SEMINAR: COLUMNAR DATABASES

MapReduce With Columnar Storage

Peitsa Lahteenmaki

Abstract—The MapReduce programming paradigm has
achieved more popularity over the last few years as an option
to distributed database systems in large scale data processing.
Though is has been sometimes criticized for hindering perfor-
mance when used with certain tasks, and working well with
only a few. Several reasons for this have been suggested with
improvements to increase its overall effectiveness.

In this article I take a look at these issues with MapReduce
concentrating especially on one of the implementations of it:
Hadoop. Special attention is also given to methods used with
columnar databases and how those can be used to improve the
performance of MapReduce tasks in Hadoop.

Index Terms—Column oriented, MapReduce, Hadoop.

I. INTRODUCTION

As the amount of data collected on different systems in-
creases year to year, the need for an effective method for its
processing has become increasingly more important. One of
such methods is the relatively new MapReduce programming
paradigm [6]. Often compared to more traditional distributed
database systems in terms of its effectivity, it is still function-
ally very different from them [2]. Where traditional database
systems are usually based on the relational database model,
MapReduce has very little in common with databases at all.

In the form MapReduce was originally described it was only
directed towards certain limited tasks. Yet it was soon realized
that it could be employed with many other tasks as well. With
a more varied use base it became quite clear that MapReduce
was not well suited for every task. In some cases this can be
caused by the ineffective use of the paradigm, but there are
certainly cases to which it is not suited for. Although even in
such situations some steps that can be taken to improve its
performance, yet even with large scale optimizations there are
cases to which MapReduce is inherently ill suited for.

One way to implement programs, that take advantage of
MapReduce, is to employ a programming framework which
was designed for it. As the paradigm in itself does not
provide anything expect the definition, some sort of a pro-
gram/framework is required to take advantage of it. In fact
this is the only way to use MapReduce in a way that makes
sense, as otherwise one would have no way to actually run
any of the MapReduce based program code. There currently
quite many different MapReduce frameworks available, but in
this article I will only concentrate on one of them: Hadoop.
Though it has been sometimes criticised for being rather slow
it has still become quite popular.

Most of this paper is directed towards introducing ways
of making different programs, implemented with the Hadoop
framework, run more efficiently. Most of the methods de-
scribed here can also be used with other systems, and in
fact some of them were originally designed for systems

very different from MapReduce. This is especially true with
the columnar methods described in chapter IV. Originally
they were used with different database systems employing a
columnar storage format, but were later transformed into a
form compatible with MapReduce [4] [5].

I start by providing a short introduction to the MapReduce
programming paradigm in chapter II. After this there is an
explanation of the functionality of Hadoop, in relation to the
topics discussed in this paper, in chapter III. Finally in chapter
IV I introduce a few methods from columnar databases and
how those can be used with Hadoop to improve performance.

II. MAPREDUCE

MapReduce is a simple programming paradigm which
attempts to make distributed processing of data easier. As
originally described by Dean and Ghemawat [6] MapReduce
achieves this functionality through the use of two functions:
map and reduce.

The map function is defined in the same manner as its
counterpart in functional languages. That is, it takes an input
value and 'maps’ that value to an output. It should be noted
that both the input and output values can also be lists. The
reduce function does not have an exactly similar counterpart
in functional languages. Its purpose is to simply combine the
values provided by the map function to an output value.

Simply defining these functions, of course, does not give an
advantage as such. The power of this paradigm comes from the
fact that distributing these functions across multiple processing
nodes can be done with a single programming framework. That
is, the framework simply takes the (user made) definitions
for the map and reduce functions and automatically handles
the distribution of them across the processing nodes. Because
of this, by using this paradigm the distribution of the task
performed is trivial and all programming effort can be directed
to actual development.

Usually these functions are used together in such a manner
that the map function produces a set of values from an input
set to the reduce function. Reduce will then combine these
intermediade values to an actual output result. It is not required
that both functions would contain any actual functionality,
and indeed one of them (or both) can be empty. Although
this somewhat defeats the purpose of using MapReduce at all
because the problem can, in such cases, be solved by using
only parts of MapReduce. Though this could be useful in cases
where MapReduce is only used as an easy way to distribute
a process across multiple nodes.

Let us take a look at a simple example: counting the
frequency of words in a piece of text. Algorithm 1 shows a
simple way to count the frequency of words in a single input
string and algorithm 2 shows a way how to combine these

SEMINAR: COLUMNAR DATABASES

results. The Mapreduce framework, on which this example
would be run on, would start by dividing a single large input
text into several smaller parts. Each map node in the system
would then receive one such a part to process by the map
function. After all of the map tasks finish executing, their
results would then be combined in the reduce function, which
would be run on the reduce nodes.

