Distributed Systems Project, Spring 2013 — Assignment

In this assignment you will implement a simple distributed hash table (DHT)
based on the Chord network. Your DHT should be able to maintain the Chord
ring structure, store key-value pairs, and retrieve the stored values.

You will not need to implement the full Chord protocol; only the parts which are
needed to ensure the correctness of the network are required. This means you
only need to implement links to the immediate predecessor and successor of a
node. Implementing finger tables is not a part of this assignment.

Chord provides an API for applications which wish to use its services, as shown
in the Figure below.

Application layer

API
Chord

In this assignment, your main task is to implement the Chord layer and the API it
provides to the application. In addition, you need to implement a simple
application which uses the API and demonstrates that your Chord is working

properly.

Chord API
The API must support the following functions:

* join(host, port). This function is called when the application wants to join
the Chord network. To join the network, you need to get the address of a
node that is already part of the network and its port number which are
passed as arguments. After the join returns, the calling node should be in
its correct place on the Chord ring, with the predecessor and successor
correctly informed.

* leave(). This function is called when the node leaves the network, e.g.,
because it is being shut down. After leave returns, the Chord ring should
be intact (i.e., the old predecessor and successor are informed) and the
items stored by this node need to have been passed to its successor.

* store(name, value). This function stores the value in the node which is
responsible for name (more precisely, in the node which is the successor
of hash(name))

* value = retrieve(name). This function returns the value which is stored
under name. If there is no value stored under this name, the function
returns -1. (This means you cannot store the value -1 anywhere.)

The store and retrieve operations only store simple key-value pairs. In this
assignment, names are just simple strings, the keys are the hashes of the names,
and the values are integers.



Your application should provide an interface which allows you to perform the
above operations and displays the results. If you are familiar with GUI
programming, you may provide a graphical interface. If you are not familiar with
graphical interfaces, a simple text-based interface, where you can type in
commands and see the responses printed out, is sufficient. The only requirement
for full credit is some kind of a working interface; adding fancy features to the
interface does not get you extra credit.

Chord protocol

The communications between the different Chord layers on different nodes is
done according to the following protocol. The protocol messages are plain text
and all follow the same format which is:

opP Arguments ... <CRLF>

Where OP is the operation and Arguments are the arguments needed for the
operation (see below for details). If there are multiple arguments, they are
separated by a single space. Each line is terminated with a CRLF-combination
(carriage return + linefeed).

Your Chord protocol must implement the following operations:

* JOIN. Join takes as arguments the identifier, the [P address, and port
number of the joining node. The identifier is an unsigned integer, the IP
address is in dotted-decimal notation (e.g., 127.0.0.1) and the port
number is an integer. The JOIN message is routed to the node which is
currently responsible for the identifier of the new node.

* JOIN_OK. This message is sent by the node which received the JOIN and
confirms the success of JOIN to the new node. As arguments, JOIN_OK has
the identifier, the IP address, and port of the predecessor and the
identifier, the IP address, and port of the successor for the new node (the
successor is the node sending JOIN_OK and the predecessor is that node’s
current predecessor). JOIN_OK will be immediately followed by a
TRANSFER-message which transfers the key-value pairs which are now
the responsibility of the new node.

* NEWNODE. When a new node joins, its JOIN message is routed to the old
responsible node, i.e., the new node’s successor. The joining node receives
the predecessor of this node in the JOIN_OK response. The joining node
then sends a NEWNODE message to that node. This informs that node
that it should change its successor to point to the new node. NEWNODE
takes as arguments the identifier, the IP address, and port of the new
node.

* LEAVE. This message is sent when a node leaves the network. It sends it
to its own successor. The arguments for LEAVE are the identifier, the IP
address, and port of the predecessor of the leaving node. A LEAVE
message is immediately followed by a TRANSFER which transfers all the
key-value pairs to the successor.



* NODEGONE. When a node leaves, it sends a LEAVE to its successor as per
above. The leaving node then informs its predecessor with a NODEGONE
message. NODEGONE has three arguments, the identifier, the IP address,
and port of the leaving node’s successor. A node receiving a NODEGONE
message should adjust its successor to the node in the message.

* STORE. This message stores values under keys. It takes two arguments,
the key (as an unsigned integer, which is the hash of the object name) and
the value (as a normal integer, except -1, see above) which is to be stored
under this key.

* RETRIEVE. This message is used to retrieve values stored in the nodes. It
takes one argument, the key (as an unsigned integer, i.e., the hash of the
name) of the requested object as an unsigned integer.

* OK. This message returns the value of the requested key as a response to
RETRIEVE. It has one argument, the value as an integer.

* NOTFOUND. This is returned as a response to RETRIEVE if the node has
no corresponding value for the requested key. This message takes no
arguments.

* TRANSFER. This message transfers the key-value pairs from one node to
another. TRANSFER has a slightly different syntax from the other nodes.
The TRANSFER message takes one argument, the number of key-value
pairs to be transferred. The actual key-value pairs follow after the
TRANSFER command, one per line, key first and then the value, separated
by a single space and terminated by a CRLF.

