h + log r)) bits of space and supporting
select(t, k) in O(log x) time, and insert(t, e, k) and delete(t, k) in amortized
O(log x) time, where x is the number of insertion and deletion operations ex-
ecuted during the lifetime of D.

Proof. (Sketch) The structure D is a variant of balanced binary tree that stores
subtree sizes in its internal nodes, enhanced with path copying and fractional
cascading to support persistence: Consider a tree T (t) for storing elements of
E(t) in its leaves and having subtree sizes stored in its internal nodes. Selecting
the k-th leaf equals accessing et

k. It is easy to find that leaf by following the
path from the root and comparing k with the sum of subtree sizes of nodes that
remain hanging left side of the path; if at node v the current sum plus subtree
size of the left child of v is smaller than k, go right, otherwise go left. Now,
consider an insertion to produce E(t) from E(tprev). To produce T (t) one can
add a new leaf to T (tprev) and increment the subtree sizes by one on the path

to the new leaf. To make this change persistent, the idea in [16] is to copy the old
subtree size information into a new field on each node on the path and increment
that. The field is labeled with the time t and also pointers are associated to the
corresponding fields on the left and right child of the node, respectively. Here
corresponding means a field whose time-stamp is largest t′ such that t′ ≤ t.
Analogous procedure is executed for deletions, except that the corresponding leaf
is not deleted, but only the subtree sizes are updated accordingly. This procedure
is repeated over all time points and the tree is rebalanced when necessary. The
rotations to rebalance the tree require merging the lists of fields storing the time-
stamped information. The cost of rebalancing can be amortized over insertions
and deletions [16]. The root of the tree stores the time-stamped list as a binary
search tree to provide O(log x) time access to the entries. The required space for
the tree itself is O(x log x log h) bits as each of the x updates creates a new field
occupying O(log h) bits for each of the O(log x) nodes on the path from root to
the leaf. In addition, each leaf contains a value of size log r bits.

Theorem 2. There is a data structure D for the persistent selection problem
occupying O(x(log x + log h + log r)) bits of space and supporting select(t, k) in
O(log x) time, where x is the number of insertions and deletions to construct D.
There is also an online/confluental version of D that occupies the same space, but
select(t, k) takes O(log2 x) time, and insert(t, e, k) and delete(t, k) take amor-
tized O(log2 x) time.

Proof. We modify the structure of Theorem 1 by replacing the time-stamped
lists of fields in each node of the tree with two partial sums that can be repre-
sented succinctly. Let Sv = sv

0s
v
1s

v
2 , · · · s

v
kv be the list of subtree sizes stored in

some node v, where sv
0 = 0. Let Ŝv = (sv

1 − sv
0)(s

v
2 − sv

1) · · · (s
v
kv − sv

kv−1). We

represent Ŝv via succinct data structure for (dynamic) partial sums to support

operations select(Ŝv, i) =
∑i

j=1 ŝv
j = sv

i . In addition, we construct a bit-vector
Bv[1, kv] where Bv[i] = 1 if and only if the change sv

i came from the right child
of v. Notice that we do not need the explicit fractional cascading links any-
more, as we have the connection select(Ŝv, i) = select(Ŝl, i− i′) + select(Ŝr, i′),
where i′ = rank1(B

v, i), and l and r are the left and right children of v. That
is, select(Ŝl, i − i′) and select(Ŝl, i′) are the subtree sizes of nodes l and r, re-
spectively, at the same time point as sv

i . In the root of the tree we keep the
original binary search tree to map the parameter t to its rank i and after that
the formulas above can be used to compare subtree sizes to value of parameter
k. Notice also that confluental insert and delete are immediately provided if we
can support dynamic select on Ŝv and dynamic rank on Bv.

