

1

Abstract— Relational database systems are today the most
common database systems. The business requirements are today
so demanding that there has been need for two different technical
approaches: OLTP (OnLine Transaction Processing) and OLAP
(OnLine Analytic Processing). OLTP consists of tuples that are
arranged as rows which are stored in blokcs or tables. Indexing
allows fast retrieval of single tuple, but as the number of rows
increases the slower the retrieval comes. OLAP is organized often
in star schemas with fact and dimension tables.

The increasing main memory capacities has lead to in-memory
databases of relational type. However the tests for row storage in-
memory databases were not showing any significant advantages
over leading relational type databases. Column oriented OLAP
has already been used for years, but increased main memory
capacities has made column oriented more interesting solution.
This report introduces some examples of in-memory database
with column oriented OLAP.

Index Terms— Hyper, columnar databases, in-memory,
OLAP.

I. INTRODUCTION
HE relational database systems are today mostly separated
in two different technical solutions because of the

increased number of tuples and for performance issues. OLTP
is designed for fast row inserts, updates and selections. OLAP
instead is designed for long lasting queries. An OLAP
database is populated with rows from OLTP database. This
means complicated data extracting, transferring and loading
mechanism. This mechanism is usually slow and can be made
only once a day submitting batch jobs during night time. Thus
that is the challenge, how one could avoid this overhead and
merge OLTP and OLAP back in the same database system and
manage to preserve the fast OLTP transactions and as well as
achieve up-to-date data for OLAP queries.

This seminar report highlights some in-memory column
database approaches. All examples describe solutions for one
system OLTP and OLAP. In section 2 is given an overview of
Hasso Plattner’s article [6] A Common Database Approach
for OLTP and OLAP Using an In-Memory Column Database.
Section 3 presents Hyper database system article [4], Hyper:
Adapting Columnar Main-Memory Data Management for
Transactional AND Query Processing. Section 4 contains

compression overview of Hyper database systems article [2],
Compacting Transactional Data in Hybrid OLTP&OLAP
Databases.

II. A COMMON DATABASE APPROACH
This section is based on Hasso Plattner’s work [6].
Today’s computers provide enormous amout of computing
power. Blades with 8 CPUs and 16 cores per CPU gives us
128 computing units. To optimize the use of this computing
power we have to understand memory hierarchies, cache sizes,
and how to enable parallel processing within one program.
We can achieve memory savings with column store using the
more efficient vertical compression along columns. According
to Hasso Plattners analyses of real systems with customer
data, most applications in enterprise computing are actually
based on set processing and not direct tuple access. So, this
lead to substantial benefit when using column store data
arrangement. The main difficulty with parallel processing is
how the programs can be divided into equal-sized pieces,
which then can be processed in parallel without much
synchronization. The scan operation can be split easily into
equal parts and distributed to multiple cores. All calculations
on tuple level will automatically be parallized, since they are
completely independent of each other.
The introduction of indices is not necessary because the
scanning speed is so enormous, especially if parallel
processing across multiple cores is active. On current CPUs,
we can expect to process 1 MB per ms and with parallel
processing on 16 cores more than 10 MB per ms. With this
kind of speed, we can scan 2.5 million tuples for qualification
1 ms. And therefore there is no need for primary key index
for most of the tables anymore but we can use the full column
scan instead. Column storage is so well suited for modern
CPUs that the full scope of the relational algebra can be used
without shortcomings of performance. It is important to note
that every attribute now represents a potential index. The hard
disk is used only for transaction logging and snapshots for fast
recovery. In fact, disk has become yesterday’s tape.