The above messages define the Chord protocol you implement in this assignment.
The messages JOIN, STORE, and RETRIEVE must be routed through the Chord
ring. The reply messages (JOIN_OK, OK, and NOTFOUND) are routed back
through the Chord ring, along the same chain of nodes that the request took (see
below for message routing). All other messages can be directly sent to the
correct node (LEAVE, NEWNODE, NODEGONE, and TRANSFER) because its
address and port are known.

Note that there is nothing in the protocol to guard against node failures. If a node
crashes suddenly, it is likely that the Chord ring is broken and will not function
anymore. Fault-tolerance is not required in this assignment.

Message Routing and Connection Management

Routing of the messages in the Chord ring should be done recursively. This
means that when a node receives a message which is not intended for it (that is,
the node is not responsible for the identifier in the message), it should forward it
to its successor, which may forward it again, and so on. When the message finally
has reached the intended node, it replies and the reply is forwarded back along
the same chain of nodes.

Use TCP to send all messages and replies. You do not need to keep TCP
connections open between a node and its predecessor or successor, since their [P
addresses and port numbers are known and you can always open new
connections when they are needed. For recursively processed messages (JOIN,
STORE, and RETRIEVE), keep the TCP connections open for returning the reply.



Hash Functions

For getting the identifiers of nodes and objects, you can use the standard hash
functions in the language you use. You are also allowed to use hash functions
from external libraries. The hash values returned by the standard hash functions
(e.g., in Java) are not always very uniformly distributed. If this becomes a
problem, you can look for other hash functions, e.g., code provided on the
Internet. Regardless of the hash functions you use, the node identifier should be
the hash of the node’s IP address concatenated with a colon and its port number,
that is, node_id = hash(“127.0.0.1:3456") if the node 127.0.0.1 is on port 3456.
Note: You must also implement a possibility of specifying the node and object
identifiers manually at run-time. This is useful for testing that your network is
working correctly, both for you and us. This could be for example implemented
by a command line switch, or a button in the GUI, with the appropriate fields for
entering the hashes. You are allowed to modify the API calls to achieve this.

Joining the Network

When joining the network, the new node must have the address of one node that
is already part of the network. The new node then sends a JOIN message to this
node, which then routes the JOIN to the correct responsible node, and the new
node becomes a member of the ring.

This does not work for the very first node which joins the network. Use, for
example, a command line switch to tell the starting node that it is the first node.

Storing Key-Value Pairs
You also need some kind of a simple database for storing the key-value pairs in
each node.

Compatibility between Implementations

Although the protocol and API specifications should result in compatible
implementations from different students, we do not require or enforce
compatibility between implementations. If you have a chance to test your
implementation with another student, write this in your report, along with the
results of your test. We will also perform some compatibility tests during grading.
If your implementation is compatible with other implementations, you (and the
other student(s)) will get extra points in your grade.

Milestones

Milestone 1
Program a simple application which uses the Chord API as specified above.
Application should provide a simple interface (text or GUI) and accept the
command line switches defined in the assignment. The application should call
the API functions, which can simply return immediately for this stage of the
assignment.

Milestone 2

Implement the Chord ring construction and maintenance. This milestone
requires that you implement the protocol messages JOIN, JOIN_OK, NEWNODE,
LEAVE, and NODEGONE in the Chord layer. After this milestone, the API
functions join() and leave() should work properly. Because there are no keys



stored in the nodes, the TRANSFER message is always empty. However, you need
to implement the empty TRANSFER messages for JOIN and LEAVE.

Milestone 3

Implement storing and retrieving objects. You need to implement the remaining
protocol messages (STORE, RETRIEVE, OK, NOTFOUND) and complete the
functionality for TRANSFER. After this milestone, you should have a working
application which is able to store objects in a distributed “database” and retrieve
them.

Grading

A working implementation of Milestone 2 is a minimum requirement for passing
the assignment. We will grade the overall program, its correct working, as well
as the style of code you write.

Hints for Testing Your Code

When testing your code and the correctness of your implementation, use at least
4 different nodes. The nodes can be on the same computer, as long as you give
different port numbers to each node. Also, use the possibility to set the node and
object identifiers manually, since this makes it easier to see what is going on.

Guidelines

The assignment is individual work. Every student must return their own
implementation. You can of course discuss any problems you encounter with
other students, but sharing code is not allowed and if found, will be considered
as plagiarism.

You are free to choose any programming language, but we recommend using a
higher level language, e.g., Ruby or Python, even if you have to learn the language
from scratch during the assignment.

Deliverables
Program source code with documentation. The document should describe how
you implemented the assignment.

Timeline
The assignment is due on February 22nd at 22:00. No extensions will be given.

Return

Return your code and documentation by email to Liang.Wang@cs.helsinki.fi as
one tar-archive. Please indicate clearly your name and student ID in every source
code file.




