
Seminar: Columnar Databases, 2012 1

 
 
Abstract— Column-oriented database systems, also known as 
column-stores, has an important demand in the past few years. 
Basically, it is about storing each database column separately 
so that the attributes belonging to the same column would be 
stored contiguously, compressed and densely-packed in the 
disk. This method has advantages in reading the records faster 
as compared to classical row-stores in which every row are 
stored one after another in the disk. In this paper, after 
understanding of what are column store technologies, its 
benefits, potential usages and applications; the following 
questions will be answered: What are the differences between 
column stores and row stores? How would be their 
performance compared both at storage and query execution 
level [1], [2]? Can a classical-row-based system achieve the 
performance of a column store system? While addressing our 
questions, we will go into the MonetDB [3], [4] open source 
column-store management system in detail. 

 
 

Index Terms— Database Systems, C-store, Column-store, 
Column-oriented DBMS, invisible join, compression, 
materialization, MonetDB. 
 

I. INTRODUCTION 
The roots of column-oriented database systems can be seen 

beginning from 1970s, but it was not until 2000s that some 
researches and applications started to be done. In the last 
recent years some column store databases namely MonetDB 
[3], [4] and C-Store [5] has been introduced by their authors, 
with the claim that their performance gains are quite 
noticeable against traditional approaches. These traditional 
approaches are for row-oriented database systems that have 
physical designs such that almost all tables in the database 
have one-to-one mappings to the tables in the logical schema. 
One of the important points that it will be looked in this paper 
is to figure out if the gains of column-stores are due to their 
own  
 
 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, to 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 

 
 
internal physical design or if the same can be achieved using 
some column-oriented design in a row-stores database. 

MonetDB [3], [4] is a column-oriented open source 
database management system for high-performance 
applications in data mining, business intelligence, scientific 
databases, XML query and text and multimedia retrieval. It 
focuses on exploiting column-oriented data processing as a 
way to improve the computational efficiency of database 
engines. This system will be talked about more in Section II 
and VI. 

To understand better the internal structure of column-stores, 
it can be observed that the attempt of simulating column-stores 
inside row-stores [2]. Star Schema Benchmark (SSBM) [6], 
[7] is a recently proposed data warehousing benchmark that 
has been implemented with column-oriented internal design as 
possible, in addition to some traditional designs. Column-
oriented approach techniques which are used in SSBM 
(vertical partitioning, index-only plans and materialization) 
will be explained in Section III. This system is taken as an 
example and examined to address our questions. 

After observing performance of the open source C-store 
database [5], which is a column-store, on SSBM; it will be 
shown that although the internal structure of a column store is 
emulated inside a row store, the query processing performance 
is quite poor. This observation raises the question of which 
kind of optimization techniques can be used to improve the 
performance of column-stores over row-stores on warehouse 
workloads. Four optimization techniques are defined which 
are specific to column-oriented database management systems 
[DBMS] as late materialization [4], [8], block iteration [8], 
compression [9] and invisible joins (a new technique); and 
they will be discussed in Section IV. 

The rest of this paper is organized as follows: first, some 
background information, prior works, definitions related to 
column-stores and a brief description of an application system 
(Section II); then the physical database design methods used in 
row-oriented databases will be described (Section III); 
physical design and query execution techniques used in 
column-oriented databases will be covered (Section IV); and 
finally, the performance of row-stores and column-stores will 
be compared based on the experiments (Section V). 

 

Introduction to Column-Oriented Database 
Systems (Nov 2012) 

S.G.Yaman 
Univ. Helsinki, Helsinki, Finland 

sezin.yaman@helsinki.fi 



Seminar: Columnar Databases, 2012 2

II. BACKGROUND AND PRIOR WORK 
 

In a column-store database, each column is stored 
contiguously on a separate location on a disk. The values 
stored in the columns are densely packed and compressed to 
improve read efficiency. Column-store databases perform 
faster than traditional database systems, since they are more 
I/O efficient for read-only queries. In that manner, column- 
scanners are different from row-scanners, since column-
scanners translate value position information into disk 
locations and they combine and reconstruct the tuples from 
different columns. 

Column-store systems include column-oriented physical 
design, and it is observed that due to superior CPU and cache 
performance (in addition to reduced I/O), they can perform 
better compared to commercial and open sources row-store 
databases on benchmarks. Additionally, they include 
optimizations for direct operation on compressed data [9].  

As it is said before, SSBM [6], [7] will be used as an 
example to compare the performance of column-store and the 
commercial row-store.  

