
In-Memory Columnar Databases
HyPer

Arto Kärki
University of Helsinki

30.11.2012

1

In-Memory Columnar DBs HyPer

Introduction
Columnar Databases
Design Choices
Data Clustering and Compression
Conclusion

2

In-Memory Columnar DBs HyPer
Introduction

The relational database systems are today mostly
separated in two different technical solutions
because of the increased number of rows and for
performance issues.
OLTP (OnLine Transaction Processing) is designed for
fast row inserts, updates and selections.
OLAP (OnLine Analytic Processing) is designed for
long lasting queries.

3

In-Memory Columnar DBs HyPer
Introduction

Problematic ETL-mechanism
An OLAP database is populated with rows from OLTP
database. This means complicated data extracting,
transforming and loading mechanism. This
mechanism is usually slow and can be made only
once a day submitting batch jobs during night time.
Data is not fresh any more for business intelligence
calculations.

4

In-Memory Columnar DBs HyPer
Introduction

5

Extract

Transform

Load

ETL example

In-Memory Columnar DBs HyPer
Introduction

The HyPer’s challenge, how one could:
1. avoid ETL overhead and merge OLTP and OLAP
back in the same database system.
2. manage to preserve the fast OLTP transactions and
at the same time achieve up-to-date data for OLAP
queries.
3. satisfy business intelligence calculations.

6

In-Memory Columnar DBs HyPer
Introduction

Next:
Some aspects on columnar databases
Hyper’s design choices
Hyper’s data clustering and compression

And finally:
Conclusion

7

In-Memory Columnar DBs HyPer

Introduction
Columnar Databases
Design Choices
Data Clustering and Compression
Conclusion

8

In-Memory Columnar DBs HyPer
Columnar Databases

9

H.Plattner:
- Early tests at SAP and HPI with in-memory databases of

the relational type based on row storage did not show
significant advantages over leading RDBMSs with
equivalent memory caching.

- The alternative idea to investigate the advantages of using
column store databases for OLTP was born.

- Column storage was successfully used for many years in
OLAP and really surged when main memory became
abundant.

In-Memory Columnar DBs HyPer
Columnar Databases

10

Abadi et al.:
- Store each column separately, with attribute values
belonging to the same column stored contiguously as
opposed to traditional db systems that store entire rows one
after the other.
- Reading a subset of table’s columns becomes faster when
scanning multiple columns.
- Potential expense of exessive disk-head seeking from column
to column for scattered reads or updates.

In-Memory Columnar DBs HyPer
Columnar Databases

11

Abadi et al.:
Two of the most-often cited disadvantages:
- write operations (inserted tuples have to be broken up into
their component attributes and each attribute must be
written separately).
- the dense-packed data layout makes moving tuples within
page nearly impossible.

In-Memory Columnar DBs HyPer

Introduction
Columnar Databases
Design Choices
Data Clustering and Compression
Conclusion

12

In-Memory Columnar DBs HyPer
Design Choices

What’s HyPer?
It is a hybrid OLTP&OLAP main memory database
system. And it is columnar in order to achieve best
possible query execution performance for OLAP
applications.

Next: Hyper’s performance is due to the following
design choices.

13

In-Memory Columnar DBs HyPer
Design Choices 1

HyPer relies on in-memory data management
without the ballast of traditional database systems
caused by DBMS-controlled page structures and
buffer management.
The SQL table definitions are transformed into simple
vector-based virtual memory representations –
which constitutes a column-oriented physical storage
scheme.

14

In-Memory Columnar DBs HyPer
Design Choices 2

The OLAP processing is separated from the mission-
critical OLTP transaction processing by fork-ing
virtual memory snapshots. Thus, no concurrency
control mechanisms other than the hardware-
assisted VM management are needed to separate
the two workload classes.

15

In-Memory Columnar DBs HyPer
Design Choices 3

16

Fork

Hardware
assisted copy

OLAP queries

In-Memory Columnar DBs HyPer
Design Choices 4

Transactions and queries are specified in SQL and are
efficiently compiled into LLVM assembly code. The
transactions are specified in an SQL scripting
language and registered stored procedures.
The query evaluation follows a data-centric paradigm
by applying as many operations on a data object as
possible in between pipeline breakers.

17

In-Memory Columnar DBs HyPer
Design Choices 5

18

Example Query

Example execution plan

Compiled query

In-Memory Columnar DBs HyPer
Design Choices 6

LLVM assembler
The experiments have shown that data-centric query
processing is a very efficient query execution model.
DBMS can achieve a query processing efficiency that
rivals hand-written C++ code.
The data-centric compilation approach is promising
for all new database projects. By relying on
mainstream compilation frameworks the DBMS
automatically benefits from future compiler and
processor improvements without re-engineering the
query engine.

