Query Execution in
Column-Stores

Atte Hinkka

Seminar on Columnar Databases, Fall 2012



Central concepts

Column (query) operators
Compression considerations
Materialization strategies

Vectorized operations



Query what!

Query operator trees
Models for query execution
Architectural models

Roots in the transactional world



Query operator tree

Projection
columns emp.last_name, emp.first_name and dep.name

SELECT emp.last_name, emp.first_name, dep.name l
FROM employees AS emp, departments AS dep
WHERE emp.created > date *2012-01-01"

AND dep.id = emp.department_id
ORDER BY emp.created,

Join
rows dep.id = emp.department_id

Scan
rows in departments AS dep

Sort
by column emp.created

Select
rows where emp.created > 2012-01-01

Scan
rows in employees AS emp




Query operator tree

Projection
columns emp.last_name, emp.first_name and dep.name

SELECT emp.last_name, emp.first_name, dep.name l
FROM employees AS emp, departments AS dep
WHERE emp.created > date *2012-01-01"

AND dep.id = emp.department_id
ORDER BY emp.created,

Join
rows dep.id = emp.department_id

Scan
rows in departments AS dep

Sort
by column emp.created

Select
rows where emp.created > 2012-01-01

scan.next() => {“Virtanen”,*“Veijo”, 201 1-02-01, 3}

Scan
rows in employees AS emp




Query operator tree

Projection
columns emp.last_name, emp.first_name and dep.name

SELECT emp.last_name, emp.first_name, dep.name l
FROM employees AS emp, departments AS dep
WHERE emp.created > date *2012-01-01"

AND dep.id = emp.department_id
ORDER BY emp.created,

Join
rows dep.id = emp.department_id

Scan
rows in departments AS dep

Sort
by column emp.created

Select
rows where emp.created > 2012-01-01

scan.next() => {“Virtanen”,*“Veijo”, 201 1-02-01, 3}
can.next() => {“Meikaldinen”,“Matti”, 2012-06-01, 3}

Scan
rows in employees AS emp




Query operator tree

Projection
columns emp.last_name, emp.first_name and dep.name

SELECT emp.last_name, emp.first_name, dep.name l
FROM employees AS emp, departments AS dep
WHERE emp.created > date *2012-01-01"

AND dep.id = emp.department_id
ORDER BY emp.created,

Join
rows dep.id = emp.department_id

Scan
rows in departments AS dep

Sort
by column emp.created

select.next() => {*“Meikalainen”,“Matti”, 2012-06-01, 3}

Select
rows where emp.created > 2012-01-01

scan.next() => {“Virtanen”,*“Veijo”, 201 1-02-01, 3}
can.next() => {“Meikaldinen”,“Matti”, 2012-06-01, 3}

Scan
rows in employees AS emp




Volcano model

Each query operator provides an iterator
interface

Iterator returns tuples from the disk
Conceptually simple, beautiful

Optimizations focused on the query plan
level: avoid full table scans, minimize the
amount of tuples processed



Problems with Volcano

® A query heavy of
aggregation operators
(AVG, SUM, ...) may
spend only 10% of time
averaging and summing,
i.e. doing actual work

e MIPS RI12000 can do a

double multiplication in
3 cycles, MySQL takes
49 to do that; no loop

pipelining!

lcum.|excl.| calls|ins.| IPClfunction

11.9
20.4
26.2
29.3
32.3
35.2
37.8
40.3
42.7
45.1
47.5
49.6
51.6
53.4
54.9
56.3
57.6
59.0
60.2
61.4
62.4
63.4
64.3
65.3
65.8

11.9
8.5
5.8

3.1
3.0
2.9
2.6
2.5
2.4
2.4
2.4
2.1
2.0
1.8
1.5
1.4
1.3
1.4
1.2
1.2
1.0
1.0
0.9
1.0
0.5

