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Abstract— Relational database systems are today the most 
common database systems. The business requirements are today 
so demanding that there has been need for two different technical 
approaches: OLTP (OnLine Transaction Processing) and OLAP 
(OnLine Analytic Processing). OLTP consists of tuples that are 
arranged as rows which are stored in blokcs or tables. Indexing 
allows fast retrieval of single tuple, but as the number of rows 
increases the slower the retrieval comes. OLAP is organized often 
in star schemas with fact and dimension tables.  

The increasing main memory capacities has lead to in-memory 
databases of relational type. However the tests for row storage in-
memory databases were not showing any significant advantages 
over leading relational type databases. Column oriented OLAP 
has already been used for years, but increased main memory 
capacities has made column oriented more interesting solution. 
This report introduces some examples of in-memory database 
with column oriented OLAP. 
 

Index Terms— Hyper, columnar databases, in-memory, 
OLAP. 
 

I. INTRODUCTION 
HE relational database systems are today mostly separated 
in two different technical solutions because of the 

increased number of tuples and for performance issues. OLTP 
is designed for fast row inserts, updates and selections. OLAP 
instead is designed for long lasting queries. An OLAP 
database is populated with rows from OLTP database. This 
means complicated data extracting, transferring and loading 
mechanism. This mechanism is usually slow and can be made 
only once a day submitting batch jobs during night time. Thus 
that is the challenge, how one could avoid this overhead and 
merge OLTP and OLAP back in the same database system and 
manage to preserve the fast OLTP transactions and as well as 
achieve up-to-date data for OLAP queries.    
 
This seminar report highlights some in-memory column 
database approaches. All examples describe solutions for one 
system OLTP and OLAP.  In section 2 is given an overview of 
Hasso Plattner’s article [6]  A Common Database Approach 
for OLTP and OLAP Using an In-Memory Column Database.  
Section 3 presents Hyper database system article [4], Hyper: 
Adapting Columnar Main-Memory Data Management for 
Transactional AND Query Processing. Section 4 contains 
 

 

compression overview of Hyper database systems article [2], 
Compacting Transactional Data in Hybrid OLTP&OLAP 
Databases. 

 

II. A COMMON DATABASE APPROACH 
This section is based on Hasso Plattner’s work [6].   
Today’s computers provide enormous amout of computing 
power.  Blades with 8 CPUs and 16 cores per CPU gives us 
128 computing units. To optimize the use of this computing 
power we have to understand memory hierarchies, cache sizes, 
and how to enable parallel processing within one program.  
We can achieve memory savings with column store using the 
more efficient vertical compression along columns. According 
to Hasso Plattners analyses of real systems with customer 
data, most applications in enterprise computing are actually 
based on set processing and not direct tuple access. So, this 
lead to substantial benefit when using column store data 
arrangement.  The main difficulty with parallel processing is 
how the programs can be divided into equal-sized pieces, 
which then can be processed in parallel without much 
synchronization. The scan operation can be split easily into 
equal parts and distributed to multiple cores.  All calculations 
on tuple level will automatically be parallized, since they are 
completely independent of each other. 
The introduction of indices is not necessary because the 
scanning speed is so enormous, especially if parallel 
processing across multiple cores is active. On current CPUs, 
we can expect to process 1 MB per ms and with parallel 
processing on 16 cores more than 10 MB per ms. With this 
kind of speed, we can scan 2.5 million tuples for qualification 
1 ms.  And therefore there is no need for primary key index 
for most of the tables anymore but we can use the full column 
scan instead. Column storage is so well suited for modern 
CPUs that the full scope of the relational algebra can be used 
without shortcomings of performance. It is important to note 
that every attribute now represents a potential index. The hard 
disk is used only for transaction logging and snapshots for fast 
recovery. In fact, disk has become yesterday’s tape.    
 
Next claim: column storage is suited for update-intensive 
applications. It is said that column store databases are 
expensive to update.  Despite the fact that typical enterprise 
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systems are not really update-intensive, by using insert-only 
and by not maintaining totals, we can even reduce these 
updates. Since there are less updates, there are less locking 
issues and the tables can be more easily distributed 
(partitioned) horinzontally across separate computing units 
(blades) with a shared nothing approach. Having basically 
eliminated updates, we now need to consider only inserts and 
reads.  With the insert approach we can simplify database 
structure and can reduce the amount the database objects. The 
insert-only approach and calculation algorithms executed on 
the fly replace all indices, materialized views, and change 
history. 
 
Consequences of the insert-only approach.   The insert-only 
approach has consequences on how locking is handled both on 
the application- and database level. The application-level  
locks are implemented using an in-memory data structure. 
With the insert-only approach the update of tuples by the 
application could be eliminated with the exception of binary 
status variables. Each inserted tuple carries timestamp of its 
creation and another timestamp for update. Only the latest 
version of a tuple carries no update timestamp and is therefore 
easily identifiable. Since multiple queries can coincide with 
inserts and updates, extreme care has to be taken to avoid too 
much locking on table-, column- or dictionary level. Since the 
inserts are realized as an append to the delta store no exclusive 
lock should be necessary. As a general rule the database 
system should perform each task with maximum speed, even 
occupying all resources (e.g. CPU cores) in order to reduce the 
potential for collisions and increasing management overhead. 
 