Algorithm 1 FREQUENCYMAP(s)

Require: A string value s.
Ensure: The frequency of words in s.

1: freq <= empty array
2: for all word in s do

3: if freglword] # 0 then
4: freqlword] + +

5 else

6: freqlword] + 1

7 end if

8: end for

9: return freq

Algorithm 2 FREQUENCYREDUCE(frequencies)

Require: Array of arrays frequencies.

Ensure: The combination of frequencies of words in
frequencies.

. freq < frequencies|0]
: for all f in frequencies do
for all word in f do
if freglword] # 0 then
freqlword] + +
else
freglword] + 1
end if
end for
end for
11: return freq

R A A S ol S

._
4

The paradigm in itself does not give any more specific
description of a ’valid’” MapReduce framework. Because of
this many of the frameworks developed differ quite signifi-
cantly from one another. And in fact many of the methods
designed for different MapReduce based programs rely on
single underlying framework, and might work very differently
on others. Also there are no guarantees that implementing
such a method on a different platform is even possible. This
is usually why improvements on MapReduce are introduced
with a preselected framework in mind.

III. HADOOP

One of the more prominent MapReduce frameworks cur-
rently in use is Hadoop. Although sometimes criticized for
being too low level and rather slow it has still achieved quite
a large user base [2]. This can probably be attributed to its
ease of use and low amount of initial configuration. Also it

is quite easy and cost effective to add nodes to an already
existing Hadoop system, thus making it easily extendable.

A. Data Distribution

In Hadoop each of the nodes in the system has some space
for the files related to task currently running on it, i.e. the
input and output files. Usually all of the used input data is
stored on specific data nodes. These nodes will then handle
the distribution of data across other nodes as needed. If a node
does not already have the required data to perform a task, the
input file is copied over from a data node according to the
division made by the framework. In order to avoid useless
traffic only the part of the file, which is actually used in the
task, is copied over. The method of dividing the data for the
map tasks can be defined by the user.

If possible Hadoop will always try to perform the execution
of map tasks in such a way that minimal amount of file
transfers are required. I.e. a map node will get such a task
which can be performed based on the files already on it.
In a case were a node has all of the required data but is
busy executing another task, Hadoop will designate the task to
another node. This might of course induce file transmission,
but it is still more viable than waiting for the other task to
finish.

B. Input and Output

By default Hadoop accepts input through files, though it is
possible to configure other data sources (such as SQL queries
to a database). One file must always be specified to be used
as input for the system. The actual content of the file can be
defined in any way the user wants to; Hadoop itself contains
a few default ways to read the input, e.g. comma separated
values. Of course if a custom file format is used, then the user
must also define the way the file is to be read. Basically this
consists of a file reader and a partitioner which divides the
read data for the map tasks. Usually the input files would be
read one line at a time and each line would then constitute a
single map task, though, if a custom format is used, any kind
of division is possible.

Besides the input also the case of output should be con-
sidered. Like with the input files the output produced by the
reduce part also resides in files on the system. This of course
is the case only when the reduce function produces an actual
output. One could easily make a reduce function which would
not produce any output at all to the file system, but instead
would save the result with, for example, an SQL query.

No matter the method used to read the input, the assumption
is that the input file format is textual. This increases the
amount of processing required by the reading phase as the text
needs to be converted to the actual values used by the map
task. For example, the character representation of an integer
needs to be converted to the actual number. An intuitive way of
improving the performance would be to use a binary based file
format. This way the values would not need to be converted
from text, but could be instead used exactly as read. Using a
binary file is indeed very possible and does seem to improve
the performance significantly [4] [5].

SEMINAR: COLUMNAR DATABASES

C. De-serialization

Transforming a value from the file system to the system
memory consists of two separate parts: reading and de-
serialization. The reading part is self explanatory, just reading
the binary from the file. De-serialization on the other hand
means the transformation of this binary to an actual value to be
used in a program. This differentiation might seem somewhat
artificial but it is needed in order to explain some of the
concepts in this paper.

One of the larger hindrances for Hadoop is the de-
serialization of values from the underlying file system. Even
when the binary file format is used the de-serialization process
takes a long time. This is especially true if the value is
something more complex than a simple integer or a string. This
problem can be partly shown to be caused by the programming
language used for the development of Hadoop - Java [4]. How
ever this problem only manifests in certain cases i.e. when
large amounts of data are accessed in a short time period.
Because of this it can be avoided by changing the way data
is loaded from the file system.

Figure 1. shows how differently typed data affects the de-
serialization cost of the data. As you can see in the case
where the value is a complex object (that is, a map) the
cost is highest. Also notable is the effect of the programming
language: C++ is significantly faster with simple types when
compared to Java.