19

In-Memory Columnar DBs HyPer
Design Choices 7

As in VoltDB, the parallel transactions are separated
via lock-free admission control that allows only
nonconflicting transactions at the same time.
Parallelism in this serial execution model is achieved
by logically partitioning the database and admitting
multiple partition-constrained transactions in
parallel. However, for executing partition-crossing
transactions the scheduler resorts to strict serial
execution, rather than costly locking-based
synchronization.

20

HyPer relies on logical logging where, in essence, the
invocation parameters of the stored prosedures /
transactions are logged via a high-speed network.
The serial execution model in combination with
partitioning and group committing achieves extreme
scalability in terms of transaction throughput –
without compromising the ”holy grail” of ACID.

21

In-Memory Columnar DBs HyPer
Design Choices 8

In-Memory Columnar DBs HyPer
Design Choices 9

While in-core OLAP query processing can be based
on sequential scans, this is not possible for
transaction processing as we require execution times
of a few microseconds only. Therefore, HyPer has
deleloped sophisticated main-memory indexing
structures based on hashing, balanced search trees
and radiax trees. Hash indexes are dispensable for
exact match (e.g., primary key) accesses that are
most common in transactional processing while the
tree structured indexes are essential for smallrange
queries, that are commonly encouterd in
transactional scripts as well. 22

In-Memory Columnar DBs HyPer

Introduction
Columnar Databases
Design Choices
Data Clustering and Compression
Conclusion

23

HyPer’s approach to compression in hybrid OLTP &
OLAP column stores is based on the observation that
while OLTP workloads frequently modify the dataset,
they often follow the working set assumption: only a
small subset of the data is accessed and an even
smaller subset of this working set is being modified.

24

In-Memory Columnar DBs HyPer
Data Clustering and Compression

25

In-Memory Columnar DBs HyPer
Data Clustering and Compression

Hot (volatile) data item

Cold data item

Cold & compressed data item

Hot/cold clustering is an elegant solution to this
problem, as the cold bulk of the data can be
stored on huge memory pages while the hot,
frequently modified working set remains on
regular memory pages that can be replicated
inexpensively.
The frozen, huge data pages are never modified;
if a frozen data object is changed, after all, it is
invalidated in the frozen partition and re-
inserted into the hot working set.

26

In-Memory Columnar DBs HyPer
Data Clustering and Compression

In-Memory Columnar DBs HyPer

Introduction
Columnar Databases
Design Choices
Snapshotting
Data Compression
Conclusion

27

In-Memory Columnar DBs HyPer
Conclusion

- A reunion of OLTP & OLAP systems via snapshotting.
- Queries compiled into machine code using the

optimizing LLVM compiler => the DBMS can achieve a
query processing efficiency that rivals hand-written
C++ code.

- Hot/cold clustering to store frequently accessed
tuples together on regular memory pages while cold,
immutable tuples can reside on huge pages =>
advantageous combination of page table size and
thus snapshot creation costs.

28

In-Memory Columnar DBs HyPer

Thank you

29

In-Memory Columnar DBs HyPer
References

T. Cao, M. Salles, B. Sowell, Y. Yue, J. Gehrke, A.Demers, and W. White. Fast Checkpoint
Recovery Algorithms for Frequently Consistent Applications. In SIGMOD, 2011.
Florian Funke, Alfons Kemper, Thomas Neumann: Compacting Transactional Data in Hybrid
OLTP & OLAP Databases. PVLDB 5(11):1424-1435(2012).
S. H´eman, M. Zukowski, N. J. Nes, L. Sidirourgos,and P. A. Boncz. Positional Update Handling
in Column Stores. In SIGMOD, pages 543–554, 2010.
Alfons Kemper, Thomas Neumann, Florian Funke, Viktor Leis, Henrik Mühe: HyPer:Adapting
Columnar Main-Memory Data Management for Transactional AND Query Processing. IEEE
Data Eng. Bull. (DEBU)35(1):46-51(2012).
T. Neumann. Efficiently compiling efficient query plans for modern hardware. PVLDB,
4(9):539–550, 2011.
Hasso Plattner: A common database approach for OLTP and OLAP using an in-memory
column database. SIGMOD 2009:1-2.
http://www.information-management.com/issues/20031101/7607-1.html

30