Let us consider how to provide select(Ŝv, i) = sv
i . First we observe that

∑

v∈T

∑kv

j=1 ŝv
j = O(x log x) because each insertion or deletion changes the sub-

tree size by one on O(log x) nodes. Hence, we can afford to use unary coding for
these values. We represent each Ŝv by a bit-vector F v = f(ŝv

1)f(ŝv
2) · · · f(ŝv

kv),
where f(x) = 1x if x > 0 otherwise f(x) = 0−x, and by a bit-vector G =
10|f(ŝv

1
)|−110|f(ŝv

2
)|−1 · · · 10|f(ŝv

kv)|−1. Then select(Ŝv, i) equals 2 · rank1(F
v, j −

1)− (j− 1), where j = select1(G
v, i+1). That is,

∑

v∈T (|F v|+ |G|)(1+ o(1)) =

O(x log x) bits is enough to support constant time select on all subtree sizes,
when the tree is static. In the dynamic case, select takes O(log x) time [1]. Same
analysis holds for bit-vectors Bv.

In summary, the tree in the root takes O(x log h) bits, and support rank
for t in O(log x) time. The bit-vectors in the main tree occupy O(x log x) bits
and make a slowdown of O(1) or O(log x) per node depending on the case. The
associated values in the leaves occupy O(x log r) bits.

Combining Lemma 4 and RLFM+ structure of Sect. 2.2 with Theorem 2
applied to sampling gives us the main result of the paper:

Theorem 3. Given a collection C and a concatenated sequence T of all the r
sequences T i ∈ C, there is a data structure for the repetitive collection indexing
problem taking

(R log σ + 2R log
N

R
)(1 + o(1)) + O

(

R log log
N

R

)

+O

(

s logσ N log
N

s logσ N

)

+ O(s log s) + O(r log N)

+O(((s logσ N)/d) log N) + O((n/d) log n)

bits of space in the average case. The structure supports count(P) in time
O(|P |tLF), locate(P) in time of count(P) plus O(d(tLF + tSA) + log s) per oc-
currence, display(k, i, j) in time O((d + j − i)(tLF + tSA)), computing SA[i] and
SA

−1[(k, j)] in time tSA = O(d(tLF +tSA)+log s), and T (SA[i]) in time O(log σ),
where tLF = O(log R) and tSA = O(log d).

Proof. (Sketch) The discussion preceding persistent selection developed data
structures occupying O(s logσ N log N

s logσ N
) + O(((s logσ N)/d) log N) bits to

support parts of the remaining locate() operation. These are larger than the
ones for display(). Theorem 2 provides a solution to subproblem (i): we can
replace the lists Q[1], Q[2], . . . , Q[n/d] by persistent select, where the s mutations
cause insertions and deletions to the structure (as they change the rank of a
text between two samples, see Fig. 2 for an example). There will be s such
updates, and on any given position i of the text T 1 (including those that are
sampled) one can select the k-th text aligned to that suffix in O(log s) time. The
space usage of this persistent structure is O(s log s) bits. Computation of SA[i] is
identical to locate(), but computation of SA

−1[(k, j)] needs some interplay with
the structures of Theorem 2, considered next.

In the case tkj belongs to an area where a sampled position is at distance

d, computation of SA
−1[(k, j)] resembles the display operation. Otherwise one

must follow the closest sampled position after t1j to suffix array, and use at

most d times the LF -mapping to find out SA
−1[(1, j)]. Now, to find the rank

of text T k with respect to that of text T 1 in the persistent tree of Theorem 2
storing the lexicographic order of suffixes aligned to position j, one can do the
following. Whenever a new leaf is added to the persistent tree, associate to that

Fig. 2. Persistent selection and changes in the lexicographic order of sampled suffixes.
Text T 1 has been sampled regularly and the pointers to the sampled suffixes are stored
with respect to the BWT sequence. Each such pointer is associated a range containing
the occurrences of the same significant prefix in the mutated copies of T 1. The relative
lexicographic order of these aligned suffixes (shown below the sampled positions) change
only when there is a mutation effect zone between the sampled positions; when an effect
zone starts, the corresponding text is removed from the list, and when it ends (with
the mutation), the text is inserted to the list with a new relative lexicographic order.

text position a pointer to this leaf. These pointers can be stored in O(s log s)
bits and their locations can be marked using s log N

s
(1+ o(1)) space, so that one

can find the closest location to (k, j) having a pointer, using rank in tSA time.
Following this pointer to the persistent tree leaf, and continuing to the root of
the tree (and back), one can compute the rank of the leaf (text T k) in O(log s)
time. Computing the rank of (1, j) is analogous. By comparing these two ranks,
one can find the correct index in the vicinity of SA

−1[(1, j)] making a select()
operation on the bit-vector F used for locate() operation. The overall time is
the same as for computing SA[i]. Finally, with a gap-encoded bit vectors storing
tables C and CB, the operation T [SA[i]] works in AT (N, σ) time.

