Probabilistic Models: Spring 2013 Exercise session 2 (exercises 5–9)

Instructions: All course participants are requested to submit their exercise solutions as follows:

- Deadline: before 12 o'clock noon of the Wednesday when the corresponding exercise session will be held
- Submission as a PDF file by email to joonas.paalasmaa at helsinki.fi (cc: to petri.myllymaki at cs.helsinki.fi)
- If you write the solutions by hand, please scan your paper. However, we strongly recommend that you type your solution by using a word processor. LaTeX is of course especially suitable for typesetting math, and it also has a convenient front-end LyX.
- Use as the title of your paper: "ProMo-2013, Exercise session n, yourlastname."
- Use as the subject line of the message: "ProMo-2013, Exercise session n, yourlastname."
- In all the exercises, do not just give the answer, but also the derivation of how you obtained it.
- Participants are encouraged to write computer programs to derive solutions whenever appropriate. In this case, please enclose the program source code too as a separate file.

After the exercise session, you are allowed to send a modified version of ONE of the solutions you sent before the exercise session:

- Deadline: midnight after the exercise session.
- Submission as before, but this time please send only the modified solution, not the other (unchanged) solutions.
- Enclose the original solution first and then continue with the new material: first explain what you did wrong in the first time and then continue with modifications.
- As the title of the submission (and subject line for the email message), please use:
 - "ProMo-2013, Exercise session n, yourlastname, modified exercise x."

5. Let us consider a coin tossing experiment as a Bernoulli model. Let us assume the probability of getting heads in a trial, i.e., $P(H) = \theta$. (T denotes getting tails).

Now assume the outcome of the above experiment is $D = \{HHTHTTHHTHTTHHHH\}.$

- a) Calculate the maximum likelihood parameters.
- b) Also calculate the likelihood of the data with these parameters.
- c) Calculate the likelihood when the coin is fair.
- d) Calculate posterior distribution, i.e., $P(\theta \mid D)$ considering uniform and Jeffreys priors.
- e) Now in the given order, for each observation X, calculate its predictive probability given the preceding sequence, i.e., (in this case) calculate P(X = H), $P(X = H \mid D = \{H\})$, $P(X = T \mid D = \{HH\})$, $P(X = H \mid D = \{HHT\})$ and so on (all 15 probabilities) using maximum likelihood parameters and Bayesian inference (all parameters) with the uniform prior. Also calculate the product of these 15 predictive probabilities.
- 6. Do the above calculations when the outcome of the experiment is $D = \{TTTHHHHHHHH\}$.
- 7. Let us consider a 6-sided dice rolling experiment as a multinomial model (i.i.d. multi-valued Bernoulli). We roll the dice 50 times, and observe data D with the following counts for the sides:

X = 1:8 times

X = 2:4 times

X = 3:9 times

X = 4:7 times

X = 5:12 times

X = 6 : 10 times

- (a) Calculate the maximum likelihood parameters, given the above data.
- (b) Calculate the posterior distribution, i.e., $P(\theta_1, \theta_2, ..., \theta_6 \mid D)$ considering (i) the uniform prior Dir(1, 1, 1, 1, 1, 1) and (ii) the Jeffreys prior Dir(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5).
- (c) Using Bayesian inference with the uniform prior, calculate the predictive distribution (all 6 probabilities) of the next result given D.
- (d) Give an example of a Dirichlet prior distribution so that $P(X = 3 \mid D) = P(X = 5 \mid D) = 0.25$.

8. Let $P(D \mid \theta)$ be a Bernoulli likelihood and $P(\theta)$ a beta prior with hyperparameters α and β . The data D is collected by drawing balls with replacement and the total N observations are divided into N_b black balls and N_w white ones. Prove that the maximum a posteriori estimate is

$$\theta_{MAP} = \arg\max_{\theta} P(D \mid \theta) P(\theta) = \frac{\alpha + N_b - 1}{\alpha + \beta + N_b + N_w - 2}.$$

9. Medical diagnosis. Let's have the following notation:

Notation	Explanation
A=1	A person has brain cancer
B = 1	A person has a high blood calcium level
C = 1	A person has a brain tumor
D = 1	A person has seizures that cause unconsciousness
E = 1	A person has severe headaches

An expert have told us the following information about the relationships between variables:

Probability of severe headaches P(E=1) depends only on the fact whether a person has a brain tumor (C) or not. On the other hand, if one knows the blood calcium level (B) and whether the person has a tumor or not (C), one can specify the probability of unconsciousness seizures P(D=1). In this case, the probability of D doesn't depend on the presence of the headaches (E) or (directly) on the fact whether the person has brain cancer or not (A). The probability of a brain tumor (C) depends directly only on the fact, whether the person has brain cancer or not (A).

Construct a DAG that represents (exactly) the conditional independencies specified by the expert.