Project in String Processing Algorithms

SPRING 2012, PERIOD III VELI MÄKINEN

Who is this course for?

- Master's level course in Computer Science, 2 cr
- Continuation of String Processing Algorithms course
- Requires some programming experience
- Subprogram of Algorithms and Machine Learning
- Together with String Processing Algorithms one of the three special course combinations, one of which must be included in the Master's degree.
- Suitable addition to Master's degree program for Bioinformatics, particularly for those interested in biological sequence analysis.
- Good fit for Subrogramme of Software systems

Course structure

• Three main tasks

- Implementation of string processing algorithms
- > Experimental analysis and/or comparison of the algorithms
- Presentation of the results as a poster
- Each task has about the same weight in grading
- Can be done in groups of at most three person
 - Role of each person in the group need to be reported when returning the code

Algorithm implementation

Each student should implement some part of the core algorithms

The number depends on the degree of difficulty
Can be based on existing implementations

• Any programming language, provided that:

Compiles and runs on department computers Same within a group

Important qualities:

- o correct, well tested
- o readable, well documented
- o efficient, well tuned

Algorithm implementation (continued)

• Return to instructor:

- Implementation code
- Scripts for compiling and running tests
- Documentation
 - × description of what was done: existing code used, main design
 - **×** the role of each person in the group
 - × decisions, tuning details etc.
 - × guidance for understanding the code
 - instructions for compiling and running
 - × format is free, even comments to code is OK
- By email in a single package (zip, tar.gz, or something like that)

Experiments

• The purpose of the experiments:

- Determine the performance of algorithms under different conditions
- Find best algorithms, variations or parameter settings

• Choice of test data is important

- Try to find best and worst cases for each algorithm
- Compare theory and practice
- Use generated, artificial data for fine control of parameters, real world data for real world performance

• Avoid too trivial experiments.

• Mainly joint responsibility of a group, but each student should make sure that her or his algorithms are well represented.

Poster

• Includes:

- Description of the problem
- Description of algorithms and implementations
- Experimental setting (repeatability)
- > Experimental results and their interpretation

• Presented to an audience of other students and staff of the department

• Not all have taken the String Processing Algorithms course (recently)

• Visual clarity is important

- Avoid too much detail, include only main points and results.
- Additional details may be explained verbally.
- Use figures, graphs, colors, etc.

• See examples

Tentative schedule

- 17.1 Formation of groups, selection of topics.
- 24.1 Main structure of the algorithms studied, work plan ready
- 31.1 Algorithms studied in the implementation level detail
- 7.2 Initial design of experiments
- 14.2 Implementations nearly finished, final design of experiments, initial design of poster
- 17.2 Return of implementations (noon)
- 21.2 Final design of poster
- ??.2 Poster presentation

Topics

- New topics here: www.cs.helsinki.fi/u/vmakinen/strproject12/strproj ect12.pdf
- Previous year's topics here: www.cs.helsinki.fi/juha.karkkainen/opetus/10s/spa /opening.pdf