Column storage is superior to row storage with regards to 
memory consumption. Under the assumption to build a 
combined system for OLTP and OLAP data has to be 
organized for set processing, fast inserts, maximum (read) 
currency and low impact of reorganization. In column store, 
the compression via conversion of attribute values and the 
complete elimination of columns with null values only is very 
efficient but can be improved:  all characters blank, all 
characters zero, and decimal floating point zero as null values. 
Comparing the memory requirements of column and row 
storage of a table, the difference in compression rate is 
obvious. Various analyses of existing customer data show a 
typical compression rate of 20 for column store and a 
compression rate of 2 for (write-optimized) row storage on 
disk. A column storage allows us to eliminate all materialized 
views (aggregates) and calculate them algorithmically on 
demand. 
 
What happens to typical dataentry transactions. The database 
update is reduced to a mere insert. No indices need to be 
maintained and for journal entries, such as customer orders, 

stock movements etc., no update of aggregates takes place. As 
a result, the throughput of transactional data entry will 
improve. 
 
The impact on application development. Applications should 
use relational algebra and the extended SQL-features to 
delegate as much of the logic to the database level and the 
stored procedures. The strict use of minimal projections is 
recommended. The high performance of the database makes 
caching of data on the application level largely superfluous. 
The option to partition tables in multiple dimensions helps to 
achieve minimum response times even larger tables.  
 
Plattner’s ongoing research efforts are concentrated on 
creating a benchmark for combined OLTP and OLAP systems, 
which is derived from real customer systems and data. They 
expect that the impact on management of companies will be 
huge, probably like the impact of Internet search engines on 
all of us. 

III. HYPER: HYBRID OLAP & OLTP 

This section describes HyPer architecture and is based on 
paper by Kemper, Neumann, Funke, Leis and Mühe [4]. 
 
The two workloads of online transaction processing (OLTP) 
and online analytical processing (OLAP) present different 
challenges for database architectures. Hyper is a efficient 
hybrid system, that can handle both OLTP and OLAP 
simultaneously by using hardware-assited replication 
mechanism to maintain consistent snapshots of the 
transactional data.  
 

 
Fig. 1. Virtual Memory Snapshots to separate OLTP & OLAP. 
 
Hyper’s performance is due to the following design choices: 
in-memory data management, SQL table definitions are 
transformed into simple vector-based virtual memory 
representations – which constitutes a column-oriented physical 
storage scheme, OLAP processing is separated from the 
mission-critical OLTP transaction processing by fork-ing 
virtual memory snapshots (see Figure 1), transactions and 
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queries are specified in SQL and are efficiently compiled into 
LLVM assembly code [5], parallelism is this serial execution 
model is achieved by logically partitioning the database and 
admitting multiple partition-constrained transactions in 
parallel, use of hash indexes for exact match (see Figure 2 and 
3). 
  

 
 

 
 

Fig 2. Example Query and Execution Plan.  
 

 
 
   Fig 3. Compiled query for Fig. 2. 
 
Hyper relies on the ability to efficiently create a transaction-
consistent snapshot of the database. There are also different 
mechanisms for snapshot creation which do not diminish 
OLTP performance. These techniques are hardware page 
shadowing approach also used by Hyper, tuple shadowing 
which is used by SolidDB and a variant of the so called 
ZigZag approach as evaluated by Cao [1]. These three 
techniques can be subdivided by the method they use to 
achieve a consistent snapshot while still allowing high 

throughput OLAP transactions on the data. The hardware page 
shadowing approach uses a hardware supported copy on write 
mechanism to create a snapshot. In contrast to that, tuple 
shadowing as well as the twin object approach use software 
mechanisms to keep a consistent snapshot of the data intact 
while modifications are stored separately. 
 
Database compaction: hot/cold clustering and compression. 
While some of the existing work addresses the problem of 
updates in compressed databases, none of the techniques 
developed for OLAP systems can be easily adapted for OLTP-
style workloads. To avoid hurting transactional throughput, 
OLTP engines often refrain from compressing their data and 
thus waste memory space. The lack of compression becomes 
even more impeding, when the database system is capable of 
running OLAP-style queries on the transactional data, like the 
HyPer system. In this scenario, compression can not only 
reduce memory consumption significantly due to columnar 
storage, but also promises faster query execution. 
 
Approaches that maintain two separate data stores, an 
uncompressed store for freshly inserted data and a compressed 
store for older data, require costly merge phases that require 
exclusive locking of tables when moving data to the 
compressed store. They also tend to complicate and slow 
down query and transaction processing. HyPer approach to 
compression in hybrid OLTP&OLAP column stores is based 
on the observation that while OLTP workloads frequently 
modify the dataset, they often follow the working set 
assumption: only a small subset of the data is accessed and an 
even smaller subset of this working set is being modified. 
HyPer uses a lightweight monitoring component to observe 
accesses to the dataset and identify opportunities to reorganize 
data such that it is clustered into hot and cold parts. After 
clustering, the database system compresses cold chunks to 
reduce memory consumption and streamline queries. 
 