The confluental version of Theorem 2 can be used to handle dynamic samples.

The result can be used to derive new compressed suffix trees: The entropy-
bounded compressed suffix tree of Fischer et al. [6] uses an encoding of LCP -
values (lengths of longest common prefixes of SA[i] and SA[i + 1]) that consists
of two bit-vectors of length N , each containing R bits set. In addition, only
o(N) bit structures and normal suffix array operations are used for supporting
an extended set of suffix tree operations. We can now use Theorem 3 to support
suffix array functionality and BSD representation [8] to store LCP -values in
2R log N

R
+O

(

R log log N
R

)

) bits. Thus, adding 2R log N
R

+O
(

R log log N
R

)

)+o(N)

Table 1. Base structure sizes and times for count() and display() for various self-
indexes on a collection of genomes of multiple strains of Saccharomyces paradoxus (36
sequences, 409 MB). The genomes were obtained from the Durbin Research Group
at the Sanger Institute (http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp/). Ψ
sampling rate was set to 128 in CSA and to 32 bytes in RLCSA. Reported times are
in microseconds / character.

Index Size (MB) count() display()

CSA 95.51 2.86 0.41
SSA 121.70 0.48 0.40
RLFM 146.40 1.21 1.38
RLCSA 42.78 1.93 0.77
RLWT 34.67 17.30 10.24
RLFM+ 54.77 3.03 2.10

bits to the structure of Theorem 3, one can support all the suffix tree operations
listed in [6] in O(polylog(N)) time.6

3 Implementation and Experiments

So far we have considered only point mutations on DNA, although there are
many other types of mutations, like insertions, deletions, translocations, and
reversals. The runs in the Burrows-Wheeler transform change only for those
suffixes whose lexicographic order is affected by a mutation. In all mutation
types (except in reversals) the effect to the lexicographic order of suffixes is
similar to point mutations, so the expected case bounds limiting the length
of significant prefixes extend easily to the real variation occurring in genomes.
Reverse complementation is easy to take into account as well, by adding the
reverse complement of the base sequence to the collection.

The base structures (e.g. RLFM+ index) for counting queries are universal
in the sense that they do not need to know what and where the mutations are.
Standard sampling techniques can be used to add reasonably efficient support
for locating and displaying, as shown in Table 1 and Fig. 3. Compressed Suffix
Array (CSA) [20], Succinct Suffix Array (SSA) [12, 5], and Run-Length FM-index
(RLFM) [12] are existing indexes similar to our RLCSA, RLWT, and RLFM+,
respectively.

The experiments were performed on a 2.66 GHz Intel Core 2 Duo system
with 3 GB of RAM running Fedora Core 8 based Linux. Counting and locating
times are averages over 1000 patterns of length 10. Displaying a substring of
length l requires the extraction of d/2 + l characters on the average.

6 We remark that the solution is not quite satisfactory, as in o(N) space one can
afford to use the standard suffix array sampling as well. Converting o(N) to o(n) is
an open problem, and it seems to be common to all different compressed suffix tree
approaches.

0 50 100 150 200 250 300 350

0
50

10
0

15
0

20
0

Size (MB)

T
im

e
(µ

s)

CSA
SSA
RLFM
RLCSA
RLWT
RLFM+

Fig. 3. Sizes and times for locate() for self-indexes on the S paradoxus collection.
Each index was tested with sampling rates d = 32, 128, and 512. Reported times are
in microseconds / occurrence.