846M
0.15M
7™
23M
6M
17T™M
108M
6M
48M
60
5.9M
11M
5.9M
5.9M
42M
36M
17T™M
25M
206M
25M
102M
53M
42M
11M
5.9M

6
27K
37
64
247
79
11
213
25
19M
195
89
16
14
17
18
38
25

2
21
4
9
11
38
38

0.64
0.71
0.85
0.88
0.83
0.70
0.60
0.61
0.52
0.69
1.08
0.98
0.77
1.07
0.51
0.76
0.80
0.62
0.75
0.65
0.62
0.58
0.65
0.80
0.80

ut_fold_ulint_pair
ut_fold_binary

memcpy
Item_sum_sum::update_field
row _search _for_mysql
Item_sum_avg::update_field
rec_get_bit_field_1

row _sel_store_mysql_rec
rec_get_nth_field
ha_print_info

end _update

field conv

Field float::val real

[tem _field::val

row sel_field store_in_mysql..
buf_frame_align
Item_func_mul::val
pthread_mutex_unlock
hash_get_nth_cell
mutex_test_and_set
rec-get_1byte_offs_flag
rec-1_get_field start _offs
rec-get_nth_field _extern_bit
Item_func_minus::val

Item _func_plus::val

Table

2:

MySQL gprof trace of TPC-H Ql:
+,-,%,SUM, AVG takes <10%, low IPC of 0.7



Column-oriented
processing

Predicates in Scan operators
Late tuple materialization
Invisible joins

Operations on compressed data



Predicates on Scan
operators

® Possible to do exact matches on heavily-
compressed data (LZ-encoding)

® Can avoid dictionary lookups in a similar
fashion

® Operating on run-length or bit-vector -
encoded columns is possible when the
predicate matcher knows about the
compression used



Late tuple
materialization

® Operators operate on position lists

® |oin position lists and materialize tuples at
the very end

® Position lists are trivial to produce from
sorted columns (<, >, ==

® Position lists can be coded as bitmaps for
CPU-efficiency



Invisible join

Compute a bitmap (position list) for select
predicates

Join result is the intersection of bitmaps

Results can be calculated efficiently by bitmap
operations

Useful in column-stores and data warehouses
where joins of facts & dimensions

10



Operating on
compressed data

® Push predicate down to Scan operator

® Don’t decompress when not needed

® Dictionary encoding only needs to decompress
once

® Keep a cache of decompressed values

® Makes it possible to store columns in
multiple sort orders



Performance benefits
of...

® | ate materialization
® Compression

® |nvisible join



50 Average for SSBM queries on C-store

40 i
— origina
o ore
» 30
:
= 20

10

0

VN T e

; late
column-oriented materialization
join algorithm enable

compression &
operate on compressed

13



Alternative design

e C-Store ® MonetDB/X100
® Column-optimized ® Query execution as
Query operators array manipulation
® |ate tuple ® Emphasis on
materialization vectorized
processing and high
® Modified Scan CPU efficiency

operators

14



MonetDB/ X100, solving
memory bottleneck

® Operators work with chunks of data that
fit in the CPU cache (~1024 values)

® Operators are vectorized, have low degree
of freedom (are simple, don’t handle
arbitrary predicates etc) in order for the
compiler to be able to do loop pipelining

® Decompress pages to CPU cache, not RAM



X100 query tree

e Still a pull-model, but
based on vectors, not
tuples or values

® Emphasis on CPU cache
efficiency

® Enables Single-
Instruction-Multiple-

Data (SIMD)
instructions

! !
E| returnflag Ij sum_disc_price
! {

nasrr ble maintena é agc sum_fit col

posit orTint
hash table

map hash chr col :
A

I
..»" )
|1 selection i :
' 1 vector Udlscountprce
o .

(map_mul_fit_col_fit_col)

’ —_
P -

) i
" (map_sub_fit val_fit col)
" > 4 g

’
’
- -
L

selecton
vecior
]

Cselect It date col date val ‘l

i N\

1998-09-03

I 0 0 0

shipdate returnflag discount extendedprice_/,

\ AGGREGATE

"\ PROJECT

\ SELECT

"\ SCAN

16



Recap

Operator changes

® Scan operator that knows of compression and
can handle predicates

Late tuple materialization
Invisible joins
Operations on compressed data

Vectorized processing

17