In-memory technology has facilitated a reunion of OLTP 
and OLAP systems by separating the two disparate workloads 
via snapshotting. So, after all, a “one size fits for all” system 
appears possible. In the comparison of snapshot techniques it 
was demonstrated the benefits of hardware-assisted shadow 
paging over software approaches. The hot/cold clustering 
stores frequently accessed tuples together on regular memory 
pages while cold, immutable tuples can reside on huge pages. 
This leads to the advantageous combination of page table size 
(and thus snapshot creation costs) and replication overhead. In 
addition, it allows to compress the majority of the database 
without causing OLTP throughput declines.  
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IV. HYPER: COMPACTING TRANSACTIONAL DATA 
This section on Compacting Transactional Data is based on 
paper by  Funke, Kemper and Neumann [2]. It shortly 
describes design of HyPer’s data compression. 
 
Despite memory sizes of several Terabytes in a single 
commodity server, RAM is still a precious resource: Since 
free memory can be used for intermediate results in query 
processing, the amount of memory determines query 
performance to a large extent. Modern in-memory database 
systems with high-performance transaction processing 
capabilities face a dilemma: On the one hand, memory is a 
scarce resource and these systems would therefore benefit 
from compressing their data. On the other hand their fast and 
lean transaction models penalize additional processing 
severely which often prevents them from compressing data in 
favor of transaction throughput. As a result of this dilemma, 
OLTP engines often refrain from compressing their data and 
thus waste memory space. The lack of a compact data 
representation becomes even more impeding, when the 
database system is capable of running OLAP-style queries on 
the transactional data, like the HyPer system. 
 
Some related work has been done as Héman et al. proposed 
Positional Delta Trees [3]. They allow for updates in ordered, 
compressed relations and yet maintain good scan performance. 
Binning et al. propose ordered-dictionary compression that 
can be bulk-updated efficiently. Both techniques are not 
designed for OLTP-style updates, but rather for updates in 
data warehouses. Oracle 11g has on OLTP Compression 
feature. This feature seems to be applicable only in pure OLTP 
workloads without analytical queries. Approaches that 
maintain two separate data stores, an uncompressed “delta” 
store for freshly inserted data and a compressed “main”-store 
for older data, require costly merge phases that periodically 
insert new data into the main store in a bulk operation. 
 
HyPer data representation combines horizontal partitioning 
and columnar storage: A relation is represented as a hierarchy 
of partitions, chunks and vectors  (see figure 4). Hot/cold 
clustering aims at partitioning the data into frequently 
accessed data items and those that are accessed rarely (or not 
at all). This allows for physical optimizations depending on 
the access characteristics of data (see figure 5). HyPer 
measures the “temperature” of data on virtual memory page 
granularity. Since HyPer stores attributes column-wise, this 
allows HyPer to maintain a separate temperature value for 
each attribute of a chunk, i.e. for each vector.  Both read and 
write accesses to the vectors are monitored by the Access 
Observer component using a lightweight, hardware-assisted 
approach. It distinguishes four states a vector can have: hot, 
cooling, cold or frozen.  

 

 
Fig. 4. (a) Example relation. (b) Physical representation of  
example relation (without compression). 
 

 
 
 Fig. 5. Hot/cold clustering for compaction. 
 
Cold chunks of the data can be “frozen”, i.e. converted into a 
compact, OLAP-friendly representation as they are likely to be 
almost exclusively accessed by analytical queries in the future. 
They are compressed, stored on huge pages (2MB per page on 
x86) for frozen data has multiple advantages over the use of 
regular pages (4kB on x86). First:scanning huge pages is 
faster than scanning regular pages. Second: the translation 
lookaside buffer (TLB)  has separate sections for huge and 
normal pages on most platforms and  so the two separate 
workloads do not compete for the TLB. And third: huge pages 
speed up snapshotting via faster copying of the process’s page.  
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HyPer do not propose new compression algorithms, but use 
well-known algorithms. HyPer’s main goal is to impact 
transaction processing as little as possible and in the same 
time speed-up query execution. The small part of data is 
frequently accessed – and freshly inserted data in particular – 
is left uncompressed and thus efficiently accessible for 
transactions. For cold chunks, HyPer proposes to use 
dictionary compression and run-length encoding, which was 
found to be beneficial for column stores. 
 

V. CONCLUSION 

HyPer’s In-memory columnar database system development 
seems to give us very promising results: world record 
transaction processing throughput and best-of-breed OLAP 
query response times and better OLTP throughput  than that of 
dedicated OLTP engines. Furthermore there is no need for 
resource consuming ETL processes. If  these goals are met and 
they can be achieved with moderate enough costs, there will 
be enterprise systems for larger companies. This kind of 
technique may well be successfully competing with the 
today’s technology in the near future.  
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