2000
IN\‘\

‘©1600

o]

L

8 \
=

~—1200

- \'\'\.
5] © Java Integers

_g 0 Java Doubles

< 800 & Java Maps

g ® C++ Integers

Eo] = C++ Doubles

S 4 C++ Maps

o 400 \E\ﬂ\a\g\a

O T T T T
0% 20% 40% 60% 80% 100%
Percentage of Typed Data

Fig. 1. Costs of de-serialization for different data types [4].

Jiang et. al. [3] have also identified quite a few different
factors that have a significant effect on the performance of
Hadoop. Yet in each case they also found a way how mitigate
the effects of each factor. Because of this it can be argued
that most problems with performance in Hadoop are not
necessarily inherit to the system, but can instead be avoided
by proper design.

IV. COLUMNAR METHODS

Most of the current major database systems follow the
"classical’ row-wise storage format. That is, they store the data
in the tables as rows into the underlying file system. This way

the actual positioning of the data in the file is very similar to
the structure of the database table it represents.

Lately another kind of storage format has achieved more
popularity. Instead of storing the values as rows, one would
use columns. A database table would then be represented by
a multitude of different files, each containing values from a
single column in the table. When values are then added to
the table, instead of adding a row to the underlying files, the
system splits the row according to its columns and saves each
value to a separate file destined for the values of this column.

A. Single Column File

This simple way of implementing a columnar storage of data
can be used with Hadoop as well. It can be simply achieved
by configuring the underlying file structure used by Hadoop
to store values in this manner [4]. As stated in chapter III
each program implemented with Hadoop can specify the way
it will read input and produce output. Thus one would only
need to configure the readers and writers to achieve this simple
columnar storage.

Configuring Hadoop to use such a storing method is rather
straightforward, but with it rises a few problems. First, a single
map task in Hadoop will only take a single input file. Yet, if
such a storage is used, a single file contains all of the values
of a single column, and so only one map task can be run
per column. This problem can be solved simply by splitting
the single large column file into multiple smaller ones, each
containing a part of the original values [5].

The second problem rises when a map task would need to
access multiple columns. In a case where there are more than
one data node in a Hadoop system, it is not guaranteed that all
nodes contain all of the data. If this is the case a significant
amount of time might be taken by the transportation of the
required files to the nodes. This problem can be avoided by
making sure that the splits made to the column files separated
them at the same point. That is, all of the column file splits
have an equal amount of rows. This way it is more easy to
assure that all of the required data (the rows processed by
the map task) are in the node when needed [4]. Though this
requires that the default file placement and replication methods
of Hadoop are to be overwritten in such a manner that the
column files reside on the same nodes.

Another way to tackle the same problem is to create groups
of those columns most likely to be used together. One such
group would consists of all the columns, another from a
few and another from the ones left over. This method takes
more storage space, but (assuming that the predictions are
correct) decreases the probability of large scale column file
transportation [5]. The underlying file system of Hadoop does
allow one to choose how single files are stored in the system
and thus it is possible to configure it to group files together
in this manner.

B. Materialization

Besides the location of the data, also the way how it is read
from the file system should be considered. In a case where a
map task needs multiple columns it is not likely that all values

SEMINAR: COLUMNAR DATABASES

from all the columns are accessed. Assume a case where a
value in column A determines (e.g. with an if-clause) if a value
from column B is needed at all. Of course both of the files
containing these columns need to be on the node, but probably
not all values in the column B file are needed. In such a case
reading all of the values in column B file is pointless as it
inflicts unnecessary 10 costs. To prevent this from happening
values from column B can only be read as needed, this method
is known as late materialization [1].

Opposed to late materialization is early materialization.
With it values in a column are all read before they are actually
used. This can easily lead to unneeded reads, as described
above. Late materialization prolongs the actual read operations
until the map task actually needs to access the values. In a
case where 10 costs are somewhat high, early materialization
is only useful in very rare cases. In fact, especially when the
amount of columns is high, there are very few reasons not to
use late materialization [4] [5].

With Hadoop it is not very easy to implement late material-
ization in the manner described above. In the default case, the
actual column files have been already read at the point the map
function is started. This is caused by the reader component in
the system which provides the map function with the values it
uses even before it starts. Because of this any efforts to avoid
read operations in the map phase are too late. In order to void
problems like this the reader component can also be provided
by the user.

With a custom reader there are two distinct ways to provide
a late materialization strategy. First the reader reads all of the
input required by the map task, but does not de-serialize it.
That is, all of the data is read from disk but the map task is
only provided with the raw binary. While this method does
not avoid read operations it can still improve the run time in
cases where the de-serialized values would be complex (e.g.
maps, objects, etc...) [4]. Second the map function is only
provided with the values of few columns and it will then use
those values to provide the reduce function with information
of the required data. The actual processing of the data would
then also happen in the reduce phase [5].