Next claim: column storage is suited for update-intensive
applications. It is said that column store databases are
expensive to update. Despite the fact that typical enterprise

In-Memory Columnar Databases - Hyper
(November 2012)

Arto Kärki, University of Helsinki, Helsinki, Finland, arto.karki@tieto.com

T

2

systems are not really update-intensive, by using insert-only
and by not maintaining totals, we can even reduce these
updates. Since there are less updates, there are less locking
issues and the tables can be more easily distributed
(partitioned) horinzontally across separate computing units
(blades) with a shared nothing approach. Having basically
eliminated updates, we now need to consider only inserts and
reads. With the insert approach we can simplify database
structure and can reduce the amount the database objects. The
insert-only approach and calculation algorithms executed on
the fly replace all indices, materialized views, and change
history.

Consequences of the insert-only approach. The insert-only
approach has consequences on how locking is handled both on
the application- and database level. The application-level
locks are implemented using an in-memory data structure.
With the insert-only approach the update of tuples by the
application could be eliminated with the exception of binary
status variables. Each inserted tuple carries timestamp of its
creation and another timestamp for update. Only the latest
version of a tuple carries no update timestamp and is therefore
easily identifiable. Since multiple queries can coincide with
inserts and updates, extreme care has to be taken to avoid too
much locking on table-, column- or dictionary level. Since the
inserts are realized as an append to the delta store no exclusive
lock should be necessary. As a general rule the database
system should perform each task with maximum speed, even
occupying all resources (e.g. CPU cores) in order to reduce the
potential for collisions and increasing management overhead.

Column storage is superior to row storage with regards to
memory consumption. Under the assumption to build a
combined system for OLTP and OLAP data has to be
organized for set processing, fast inserts, maximum (read)
currency and low impact of reorganization. In column store,
the compression via conversion of attribute values and the
complete elimination of columns with null values only is very
efficient but can be improved: all characters blank, all
characters zero, and decimal floating point zero as null values.
Comparing the memory requirements of column and row
storage of a table, the difference in compression rate is
obvious. Various analyses of existing customer data show a
typical compression rate of 20 for column store and a
compression rate of 2 for (write-optimized) row storage on
disk. A column storage allows us to eliminate all materialized
views (aggregates) and calculate them algorithmically on
demand.

What happens to typical dataentry transactions. The database
update is reduced to a mere insert. No indices need to be
maintained and for journal entries, such as customer orders,

stock movements etc., no update of aggregates takes place. As
a result, the throughput of transactional data entry will
improve.

The impact on application development. Applications should
use relational algebra and the extended SQL-features to
delegate as much of the logic to the database level and the
stored procedures. The strict use of minimal projections is
recommended. The high performance of the database makes
caching of data on the application level largely superfluous.
The option to partition tables in multiple dimensions helps to
achieve minimum response times even larger tables.

Plattner’s ongoing research efforts are concentrated on
creating a benchmark for combined OLTP and OLAP systems,
which is derived from real customer systems and data. They
expect that the impact on management of companies will be
huge, probably like the impact of Internet search engines on
all of us.

III. HYPER: HYBRID OLAP & OLTP

This section describes HyPer architecture and is based on
paper by Kemper, Neumann, Funke, Leis and Mühe [4].

The two workloads of online transaction processing (OLTP)
and online analytical processing (OLAP) present different
challenges for database architectures. Hyper is a efficient
hybrid system, that can handle both OLTP and OLAP
simultaneously by using hardware-assited replication
mechanism to maintain consistent snapshots of the
transactional data.

Fig. 1. Virtual Memory Snapshots to separate OLTP & OLAP.

Hyper’s performance is due to the following design choices:
in-memory data management, SQL table definitions are
transformed into simple vector-based virtual memory
representations – which constitutes a column-oriented physical
storage scheme, OLAP processing is separated from the
mission-critical OLTP transaction processing by fork-ing
virtual memory snapshots (see Figure 1), transactions and

3

queries are specified in SQL and are efficiently compiled into
LLVM assembly code [5], parallelism is this serial execution
model is achieved by logically partitioning the database and
admitting multiple partition-constrained transactions in
parallel, use of hash indexes for exact match (see Figure 2 and
3).