RLWT and RLFM+ currently store the suffix array samples in a more space
efficient manner than RLCSA. By using the same method for all three indexes,
the size differences between them would be determined only by the sizes of base
structures for counting. On the other hand, locate() in RLCSA and RLWT
has been optimized for retrieving multiple occurrences in parallel. As the base
structures are run-length encoded, we can perform the base step (LF -mapping
in RLWT) for an entire run for roughly the same cost as for a single occurrence.
If similar optimizations were implemented in RLFM+, its locating speed would
be close to that of RLCSA.

The new structures for display() and locate() require the alignment of each
sequence with the base sequence to be given; for succinctness we considered the
easy case of identical length sequences and point mutations (where the alignment
is trivial to compute). The structures are easy to extend to more general align-
ments. Our current implementation supports alignments with gaps (i.e. runs of
Ns) as well as insertions and deletions in addition to substitutions.

The main component required is the static structure supporting persistent
selection. For its construction, we implemented also the dynamic structure sup-
porting online persistent selection (with minor modifications it would support
confluental persistent selection as well). Once it is constructed for the given
alignment, it is converted into a static structure. The static structure is in fact
more space-efficient than the one described in Theorem 2, as we discard com-

Table 2. Standard sampling versus persistent selection. The rows give the size of the
base structure (RLWT), size of suffix array samples, size of display structures, size of
persistent selection structure including bookkeeping of zones, and the total size.

Mutation rate 0.001 Mutation rate 0.0001
Approach/Size Standard Persistent Standard Persistent

Base (MB) 4.06 4.06 2.19 2.19
Samples (MB) 1.24 0.28 1.02 0.25
Display (MB) 0.32 0.07
Persistent (MB) 3.22 0.31

Total size (MB) 5.30 7.89 3.21 2.82

pletely the tree structure and instead concatenate levelwise the two bitvectors
stored at the nodes of the tree; a third bitvector is added marking the leaves,
which enables us to navigate in the tree whose nodes are now represented as
ranges. The time-to-rank mapping in the root of the persistent tree can be
stored space-efficiently using the BSD representation. The space requirement
is 6x log x(1 + o(1)) + x log h

x
(1 + o(1)) + O(x log log h

x
) + x log r bits, where

6x log x(1 + o(1)) comes from the 3 bitvectors of length x supporting rank
and select on each of the at most 2 log x levels of the red-black balanced tree,
x log h

x
(1+o(1))+O(x log log h

x
) comes from the BSD representation, and x log r

from the values stored at leaves.

The interesting question is at which mutation rates the persistent selection
approach will become competitive with the standard sampling approach. With
the mutation rates occurring in yeast collection of Fig. 3, the persistent selection
approach does not seem to be a good choice; it occupied 8.49 MB on the 36 strains
of S paradoxus chromosome 2 (28.67 MB), while RLWT with standard sampling
approach occupied 3.97 MB.7 The sampling parameters were chosen so that
both approaches obtained similar time efficiency (403 versus 320 microseconds
for one locate, respectively). To empirically explore the turning point where
the persistent selection approach becomes competitive, we generated a DNA
sequence collection with 100 copies of a 1 MB reference sequence and applied
different amount of random mutations on it. Table 2 illustrates the turning point
by giving the space requirements for RLWT+sampling versus RLWT+persistent
selection on two different mutation rates, where their order changes. We used
sampling rate d = 512 for standard sampling, and d = 64 (d = 32) for persistent
selection approach on mutation rate 0.001 (on mutation rate 0.0001). This made
the running times reasonably close; for example, one locate took 172 versus 184
microseconds on 0.0001 mutation rate, respectively.

7 We observed that the given multiple alignments were not the best possible; the size
would be reduced significantly by the choice of better consensus sequences.

4 Conclusions

We have studied the problem of representing highly repetitive sequences in such
a way that their repetitiveness is exploited to achieve little space, yet at the
same time any part of the sequences can be extracted and searched without
decompressing it. This problem is becoming crucial in Computational Biology,
due to the cheaper and cheaper availability of sequence data and the interest in
analyzing it.

We have shown that the current compressed text indexing technology is not
well suited to cope with this problem, and have devised variants that have shown
to be much more successful.