 
Schema 

 As can be seen in the Figure 1, SSBM benchmark consists 
five tables in total. The fact table LINEORDER includes 
information about individual orders with ORDERKEY and 
LINEORDER composite primary keys. It also includes foreign 
keys from the other tables which are CUSTOMER, 
SUPPLIER, PART and DATE. The dimension tables contain 
information about their entities in the expected way. 

Additionally, SSBM contains thirteen queries in four 
categories (flights) which we will explore some of them later 
in this paper to be used in the examples. 

To have more idea about the applications of column-
oriented approach, the system MonetDb is chosen as an 
example application. MonetDB was designed especially for 
data warehouses where large databases exist. It is observed 
that MonetDB is faster than traditional databases by the way 
of innovations at all layers, for instance, a storage based model 
on vertical fragmentation (column-stores). Basically, 
MonetDB exploits the large-main memories of computers in 
an efficient and effective way during the query processing, 
while  the  database  is  stored  on  the  disk.  It  focuses  on  data  
workloads which are mostly read-dominated and where 
updates are mostly consisting large data-blocks to be added to 
the database at a time.  

MonetDB is one of the first DBMSs which is publicly 
available and based on column-store technology. 

 
MonetDB Physical Data Model 

 The storage model can be seen as a deviation of a 
traditional database system. The difference is that instead of 
storing the attributes as row-stores, MonetDB uses column-
stores to represent the relational tables in the database. Each 
column is stored in a separate (surrogate, value) table, called 
BAT (binary association table). The column surrogate or OID 
(object identifier) is intended to identify the relational tuple 
which that attribute value belongs to. They are essantially  

 

Figure 1: SSBM Schema Benchmark 
 
 
 

indications of the positions, all attributes of the same tuple 
have the same OIDs. The column value is intended to keep the 
actual attribute values. In this way, for a relation R with k 
attributes, there would be k BATs; each BATs having the 
respective attributes as (surrogate, value) pairs. Positions are 
determined by insertion order of tuples and this technique 
helps that column-stores perform tuple reconstructions 
efficiently in case tuple order-preserving operators exist. 
 

III. ROW-ORIENTED EXECUTION 
 

In this section, the implementation of column-stores in a 
row-stored based system is being looked at. Three techniques 
are being introduced: 

 
Vertical Partitioning 

 It is a basic technique to emulate a column-store in a row-
store by partitioning each relation vertically [10]. Basically, an 
integer position is added to each column, to be used to connect 
the  fields  from  the  same  row  together.  It  ends  up  with  more  
tables (one column for values, one column for positions) with 
fewer columns. In this way, only the necessary columns need 
to be read to answer a query. 

 
Index-only Plans 

Since vertical partitioning may cause wasting of space due 
to extra position attribute, index-only plans can be seen as 
alternatives. Indexes are added to each column of every table 
and collection of all the indices are created so that it is 
possible to answer a query without ever going to underlying 
row-oriented tables. The plan works by setting lists of 
(surrogate, value) pairs which satisfy the predicates on each 
table and keeping these lists in the memory in case there are 
multiple predicates on the same table. 
 
 



Seminar: Columnar Databases, 2012 3

Materialized Views 
In this technique, there is a view with exactly the columns 

needed  to  answer  to  every  query  in  the  benchmark.  In  our  
example, the aim is to create an optimal set of materialized 
views for each flight (query category in SSBM schema) where 
each view is responsible for having the required columns to 
answer the queries in that flight. 

 

IV. COLUMN_ORIENTED EXECUTION 
 

In this section, three different optimization approaches to 
improve the performance of column-stores are being looked at 
and a new technique named invisible join is being introduced. 

 
Compression  

One of the most often cited advantages of column-stores 
can be said as data compression. Intuitively, column-stores’ 
data are more compressible compared to row-stores. For 
instance, the attribute phone number of customers can be 
compressed using run-length encoding, where a sequence of 
repeated values is rewritten by a count and the value. Then, 
they can be stored together. Compression clearly reduces the 
space occupied in the disk; but additionally since the data is 
compressed, less time is being spent in I/O while the data is 
being read from disk to memory. The biggest difference 
between compression in column-stores and row-stores lies 
where a column is sorted and there are consecutive repeats of 
the same values in a column. In column-stores it is easier to 
summarize these value repeats whereas in row-stores it is a 
more complicated process. Consequently, compression has a 
huge impact on query performance if a high percentage of 
columns are being accessed by a query. 