Fig 2. Example Query and Execution Plan.

 Fig 3. Compiled query for Fig. 2.

Hyper relies on the ability to efficiently create a transaction-
consistent snapshot of the database. There are also different
mechanisms for snapshot creation which do not diminish
OLTP performance. These techniques are hardware page
shadowing approach also used by Hyper, tuple shadowing
which is used by SolidDB and a variant of the so called
ZigZag approach as evaluated by Cao [1]. These three
techniques can be subdivided by the method they use to
achieve a consistent snapshot while still allowing high

throughput OLAP transactions on the data. The hardware page
shadowing approach uses a hardware supported copy on write
mechanism to create a snapshot. In contrast to that, tuple
shadowing as well as the twin object approach use software
mechanisms to keep a consistent snapshot of the data intact
while modifications are stored separately.

Database compaction: hot/cold clustering and compression.
While some of the existing work addresses the problem of
updates in compressed databases, none of the techniques
developed for OLAP systems can be easily adapted for OLTP-
style workloads. To avoid hurting transactional throughput,
OLTP engines often refrain from compressing their data and
thus waste memory space. The lack of compression becomes
even more impeding, when the database system is capable of
running OLAP-style queries on the transactional data, like the
HyPer system. In this scenario, compression can not only
reduce memory consumption significantly due to columnar
storage, but also promises faster query execution.

Approaches that maintain two separate data stores, an
uncompressed store for freshly inserted data and a compressed
store for older data, require costly merge phases that require
exclusive locking of tables when moving data to the
compressed store. They also tend to complicate and slow
down query and transaction processing. HyPer approach to
compression in hybrid OLTP&OLAP column stores is based
on the observation that while OLTP workloads frequently
modify the dataset, they often follow the working set
assumption: only a small subset of the data is accessed and an
even smaller subset of this working set is being modified.
HyPer uses a lightweight monitoring component to observe
accesses to the dataset and identify opportunities to reorganize
data such that it is clustered into hot and cold parts. After
clustering, the database system compresses cold chunks to
reduce memory consumption and streamline queries.

In-memory technology has facilitated a reunion of OLTP
and OLAP systems by separating the two disparate workloads
via snapshotting. So, after all, a “one size fits for all” system
appears possible. In the comparison of snapshot techniques it
was demonstrated the benefits of hardware-assisted shadow
paging over software approaches. The hot/cold clustering
stores frequently accessed tuples together on regular memory
pages while cold, immutable tuples can reside on huge pages.
This leads to the advantageous combination of page table size
(and thus snapshot creation costs) and replication overhead. In
addition, it allows to compress the majority of the database
without causing OLTP throughput declines.

4

IV. HYPER: COMPACTING TRANSACTIONAL DATA
This section on Compacting Transactional Data is based on
paper by Funke, Kemper and Neumann [2]. It shortly
describes design of HyPer’s data compression.

Despite memory sizes of several Terabytes in a single
commodity server, RAM is still a precious resource: Since
free memory can be used for intermediate results in query
processing, the amount of memory determines query
performance to a large extent. Modern in-memory database
systems with high-performance transaction processing
capabilities face a dilemma: On the one hand, memory is a
scarce resource and these systems would therefore benefit
from compressing their data. On the other hand their fast and
lean transaction models penalize additional processing
severely which often prevents them from compressing data in
favor of transaction throughput. As a result of this dilemma,
OLTP engines often refrain from compressing their data and
thus waste memory space. The lack of a compact data
representation becomes even more impeding, when the
database system is capable of running OLAP-style queries on
the transactional data, like the HyPer system.