In the full paper we will show how to allow for dynamism, that is, permitting
to handle a compressed collection where insertion and deletion of sequences
can be efficiently intermixed with searches. We achieve the same space bounds,
whereas the time requirements are multiplied roughly by a logarithmic factor.

An important challenge for future work is to look for schemes achieving
further compression. For example, LZ77 algorithm is an excellent candidate to
compress repetitive collections, achieving space proportional to the number of
mutations. For example, the 409 MB collection of Saccharomyces paradoxus
strains studied here can be compressed into 4.93 MB using an efficient LZ77
implementation8. This is over 7 times less space than what the new self-indexes
studied in this paper achieve. Yet, LZ77 has defied for years its adaptation
to a self-index form. Thus there is a wide margin of opportunity for such a
development.

Acknowledgments

We wish to thank Teemu Kivioja from Institute of Biomedicine, University of
Helsinki, for turning our attention to the challenges of individual genomes. We
wish also to thank Kimmo Palin from Sanger Institute, Hinxton, for pointing us
the yeast genome collection.

References

1. D. Blanford and G. Blelloch. Compact representations of ordered sets. In Proc.
15th SODA, pages 11–19, 2004.

2. M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report Technical Report 124, Digital Equipment Corporation, 1994.

3. G. M. Church. Genomes for all. Scientific American, 294(1):47–54, 2006.
4. P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the ACM,

52(4):552–581, 2005.
5. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representa-

tions of sequences and full-text indexes. ACM Transactions on Algorithms (TALG),
3(2):article 20, 2007.

8 http://p7zip.sourceforge.net/

6. J. Fischer, V. Mäkinen, and G. Navarro. An(other) entropy-bounded compressed
suffix tree. In Proc. 19th Annual Symposium on Combinatorial Pattern Matching
(CPM), LNCS 5029, pages 152–165, 2008.

7. R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing, 35(2):378–407,
2006.

8. A. Gupta, W.-K. Hon, R. Shah, and J.S. Vitter. Compressed data structures:
Dictionaries and data-aware measures. In DCC ’06: Proceedings of the Data Com-
pression Conference (DCC’06), pages 213–222, 2006.

9. D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

10. N. Hall. Advanced sequencing technologies and their wider impact in microbiology.
The Journal of Experimental Biology, 209:1518–1525, 2007.

11. H. Kaplan. Handbook of Data Structures and Applications (D. P. Mehta and S.
Sahni Eds.), chapter 31: Persistent Data Structures. Chapman & Hall, 2005.

12. V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing, 12(1):40–66, 2005.

13. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993.

14. G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3):407–430, 2001.

15. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1):article 2, 2007.

16. M. H. Overmars. Searching in the past, i. Technical Report Technical Report
RUU-CS-81-7, Department of Computer Science, University of Utrecht, Utrecht,
Netherlands, 1981.

17. E. Pennisi. Breakthrough of the year: Human genetic variation. Science, 21:1842–
1843, December 2007.

18. L. Russo, G. Navarro, and A. Oliveira. Dynamic fully-compressed suffix trees. In
Proc. 19th Annual Symposium on Combinatorial Pattern Matching (CPM), LNCS
5029, pages 191–203, 2008.

19. L. Russo, G. Navarro, and A. Oliveira. Fully-compressed suffix trees. In Proc.
8th Latin American Symposium on Theoretical Informatics (LATIN), LNCS 4957,
pages 362–373, 2008.

20. K. Sadakane. New text indexing functionalities of the compressed suffix arrays.
Journal of Algorithms, 48(2):294–313, 2003.

21. K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing
Systems, 41(4):589–607, 2007.

22. J. Sirén, N. Välimäki, V. Mäkinen, and G. Navarro. Run-length compressed indexes
are superior for highly repetitive sequence collections. In Proc. of 15th Symposium
on String Processing and Information Retrieval (SPIRE 2008), LNCS 5280, pages
164–175, 2008.

23. M. S. Waterman. Introduction to Computational Biology. Chapman & Hall, Uni-
versity Press, 1995.

