Parallelism in Database
Operations

Introduction

* The problem with databases

— During queries the database can waste at least
half it’s time STALLING

e 20% of this is due to branch mispredictions, rest is
mainly due to cache misses

— There are clear signs that we can do better!
(Ailamaki et al.)

Introduction

Why do databases work so slow?
— Queries are complex

e Selection on volatile criteria

— Data amounts are larger

But mainly: because of the way we code

Code? What are we doing wrong?

* |t all boils down to the CPU
* Modern CPU’s process instructions in steps

— For example there might be 5 steps to process an
instruction in a RISC processor

* Each of these steps takes a cycle

— A CPU might have 1.4 billion cycles to spare each
second

CPU

* |nstruction level parallelism
— Instruction pipelining

* Branching
—|F ... THEN ... ELSE ...

— Which branch should the pipeline take?
— Guesstimation based on past

What happens on a branch miss
prediction?

* The pipeline is dropped, and new pipeline is
created for the new direction
— COSTLY

e How does this affect databases?

— Since they rely on external data, and queries may
use specific limits...
* |t becomes impossible to predict the correct branch

Avoid the problem

* Design algorithms to not use branches
* Use operations that don’t use branches

* In a nut shell : DON’T USE BRANCHES, if
mispredictions cost too much.

Introduction

* Flynn’s taxonomy

Single data Multiple data
Single instruction SISD SIMD
Multiple instruction | MISD MIMD

Normal sequential style:

for(x in RECORDS)
if(condition (x))

processl (x); For all the records, we test a
condition, and then process it
else according to the test result.

process2 (x);

SIMD version

for(xin R ; step S)
mask = SIMD_cond (R[x...S]);
SIMD_process(mask, R[x...S]);

We process R in blocks of S, and we process
every element without branches.

What is SIMD in GPU/CPU

e GPU
— Process a dataset with a kernel

 CPU

— Process contents of wide registers with this
operation

GPU

e Datais loaded into GPU memory and processed
with a kernel program

— Kernel programs are compiled into GPU compatible
applications during runtime or before hand

(implementation specific)
 The data is processed with multiple cores in
parallel

* Allows for much larger datasets to be processed

CPU

 CPU SIMD is about changing the small portion
of the application to use a different algorithm

— Process multiple items at same time

What are the gains?

* GPU: speed gains of x20 (Skadron&Bakkum)
 CPU: speed gains of x5 (Zhou&Ross)

 Hardware is very different in these tests, and
thus we can not compare the numbers

Problems

GPU: different design for large part of the
program

— Switching to kernels is not an easy change

Memory copying issues

— Data transferred to memory, results transferred back
Specialized hardware

— Not a general purpose solution

Programming environments do not support
everything that is expected (for example,
branching, 32 bit integers and such)

Problems

* CPU: achievable gains are limited by register
width

