
Query Execution in 
Column-Stores

Atte Hinkka
Seminar on Columnar Databases, Fall 2012

1



Central concepts

• Column (query) operators

• Compression considerations

• Materialization strategies

• Vectorized operations

2



Query what?

• Query operator trees

• Models for query execution

• Architectural models

• Roots in the transactional world

3



Query operator tree

4



Query operator tree

scan.next() => {“Virtanen”, “Veijo”, 2011-02-01, 3}

4



Query operator tree

scan.next() => {“Virtanen”, “Veijo”, 2011-02-01, 3}

scan.next() => {“Meikäläinen”, “Matti”, 2012-06-01, 3}

4



Query operator tree

scan.next() => {“Virtanen”, “Veijo”, 2011-02-01, 3}

select.next() => {“Meikäläinen”, “Matti”, 2012-06-01, 3}

scan.next() => {“Meikäläinen”, “Matti”, 2012-06-01, 3}

4



Volcano model

• Each query operator provides an iterator 
interface

• Iterator returns tuples from the disk

• Conceptually simple, beautiful

• Optimizations focused on the query plan 
level: avoid full table scans, minimize the 
amount of tuples processed

5



Problems with Volcano
• A query heavy of 

aggregation operators 
(AVG, SUM, ...) may 
spend only 10% of time 
averaging and summing, 
i.e. doing actual work

• MIPS R12000 can do a 
double multiplication in 
3 cycles, MySQL takes 
49 to do that; no loop 
pipelining!

6



Column-oriented 
processing

• Predicates in Scan operators

• Late tuple materialization

• Invisible joins

• Operations on compressed data

7



Predicates on Scan 
operators

• Possible to do exact matches on heavily-
compressed data (LZ-encoding)

• Can avoid dictionary lookups in a similar 
fashion

• Operating on run-length or bit-vector -
encoded columns is possible when the 
predicate matcher knows about the 
compression used

8



Late tuple 
materialization

• Operators operate on position lists

• Join position lists and materialize tuples at 
the very end

• Position lists are trivial to produce from 
sorted columns (<, >, ==)

• Position lists can be coded as bitmaps for 
CPU-efficiency

9



Invisible join

• Compute a bitmap (position list) for select 
predicates

• Join result is the intersection of bitmaps

• Results can be calculated efficiently by bitmap 
operations

• Useful in column-stores and data warehouses 
where joins of facts & dimensions

10



Operating on 
compressed data

• Push predicate down to Scan operator

• Don’t decompress when not needed

• Dictionary encoding only needs to decompress 
once

• Keep a cache of decompressed values

• Makes it possible to store columns in 
multiple sort orders

11



Performance benefits 
of...

• Late materialization

• Compression

• Invisible join

12



13



Alternative design
• C-Store

• Column-optimized 
Query operators

• Late tuple 
materialization

• Modified Scan 
operators

• MonetDB/X100

• Query execution as 
array manipulation

• Emphasis on 
vectorized 
processing and high 
CPU efficiency

14



MonetDB/X100, solving 
memory bottleneck

• Operators work with chunks of data that 
fit in the CPU cache (~1024 values)

• Operators are vectorized, have low degree 
of freedom (are simple, don’t handle 
arbitrary predicates etc) in order for the 
compiler to be able to do loop pipelining

• Decompress pages to CPU cache, not RAM

15



X100 query tree
• Still a pull-model, but 

based on vectors, not 
tuples or values

• Emphasis on CPU cache 
efficiency

• Enables Single-
Instruction-Multiple-
Data (SIMD) 
instructions

16



• Operator changes

• Scan operator that knows of compression and 
can handle predicates

• Late tuple materialization

• Invisible joins

• Operations on compressed data

• Vectorized processing

Recap

17