 
Late Materialization  

In row-stores, information about the logical entities co-
located  in  a  single  row of  table  in  the  memory.  On the  other  
hand, in column-stores, information about the entities is stored 
in different locations on the disk since different attribute 
values are stored in different columns. For instance, the 
attributes name, e-mail, addres, phone number etc. are all in 
the separate columns. However, queries usually need to 
retrieve information from more than one column of an entity. 
Thus, data from the multiple columns should be gathered 
together into rows’ of information. That’s why join-like 
materialization is needed in a column-store. 

Naïve column-stores tend to use early materialization which 
leaves much of the potential benefits of column-stores as 
unrealized, whereas some recent column-stores named X100 
and C-Store [5] prefers to use late materialization, by keeping 
the data in columns until much later into query plan and 
operation the data on these columns. In order to do it, position 
lists need to be constructed to establish the connection 
between the operations that being used on different columns. 
It is observed that the advantages of this technique are four-
fold [2]. 

 
 

 

Block Iteration 
Row-stores iterate through each tuple first, and then they 

extract the needed attributes. This leads to tuple-at-a-time 
processing where 1-2 function calls are needed to achieve 
wanted data. Some of per-tuple overhead can be reduced if 
blocks of tuples are available at once and called by a single 
function call [14], [15]. In all column-stores, data blocks of the 
same columns are sent to an operator in a single function call. 
This technique increases a column-store’s ability to process 
the column values in a sequence in order to send large column 
blocks to a CPU at one time. Thus, no attribute extraction is 
needed and if the column is of a fixed width, the DBMS can 
treat the operation as a simple array lookup. It is observed that 
this technique improves the performance by fifty percent 
compared to a row-store which will be explained in Section V. 

 
Invisible Join 

This new technique will be introduced with the query 
(query 3.1 of SSBM benchmark) below, which basically finds 
total  revenue  from  the  customers  who  live  in  Asia  and  who  
buy a product from an Asian supplier between the years 1992 
and 1997. 

 
 

Besides from a traditional way to execute this query, which 
would be pipeline joins in order of predicate selectivity, a new 
method is introduced which works by rewriting joins into 
predicates, which can be evaluated by a hash lookup, on the 
foreign key columns in the fact table. 

It has three phases. First, each predicate is performed on the 
relevant dimension table to retrieve the list of table keys. As 
being seen in Figure 2, we get relevant keys belonging to each 
dimension table applying the predicates. 

 
 

Figure 2: The first phase of Invisible Join for executing the 
query 3.1 of SSBM 

 



Seminar: Columnar Databases, 2012 4

 

 
Figure 3: The second phase of Invisible Join for executing 

the query 3.1 of SSBM 
 

 
In the second phase, each has table with the relevant keys is 
used to retrieve the positions of the records in the fact table 
satisfying the corresponding predicate. As it can be seen in 
Figure 3, hash table are probed with the foreign key-columns 
of the fact table and it returns the positions representing the 
fields satisfying the predicate. Then, it returns the intersection 
of our tables using bitwise and.  

The final phase uses the final position table for each column 
of  the  fact  tables  which  has  a  foreign  key  reference  to  the  
dimension tables, to get answer to the query. As can be seen in 
Figure 4, each foreign key value from fact tables are extracted 
using  our  position  table  values  and  then   information  is  
extracted from the needed dimension tables using these 
positions. 

As a result, it can be said that since the number of positions 
in the position table is dependent on the selectivity of the 
whole  query  (not  just  a  part  of  it),  the  necessary  number  of  
extraction of values is minimized and this improves the 
performance.  

V. EXPERIMENTS 
 

In this section, first, different attempts of emulating a 
column-store in a row-store comparing to C-Store’s baseline 
performance is being examined. Then, it is being searched that 
whether there is a possibility for an unmodified row-store to 
get the benefits of column-oriented design. Finally, all the 
optimizations proposed for column-stores are being 
considered to find out which ones are the most significant.   

