
Column-Oriented Database

Systems

Liliya Rudko

University of Helsinki

Contents

1. Introduction

2. Storage engines

2.1 Evolutionary Column-Oriented Storage (ECOS)

2.2 HYRISE

3. Database management systems

3.1 MonetDB

3.2 SQL Server 2012

3.3 OpenLink Virtuoso

4. Conclusion

2

3

1. Introduction (1/4)

Row-oriented storage Column-oriented storage

Used for
• analytical queries

• in research and analytics
(e.g., medicine and
astronomy)

• transactional queries

• from time to time
perform analytics (e.g.,
monthly reports)

• this analytics consume a
lot of time

Id Name Date … … Id Name Date …

4

1. Introduction (2/4)

Combine?

According to Abadi et. al. [1]:

• pure storage simulation (e.g., indexing each column and
vertical partitioning) is not enough

• query execution process should also be reconsidered

5

1. Introduction (3/4)

Column-Oriented Systems

Storage Engines Database Management Systems
(DBMS)

• focus on storage
layout

• query execution is
out of scope

• difficult to test
(own set up trial
data flow)

• include storage engines

• focus on storage layout + query
execution

• important bit – query execution
techniques

6

1. Introduction (4/4)

Most beneficial query execution techniques [1]:

1. Vectorized query processing

1.1. Block iteration (avoids storing large
intermediate results into the main
memory)

1.2. Late materialization

2. Column data compression

7

2. Storage engines. ECOS (1/8)

ECOS:

Pure column-oriented storage manager

Main goal:

Customize storage structure (according to changeable data size and
access patterns) with minimal human intervention

Currently:

ECOS’ prototype has been completed

Storage layout:

• table-level customization

• column-level customization

8

2. ECOS. Storage layout (2/8)

Table-level customization

• identification of the table storage model

• there are five Decomposed Storage Models (DSM)

Conventional 2-copy DSM

Fig. 1. Conventional 2-copy DSM [2]

• each column value – as <key, value>

• each relation – two copies

9

2. ECOS. Storage layout (3/8)

Variations of the conventional 2-copy DSM

1. Key-copy DSM

2. Minimal DSM

Meant for specific cases (e.g., Key-copy DSM – for those
tables that are queried for their key attributes only)

1. Algorithm for DSM selecting is not specified

2. Rahman et. al. [2] claim that Conventional 2-copy DSM is
the most suitable (easy to use and implement, does not
require human intervention, storage requirements are at
most 50 Mbyte greater)

However

3. Dictionary based minimal DSM

4. Vectorized dictionary based minimal DSM

10

2. ECOS. Storage layout (4/8)

Column-level customization. Reasons:

• different workload

• different access patterns

• different number of distinct data

Customize column =
Fit it in the appropriate place in the
defined hierarchy of column structures

Benefits of having hierarchy for column structures

• can be mapped to the hardware hierarchy => storage optimization

• easy access

• can gather statistics => improve

11

Fig. 2. Evolving storage structures[2]

2. ECOS. Storage layout (5/8)

12

Evolution

Storage Capacity Evolution paths

2. ECOS. Storage layout (6/8)

Eliminates performance
degradation due to
unlimited data growth

Mutation rules

Fig. 3. Mutation rule example [2]

13

2. ECOS. System level (7/8)

API allows direct access to any of the column
storage structures (for testing)

14

2. ECOS. Discussion [2] (8/8)

1. Only one DSM is used

2. Human intervention for identifying column as ordered
read-optimized of unordered write-optimized

3. Evolution is mainly based on data sizes (little attention
is drawn to access patterns)

4. Evaluation results are doubtful (blurred queries and
access patterns, just some extractions of the system
are evaluated, “performance improvement” occurs to
be negligible)

15

2. Storage engines. HYRISE (1/8)

HYPISE:

Hybrid row/column-oriented storage engine

Main goal:

Maximize cache performance for both OLTP and OLAP-style
queries

Currently:

ECOS’ prototype has been completed

Storage layout:

• based on cache and main memory only

• cost model that predict cache performance has been developed

16

2. HYRISE. Storage layout (2/8)

• tables are vertically partitioned

• adjusting number of columns in the partitions
(according to access patterns)

• for analytical queries – narrow partitioning, for
transactional queries – wider partitioning

Partitioning algorithms

• “Layout selection” , “Divide and conquer partitioning” [3]

• find the best possible (in terms of cache performance)
physical design for a table with up to hundreds attributes

• known query workload

• the set of queries and their weights are used in the cache
performance evaluation [3]

17

2. HYRISE. Storage layout (3/8)

“Layout selection” partitioning algorithm

Step 1. Candidate generation – identifies primary partitions
that are always accessed together.

Example

• relation: N tuples, a1 - a4 attributes

• workload: projection π1 = {a1, a2, a4}, weight ω1

projection π2 = {a2, a3, a4}, weight ω2

selection σ of all the attributes, ω3

• π1 => P1 = {a3}, P2 = {a1, a2, a4}

π2 => P1 = {a3}, P2 = {a2, a4}, P3 = {a1}

σ does not change anything

18

2. HYRISE. Storage layout (4/8)

Step 2. Candidate merging – analyze performance gain by
actually merging back some partitions.

Example

as we have two projections that access three attributes and one
selection that accesses all four attributes, it may be more beneficial
to have two partitions: P1 = {a3}, P2 = {a1, a2, a4}

• merge is advantageous for wide scans, disadvantages for narrow
scans (+ extra overhead, depending on the width of the
attributes, cache line size and the frequency of the operations)

• algorithm analyzes workload cost for every merge – if it is less
than the sum of individual partitions – adds new partitions to
the current set

19

2. HYRISE. Storage layout (5/8)

Step 3. Layout generation – analyze all the possible
combinations from the Step 2, calculate their workload cost
and choose the one with the lowest.

• algorithm running time is exponential to the number
of partitions

• for wide tables there is a risk of poor performance

• “Divide and conquer” partitioning algorithm can scale
to large sizes of relations with complex, non-regular
workloads

20

“Divide and conquer” partitioning algorithm

2. HYRISE. Storage layout (6/8)

Step 1. Candidate generation – with maximum K partitions in
one cluster (K is a constant)

Cost-optimized clusters (clustering problem in the research
community)

Step 2. Candidate merging – applied to every cluster

New partitions for every cluster

Step 3. Layout generation – combines pairs of partitions from
different clusters, whose combination is the most cost saving

21

2. HYRISE. Execution engine (7/8)

1. Implements projection, selection, join, sort and group
by, supports late and early materialization

2. Single-threaded, however thread-safe data structures
are used for later query parallelization

22

2. HYRISE. Performance and discussion [3] (8/8)

1. Compared to pure row-oriented systems – uses 4 times
less CPU cycles

2. Compared to pure column-oriented systems – about 1.6
times faster for OLTP queries and virtually the same for
OLAP queries

3. Good ground for further development

4. Suggested algorithms and physical designs can be used
in other systems (cache performance gain)

23

3. DBMS. MonetDB (1/6)

MonetDB:

Pioneer among pure column-oriented DBMS

Main goal:

Performance improvement for analytics over large
data collections

Currently:

Open-source, 10.000 downloads monthly

24

3. MonetDB. Storage layout (2/6)

• 1-copy DSM (<key, value> for each table – Binary
Association Table, BAT)

• clustered on key

• value addresses to the BLOB location with the actual
value

25

3. MonetDB. Execution engine (3/6)

Front end

• strategic optimization of user-space query language

• models of the user-space data are mapped to BATs

• user-space query language is translated to MonetDB
Assembly Language (MAL)

Back end

• tactical optimization of the each given MAL program

Kernel

• provides final BAT structures

• operational optimization at run-time

26

3. MonetDB. Execution engine (4/6)

• implements data compression, vectorized
execution

• constantly researching new ways of utilizing these
and other techniques for performance
improvement

27

3. MonetDB. System level (5/6)

• supports SQL:2003 standard, provides ODBC and
JDBC client interfaces and application
programming interfaces (e.g., C, Java, Ruby and
Python)

