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Introduction

The relational database systems are today mostly 
separated in two different technical solutions 
because of the increased number of rows and for 
performance issues. 
OLTP (OnLine Transaction Processing) is designed for 
fast row inserts, updates and selections. 
OLAP (OnLine Analytic Processing) is designed for 
long lasting queries. 
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Problematic ETL-mechanism
An OLAP database is populated with rows from OLTP 
database. This means complicated data extracting, 
transforming and loading mechanism. This 
mechanism is usually slow and can be made only 
once a day submitting batch jobs during night time.
Data is not fresh any more for business intelligence 
calculations.
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The HyPer’s challenge, how one could:
1. avoid ETL overhead and merge OLTP and OLAP 
back in the same database system. 
2. manage to preserve the fast OLTP transactions and 
at the same time achieve up-to-date data for OLAP 
queries. 
3. satisfy business intelligence calculations.
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Next:
Some aspects on columnar databases
Hyper’s design choices
Hyper’s data clustering and compression

And finally:
Conclusion
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H.Plattner:
- Early tests at SAP and HPI with in-memory databases of 

the relational type based on row storage did not show 
significant advantages over leading RDBMSs with
equivalent memory caching.

- The alternative idea to investigate the advantages of using
column store databases for OLTP was born. 

- Column storage was successfully used for many years in 
OLAP and really surged when main memory became
abundant. 
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Abadi et al.:
- Store each column separately, with attribute values
belonging to the same column stored contiguously as 
opposed to traditional db systems that store entire rows one
after the other. 
- Reading a subset of table’s columns becomes faster when
scanning multiple columns.
- Potential expense of exessive disk-head seeking from column
to column for scattered reads or updates.  
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Abadi et al.:
Two of the most-often cited disadvantages:
- write operations (inserted tuples have to be broken up into 
their component attributes and each attribute must be
written separately).
- the dense-packed data layout makes moving tuples within
page nearly impossible.
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What’s HyPer?
It is a hybrid OLTP&OLAP main memory database 
system. And it is columnar in order to achieve best 
possible query execution performance for OLAP 
applications.

Next: Hyper’s performance is due to the following 
design choices.
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HyPer relies on in-memory data management 
without the ballast of traditional database systems
caused by DBMS-controlled page structures and 
buffer management.
The SQL table definitions are transformed into simple
vector-based virtual memory representations –
which constitutes a column-oriented physical storage
scheme.  
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The OLAP processing is separated from the mission-
critical OLTP transaction processing by fork-ing
virtual memory snapshots. Thus, no concurrency
control mechanisms other than the hardware-
assisted VM management are needed to separate
the two workload classes.
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Transactions and queries are specified in SQL and are
efficiently compiled into LLVM assembly code. The 
transactions are specified in an SQL scripting
language and registered stored procedures.
The query evaluation follows a data-centric paradigm
by applying as many operations on a data object as 
possible in between pipeline breakers.
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LLVM assembler
The experiments have shown that data-centric query 
processing is a very efficient query execution model.  
DBMS can achieve a query processing efficiency that 
rivals hand-written C++ code.
The data-centric compilation approach is promising 
for all new database projects. By relying on 
mainstream compilation frameworks the DBMS 
automatically benefits from future compiler and 
processor improvements without re-engineering the 
query engine.
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As in VoltDB, the parallel transactions are separated
via lock-free admission control that allows only
nonconflicting transactions at the same time. 
Parallelism in this serial execution model is achieved
by logically partitioning the database and admitting
multiple partition-constrained transactions in 
parallel. However, for executing partition-crossing
transactions the scheduler resorts to strict serial
execution, rather than costly locking-based
synchronization.
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HyPer relies on logical logging where, in essence, the 
invocation parameters of the stored prosedures / 
transactions are logged via a high-speed network. 
The serial execution model in combination with
partitioning and group committing achieves extreme
scalability in terms of transaction throughput –
without compromising the ”holy grail” of ACID. 
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While in-core OLAP query processing can be based
on sequential scans, this is not possible for 
transaction processing as we require execution times
of a few microseconds only. Therefore, HyPer has
deleloped sophisticated main-memory indexing
structures based on hashing, balanced search trees
and radiax trees. Hash indexes are dispensable for 
exact match (e.g., primary key) accesses that are
most common in transactional processing while the 
tree structured indexes are essential for smallrange
queries, that are commonly encouterd in 
transactional scripts as well. 22
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HyPer’s approach to compression in hybrid OLTP & 
OLAP column stores is based on the observation that 
while OLTP workloads frequently modify the dataset, 
they often follow the working set assumption: only a 
small subset of the data is accessed and an even 
smaller subset of this working set is being modified.
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Hot (volatile) data item

Cold data item

Cold & compressed data item



Hot/cold clustering is an elegant solution to this 
problem, as the cold bulk of the data can be 
stored on huge memory pages while the hot, 
frequently modified working set remains on 
regular memory pages that can be replicated 
inexpensively. 
The frozen, huge data pages are never modified; 
if a frozen data object is changed, after all, it is 
invalidated in the frozen partition and re-
inserted into the hot working set.
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- A reunion of OLTP & OLAP systems via snapshotting.
- Queries compiled into machine code using the 

optimizing LLVM compiler => the DBMS can achieve a 
query processing efficiency that rivals hand-written 
C++ code.

- Hot/cold clustering to store frequently accessed 
tuples together on regular memory pages while cold, 
immutable tuples can reside on huge pages => 
advantageous combination of page table size and 
thus snapshot creation costs.
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Thank you
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