 
Motivation 

 Figure 5 compares the performances of C-store (column-
store) and System X (row-store) on SSBM. (It should be said 

 
 

 
 

Figure 4: The third phase of Invisible Join for executing 
the query 3.1 of SSBM 

 
 

that beyond the basic difference of columns vs. rows, there are 
some implementation differences between these two systems 
that can affect the numbers.) In the figure, RS is being used 
for  System X whereas  CS is  being  used  for  C-  store;  and (  -
MV) indicates optimal collection of materialized views. We 
can see that C-store is six times better than System X in the 
base case; and three times better when System X is using 
materialized view. It shows that column-stores perform better 
than row-stores on data workloads. However, looking at the 
last row in the figure, the case where row-oriented 
materialized view data in C-store is stored, it is observed that 
System X numbers are faster than C-store numbers. This 
difference can be explained by that C-Store has not 
implemented some advanced performance features that are 
already available in System X, such as partitioning. System X 
can partition each material view optimally for the query flight 
that is designed for and partitioning improves the performance 
by reducing the data that needs to be scanned.  

In order to understand the performance difference in these 
two systems, two additional experiments’ results will be 
observed where a column-stored is simulated in a row-store 
and where column-oriented optimizations are removed from 
the column-store until it starts to simulate a row-store.  

 
Column-Store Simulation in a Row-Store 

By this experiment, the performance of different 
configurations of System X on SSBM is being described. For 
the  base  case,  partitioning  is  used  since  it  is  known  that  it  
improves the performance in a row-store. Five different 
configurations of System X are set up as: traditional row-
oriented representation, traditional bitmap approach (similar to 
traditional but with plans biased to use bitmaps), vertical 
partitioning approach, index-only representation and 
materialized views approach. As it can be seen in Figure 6,  



Seminar: Columnar Databases, 2012 5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Baseline performance of C-store and System X. 
 
 
 
materialized views performs best since they read minimal 
amount of data needed by a query. Then, traditional 
approaches are the best ones. Especially the traditional row-
oriented representation is almost three times faster than the 
attempt of emulating a column-oriented approach. The reasons 
why columnar approached are being limited can be explained 
by tuple overheads and inefficient tuple reconstruction. Tuple 
overheads can be quite large in a row-store with a fully 
vertically partitioned approach. Tuple reconstruction is also 
problematic since data belongs to one entity is stored in 
different locations on the disk, yet most queries need to access 
more than one attribute of an entity. 

As a result, none of the attempts to emulate a column-store 
in a row-store is totally effective. Vertical partitioning could 
be effective if it is applied on a few columns, but otherwise 
due to tuple overheads and construction problems, it is not 
really competitive with traditional approaches. Index-only 
plans has a lower per-record overhead, but they force the 
system  to  use  expensive  hash  joins  with  join  columns  of  the  
fact table and this leads the reduce system performance.  

Materialized views have good performance since they allow 
the  System  X  to  read  just  a  subset  of  the  fact  table  needed  
without merging the columns.  
 
Column-Store Performance 

As it was seen in Figure 5 and 6, the average query time in 
C-Store on SSBM (4.0 sec) is much faster than not only the 
column-store simulation in a row-store (80 to 220 sec), but 
also  than  the  best  scenario  where  the  queries  are  known  in  
advance and the row-store has created materialized views 
tailored for the query plans (10.2 sec). Now, an additional 
experiment will be discussed to find out why column-store are 
even faster than materialized view case or the CS Row-MV 
case. In this experiment, to learn about the performance effects 
of optimization techniques in column-stores, these techniques 
are being removed from the column-store until it starts to 
simulate a row-store. 

 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Average performance across all the queries. 
Here, T is traditional, T(B) is traditional bitmap, MV is 
materialized views, VP is vertical partitioning and AI is all 
indexes. 

It was already described that column-oriented optimizations 
(compression, late materialization, block iteration and 
invisible join) are used to improve the performance of column-
oriented databases. Presumably, these optimizations make the 
performance difference between the column-store and the 
row-oriented materialized views cases from Figure 5.  To 
verify this presumption, these optimizations are being 
removed from C-store and results are being observed at each 
step. Figure 7 shows the results of removing optimizations 
successively from C-Store.  

Block-processing can improve performance anywhere from 
a factor from 5% to 50% depending on if the compression 
technique is already removed [2]. It can be seen that invisible 
joins can improve the performance from the factor 50% to 
75%. Compression can improve the performance by almost 
the factor of two and late materialization can improve the 



Seminar: Columnar Databases, 2012 6

performance by almost the factor of three. Thus, it can be 
though that the most significant optimizations are compression 
and late materialization. 
 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Figure 7: Average performance numbers for C-Store 
across all queries while various optimizations removed. 
Here, T= tuple-at-a-time processing, t= block processing; 
I=invisible join enabled, i= disabled; C= compression 
enabled, c= disabled; L= late materialization enabled, l= 
disabled. 
 