• mainly focuses on read queries and updates of a
large data chunks at a time

28

3. MonetDB. Some research areas (6/6)

1. Hardware-conscious database technology => new breed
of query processing algorithms

2. Algorithms for reusing intermediate results in query
processing

3. Adaptive indexing and database cracking

4. Stream processing in a column-store

29

3. DBMS. SQL Server 2012 (1/5)

SQL Server:

General-purpose DBMS that successfully implements
row-wise indexes

SQL Server 2012:

Implements a new index type - column-store index and
a new processing mode that handles batches of rows at
a time

Currently:

Was successfully tested on real customers’ workloads

30

3. SQL Server 2012. Storage layout (1/5)

• column-store index can function similarly to the
row-store

• any index can be stored as a column-store
index (e.g., primary, secondary and filtered)

• support all the known index operations
(e.g., scans and updates)

• with a certain workload performance of column-
store index is much higher

31

3. SQL Server 2012. Storage layout (2/5)

Fig. 4. Creation of a column-store index[4]

32

3. SQL Server 2012. Execution engine (3/5)

Fig. 5. A row-batch object [4]

Query optimizer identifies whether to use

• batch-mode processing

• row-mode processing

33

3. SQL Server 2012. System level (4/5)

• column-store indexes support up to 15.000
partitions per table. User can load parts of a table,
index it with a column-store index and switch as a
newest partition

• column-store is built on a fact table, table can not
be updated or loaded with new data after indexing

34

3. SQL Server 2012. Discussion (5/5)

• batch-mode processing supports only some
operations (e.g., scan and filter)

• there are limitations for using these operations
(e.g., for hash inner join hash table must entirely
fit in memory)

However

• uses column-wise data compression and batch-
mode => first step

• customer experiences even with this functionality
show benefits of using column-store indexes

35

3. DBMS. OpenLink Virtuoso (1/3)

OpenLink Virtuoso:

Row/column-oriented DBMS, storing data in relational and
graph forms

Main goal:

Serving both OLTP and OLAP-style queries, achieving
memory usage efficiency, locality and bulk read throughput,
keeping random reads and updates low-latent

Currently:

Has also commercial version, both of them are successfully
used

36

3. OpenLink Virtuoso. Storage layout (2/3)

• any index of the table can be represented row or
column-wise

• B-tree of a row-wise index has indexes at the top
and values at the leaves

• B-tree of a column-wise index at the leaves has an
array page numbers with correspondent column-
wise compressed values of thousand of rows

• segment – rows that are stored under the same
leaf

• the same page size of 8K for both column and row
stores

37

3. OpenLink Virtuoso. Execution engine and
system level (3/3)

• supports data compression and vectored execution

• the system provides complete support for
transactions

Discussion

The system is not a column-store specific, however
reasonable utilizes column-store performance and
efficiency benefits

38

4. Conclusion

1. Pure column-oriented systems are meant for analytical
workloads (e.g., ECOS, MonetDB, Vertica, Vectorwise and
C-store)

2. Hybrid row/column-oriented systems are meant for
performance gain for both transactional and analytical
workloads.

Some systems impose column-store on a row-store (e.g.,
SQL Server and OpenLink Virtuoso), while other
implement both from scratch (e.g., HYRISE)

3. We believe that implementation from scratch may be more
beneficial, however not always possible

39

References

1. M. Grund et. al., “HYRISE – a main memory hybrid storage engine,”
VLDB, vol. 4, Nov. 2010, pp. 105-116.

2. S.S. Rahman, E. Schallehn, G. Saake, “ECOS: evolutionary column
oriented storage,” BNCOD 2011, pp. 18-32.

3. M. Grund et. al., “HYRISE – a main memory hybrid storage engine,”
VLDB, vol. 4, Nov. 2010, pp. 105-116.

4. P.-A. Larson, E.N. Hanson, S.L. Price, “Columnar storage in SQL
Server 2012,” IEEE Data Eng. Bull (DEBU) 35(1):15-20 (2012).

40

Thank you!