The second method can be explained more easily through
an example: assume that our MapReduce task is equivalent to
the SQL query:

SELECT A, B, C, D
FROM table
WHERE A < 1000

In this case the map function would be provided with the
values of column A. It would then use these to process the
filtering where-condition to find out the indexes of the valid
data tuples. These indexes are then given to the reduce function
which will read the column files of B, C and D at these points
to access the values. After it will then simply combine them to
produce the requested result. This way all of the unnecessary
reads to columns B, C and D can be avoided.

Figure 2. shows the effect of lazy- (CIF-SL) and early ma-
terialization (CIF) on the processing time. The figure represent
the case of de-serializing a map typed value which explains
the large difference between the two cases.

900
T e — . '
800
8 /
[0}
£
o 750 — =
£ z
'_
700
= CIF
O CIF-SL
650
600 T T T T
0% 20% 40% 60% 80% 100%
Selectivity

Fig. 2. The difference of lazy- and early materialization [4].

C. Compression

Another way to increase the performance of Hadoop is to
add some sort of a compression method to the files used. In
most cases this increases the processing time on the CPU but
decreases the 10 costs. Of course it is very implementation
specific which one of these is preferred over the other, with
Hadoop it would seem that compression does offer better
runtime efficiency [4] [5].

Using compression with Hadoop is somewhat straightfor-
ward: by applying the required compression and decompres-
sion stages to the output and input phases respectively the
desired compression method can be used. Though it must be
taken into consideration that only certain compression methods
are suitable to be used with Hadoop. As most of these methods
require the possibility for accessing files at random, only
algorithms allowing partial compression can be used. That is,
the data must decompressable at random points without the
need to decompress the whole file in order to read a part of
it.

D. Results

The methods described in this chapter affect the perfor-
mance in different ways. Some improve the read times while
some decrease the cost of processing the data. I will not
show results of performance of each of these methods, but
instead concentrate on a case where all of these have been
used together. Figure 3 shows such a case.

As shown the performance of the purely text based file
format (TXT) is (as expected) the worst. This is mainly due to
the large de-serialization costs associated with it. The binary
based purely columnar format (SEQ) avoids this problem
mostly thus improving the performance significantly. The CIF
and RCFile formats employ all of the methods described in
this chapter. As shown they also provide the best results. The
large differences to TXT and SEQ can mostly be explained
by the amount of data both of these avoid reading.

SEMINAR: COLUMNAR DATABASES

4000 m TextFile
Lo
3000 B Compressed HCFiIeV
@ Uncompressed RCFile
g 2500
@
@ 2000
E
= 1500 —
1000
500
0

TXT
SEQ -
AllColumns
1 Integer
1 String
1 Map
1 String+1 Map

Columns Scanned

Fig. 3. Performance evaluation of different file formats [4].

V. CONCLUSION

In this article I have taken a look at the MapReduce
paradigm and one of its implementations: Hadoop. Although
some critique have been directed towards them, in regards of
their performance as compared to distributed database systems,
they are still a viable choice for distributed data processing.
This is especially true in cases where some optimization has
been put into the underlying file system and the way it is used
by Hadoop.

One effective way to optimize Hadoop is to use a columnar
storage method in the underlying file system. By applying
some of the methods used with many columnar database
systems, quite substantial increases in performance can be
achieved. In most cases even using only one of the methods
described in this paper the performance could be improved, but
it makes more sense to use more than one. Tests performed
on systems configured to work this way seem to indicate that
quite a significant performance boost can be achieved: system
configured to use all of these methods can achieve on average
three times faster data processing rates [4].

REFERENCES

[1] D.J. Abadi, D. S. Myers, D. J. DeWitt and S. R. Madden, Materialization
Strategies in a Column-Oriented DBMS Proceedings of ICDE, 2007.

[2] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
M. Stonebraker, A Comparison of Approaches to Large-Scale Data
Analysis Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pp. 165-178, 2009.

[3] D.lJiang, B. C. Ooi, L. Shi and S. Wu, The Performance of MapReduce:
An In-depth Study ~PVLDB vol. 3, no. 1, pp. 472-483, 2010.

[4] A. Floratou, J. M. Patel, E. J. Shekita and S. Tata, Colum-Oriented
Storage Techniques for MapReduce. International Conference on Very
Large Data Bases Proceedings vol. 4, no. 7, pp. 419-429, Apr. 2011.

[5] Y. Lin, D. Agrawal, C. Chen, B. C. Ooi and S. Wu, Llama: Leveraging
Columnar Storage for Scalable Join Processing in the MapReduce Frame-
work. Proceedings of the ACM SIGMOD International Conference on
Management of Data pp.961-972, Jun. 2011.

[6] J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing on
Large Clusters Sixth Symposium on Operating System Design and
Implementation, Dec. 2004.