    It is being observed that after removing these optimizations 
from the column-store, it begins to behave like row-store (only 
with the difference that the necessary tuple-construction at the 
beginning of the query plans). 
 

I. CONCLUSION 
 

In the paper, column-oriented database approach has been 
mentioned. The performance of column-stores has been 
compared to row-stores. The techniques of emulating the 
column-stores in row-stores, such as vertical partitioning, 
index-only plans and materialized view, has been shown and it 
has been observed that these emulation plans did not end up 
with good performance results. The reasons of why column-
stores execute the column-oriented data more efficiently have 
been look at. A new technique named invisible join which is 
proposed to be used to improve performance has been 
introduced. 

A successful column-oriented system needs some system 
improvements such as record ids, fast merge joins of sorted 
data, run-length encoding and column-oriented query 
execution techniques (compression, late materialization, block 
iteration and invisible joins). Although some of these 
improvements are implemented in different row-stores [11], 
[12], [13], [14], to build a complete row-store that can transfer 
into column-store where column-stores perform well is still a 
problematic area needs to be discovered. 

One of the most important examples of column-oriented 
database systems is MonetDB. It has been mentioned that its 
mainly target area is data intensive applications over massive 

amounts of data such as scientific databases and its physical 
structure has been explained.  
 

REFERENCES 

 
[1]  D. J. Abadi, P.A. Boncz, S. Harizopoulos. Column-oriented database 
systems. In VLDB, 2009. 
 
[2]  D.J. Abadi, S.R. Madden, N. Hachem. Column-stores vs. row-stores: 
how different are they really? In Proc. SIGMOD, 2008. 
 
[3]  S. Idreos, F. Groffen, N. Nes, S. Manegold, S. Mullender, M. Kersten. 
MonetDB: Two Decades of Research in Column-oriented Database 
Artitectures. 2012. 
 
[4]  P. Boncz, M. Zukowski, N. Nes. MonetDB/X100: Hyper-pipelining 
query execution. In CIDR, 2005 
 
[5]  M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. 
Ferreira, E. Lau, A. Lin, S. R. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin, 
N. Tran,  S. B. Zdonik. C-Store: A Column-Oriented DBMS. In VLDB, pages 
553–564, 2005 
 
[6]  P. E. O’Neil, X. Chen, E. J. O’Neil. Adjoined Dimension Column Index 
(ADC Index) to Improve Star Schema Query Performance. In ICDE, 2008 
 
[7]   P.  E.  O’Neil,  E.  J.  O’Neil,  X.  Chen.  The  Star  Schema  Benchmark  
(SSB). http: //www.cs.umb.edu/ poneil/StarSchemaB.PDF. 
 
[8]  M. Zukowski, P. A. Boncz, N. Nes, S. Heman. MonetDB/X100 - A 
DBMS in the CPU Cache. IEEE Data Engineering Bulletin, 28(2):17–22, June 
2005. 
 
[9]  P. Boncz, M. Zukowski, N. Nes. MonetDB/X100: Hyper-pipelining 
query execution. In CIDR, 2005. 
 
[10] S. Khoshafian, G. Copeland, T. Jagodis, H. Boral, P. Valduriez. A 
query processing strategy for the decomposed storage model. In ICDE, pages 
636–643, 1987. 
 
[11] G. Graefe. Efficient columnar storage in b-trees. SIGMOD Rec., 
36(1):3–6, 2007. 
 
[12]  A.  Halverson,  J.  L.  Beckmann,  J.  F.  Naughton,  D.  J.  Dewitt.  A  
Comparison of C-Store and Row-Store in a Common Framework. Technical 
Report TR1570, University of Wisconsin-Madison, 2006. 
 
[13] S. Padmanabhan, T. Malkemus, R. Agarwal, A. Jhingran. Block 
oriented processing of relational database operations in modern computer 
architectures. In ICDE, 2001. 
 
[14] J. Zhou, K. A. Ross. Buffering databse operations for enhanced 
instruction cache performance. In SIGMOD, pages 191–202, 2004. 
 
[15] S. Harizopoulos, V. Shkapenyuk and A. Ailamaki. QPipe: a 
simultaneously pipelined relational query engine. In SIGMOD, pages 383–
394, 2005. 

 
 


	I. INTRODUCTION
	II. BACKGROUND AND PRIOR WORK
	III. ROW-ORIENTED EXECUTION
	IV. COLUMN_ORIENTED EXECUTION
	V. EXPERIMENTS
	I. Conclusion
	References