Some related work has been done as Héman et al. proposed
Positional Delta Trees [3]. They allow for updates in ordered,
compressed relations and yet maintain good scan performance.
Binning et al. propose ordered-dictionary compression that
can be bulk-updated efficiently. Both techniques are not
designed for OLTP-style updates, but rather for updates in
data warehouses. Oracle 11g has on OLTP Compression
feature. This feature seems to be applicable only in pure OLTP
workloads without analytical queries. Approaches that
maintain two separate data stores, an uncompressed “delta”
store for freshly inserted data and a compressed “main”-store
for older data, require costly merge phases that periodically
insert new data into the main store in a bulk operation.

HyPer data representation combines horizontal partitioning
and columnar storage: A relation is represented as a hierarchy
of partitions, chunks and vectors (see figure 4). Hot/cold
clustering aims at partitioning the data into frequently
accessed data items and those that are accessed rarely (or not
at all). This allows for physical optimizations depending on
the access characteristics of data (see figure 5). HyPer
measures the “temperature” of data on virtual memory page
granularity. Since HyPer stores attributes column-wise, this
allows HyPer to maintain a separate temperature value for
each attribute of a chunk, i.e. for each vector. Both read and
write accesses to the vectors are monitored by the Access
Observer component using a lightweight, hardware-assisted
approach. It distinguishes four states a vector can have: hot,
cooling, cold or frozen.

Fig. 4. (a) Example relation. (b) Physical representation of
example relation (without compression).

 Fig. 5. Hot/cold clustering for compaction.

Cold chunks of the data can be “frozen”, i.e. converted into a
compact, OLAP-friendly representation as they are likely to be
almost exclusively accessed by analytical queries in the future.
They are compressed, stored on huge pages (2MB per page on
x86) for frozen data has multiple advantages over the use of
regular pages (4kB on x86). First:scanning huge pages is
faster than scanning regular pages. Second: the translation
lookaside buffer (TLB) has separate sections for huge and
normal pages on most platforms and so the two separate
workloads do not compete for the TLB. And third: huge pages
speed up snapshotting via faster copying of the process’s page.

5

HyPer do not propose new compression algorithms, but use
well-known algorithms. HyPer’s main goal is to impact
transaction processing as little as possible and in the same
time speed-up query execution. The small part of data is
frequently accessed – and freshly inserted data in particular –
is left uncompressed and thus efficiently accessible for
transactions. For cold chunks, HyPer proposes to use
dictionary compression and run-length encoding, which was
found to be beneficial for column stores.

V. CONCLUSION

HyPer’s In-memory columnar database system development
seems to give us very promising results: world record
transaction processing throughput and best-of-breed OLAP
query response times and better OLTP throughput than that of
dedicated OLTP engines. Furthermore there is no need for
resource consuming ETL processes. If these goals are met and
they can be achieved with moderate enough costs, there will
be enterprise systems for larger companies. This kind of
technique may well be successfully competing with the
today’s technology in the near future.

REFERENCES
[1] T. Cao, M. Salles, B. Sowell, Y. Yue, J. Gehrke, A. Demers, and W.

White. Fast Checkpoint Recovery Algorithms for Frequently Consistent
Applications. In SIGMOD, 2011.

[2] Florian Funke, Alfons Kemper, Thomas Neumann: Compacting
Transactional Data in Hybrid OLTP & OLAP Databases. PVLDB
5(11):1424-1435(2012).

[3] S. H´eman, M. Zukowski, N. J. Nes, L. Sidirourgos,and P. A. Boncz.
Positional Update Handling in Column Stores. In SIGMOD, pages 543–
554, 2010.

[4] Alfons Kemper, Thomas Neumann, Florian Funke, Viktor Leis, Henrik
Mühe: HyPer:Adapting Columnar Main-Memory Data Management for
Transactional AND Query Processing. IEEE Data Eng. Bull.
(DEBU)35(1):46-51(2012).

[5] T. Neumann. Efficiently compiling efficient query plans for modern
hardware. PVLDB, 4(9):539–550, 2011.

[6] Hasso Plattner: A common database approach for OLTP and OLAP
using an in-memory column database. SIGMOD 2009:1-2.

