

How to generate random vectors from a Bayesian network?

Sample parents first

•
$$(0.5, 0.5) \rightarrow yes$$

•
$$(0.9, 0.1) \rightarrow on$$

•
$$(0.8, 0.2) \rightarrow no$$

•
$$(0.9, 0.1) \rightarrow yes$$

•
$$P(C,S,R,W) = P(yes,on,no,yes)$$

= 0.5 x 0.9 x 0.2 x 0.9 = 0.081

Two types of probabilistic reasoning

- n (discrete) random variables X₁,...,X_n
- joint probability distribution P(X₁,...,X_n)
- Input: a partial value assignment Ω , $\Omega = \langle X_1, X_2 = x_2, X_3, X_4 = x_4, X_5 = x_5, X_6, ..., X_n \rangle$
- Probabilistic reasoning, type I (marginal distribution):
 - compute $P(X=x|\Omega)$ for some X not instantiated in Ω , and for all values x of X.
- Probabilistic reasoning, type II (MAP assignment):
 - Given Ω , find a maximum a posterior probability value assignment jointly for all the X_i not instantiated in Ω
- N.B. These are not the same thing!
- Bayesian networks: a family of probabilistic models and algorithms enabling computationally efficient probabilistic reasoning

Some famous (simple) Bayesian network models

- Naïve Bayes classifier
- Finite mixture model
- Tree Augmented Naïve Bayes
- Hidden Markov Models (HMMs)

Naïve Bayes classifier

•X; are called predictors or indicators

Naïve Bayes Classifier

- Structure tailored for efficient diagnostics
 P(C|x₁,x₂,...,x_n).
 - Obs! Does NOT try to model directly the target probability distribution P(C|x₁,x₂,...,x_n)
- Unrealistic conditional independence assumptions, but OK for the particular query P(C|x₁,x₂,...,x_n).
- Because of wrong independence assumptions, NB is often poorly calibrated:
 - Probabilities $P(C|x_1,x_2,...,x_n)$ may be way off, but argmax_c $P(c|x_1,x_2,...,x_n)$ still often correct.

Calculating $P(C|x_1,x_2,...,x_n,NB)$

Boldly calculate through joint probability

$$P(C|x_{1},...,x_{n}) \propto P(C,x_{1},...,x_{n}) = P(C) \prod_{i=1}^{n} P(x_{i}|C)$$

 No need to have all the predictors. Having just set X_A of predictors (and not X_B):

$$\begin{split} P(C|x_{A}) &\propto P(C, x_{A}) = \sum_{x_{B}} P(C, x_{A}, x_{B}) \\ &= \sum_{x_{B}} P(C) \prod_{i \in A} P(x_{i}|C) \prod_{j \in B} P(x_{j}|C) \\ &= P(C) \prod_{i \in A} P(x_{i}|C) \sum_{x_{B}} \prod_{j \in B} P(x_{j}|C) \\ &= P(C) \prod_{i \in A} P(x_{i}|C) \prod_{j \in B} \sum_{x_{i}} P(x_{j}|C) = P(C) \prod_{i \in A} P(x_{i}|C) \end{split}$$

Example

6 binary variables: C, $X_1,...X_5$, P(C=0)=0.4

$$P(C=0 \mid X_1=0, X_2=1, X_3=0, X_4=1, X_5=0)$$

$$\alpha 0.4 \times 0.8 \times 0.5 \times 0.4 \times 0.3 \times 0.9 = 0.017$$

$$P(C=1 \mid X_1=0, X_2=1, X_3=0, X_4=1, X_5=0)$$

$$\alpha 0.6 \times 0.2 \times 0.3 \times 0.6 \times 0.8 \times 0.6 = 0.010$$

$$P(C=0 \mid X_2=1, X_3=0, X_4=1, X_5=0)$$

$$\alpha \ 0.4 \times 0.5 \times 0.4 \times 0.3 \times 0.9 = 0.022$$

$$P(C=1 \mid X_2=1, X_3=0, X_4=1, X_5=0)$$

$$\alpha \ 0.6 \times 0.3 \times 0.6 \times 0.8 \times 0.6 = 0.052$$

Tree Augmented Naïve Bayes (TAN)

X may have at most one other X as an extra parent.

Calculating $P(C|x_1,x_2,...,x_n,TAN)$

Again, boldly calculate via joint probability

$$P(C|X_{1},...,X_{n}) \propto P(C,X_{1},...,X_{n}) = P(C) \prod_{i=1}^{n} P(X_{i}|C,Pa(X_{i}))$$

But missing predictors may hurt more. For example:

NB as a Finite Mixture Model

- When the Naive Bayes structure is reasonable, it also makes a nice (marginal) joint probability model P(X₁,X₂,...,X_n) for "predictors".
- A computationally effective alternative for building a Bayesian network for X₁,X₂,...,X_n.
- Joint probability $P(X_1, X_2, ..., X_n)$ is represented as a mixture of K joint probability distributions $P_k(X_1, X_2, ..., X_n) = P_k(X_1)P_k(X_2)...P_k(X_n)$, where $P_k(\cdot) = P(\cdot|C=k)$.

Calculating with $P(X_1, X_2, ..., X_n | NB)$

Joint probability a simple marginalization:

$$P(X_{1},...,X_{n}) = \sum_{k=1}^{K} P(X_{1},...,X_{n},C=k)$$

$$= \sum_{k=1}^{K} P(C=k) \prod_{i=1}^{n} P(X_{i}|C=k)$$

Inference

$$P(X|e) \propto P(e,X) = \sum_{k=1}^{K} P(e,X,C=k)$$

$$= \sum_{k=1}^{K} P(C=k) P(e,X|C=k)$$

$$= \sum_{k=1}^{K} P(C=k) \prod_{X_i \in X} P(X_i|C=k) \prod_{e_i \in e} P(e_i|C=k)$$

Example

- Consider the previous example (the NB model).
- What is $P(X_4 | X_5=0)$?
- $P(X_4=0, X_5=0 \mid C=0) = 0.7 \times 0.9 = 0.63$
- $P(X_4=1, X_5=0 \mid C=0) = 0.3 \times 0.9 = 0.27$
- $P(X_4=0, X_5=0 \mid C=1) = 0.2 \times 0.6 = 0.12$
- $P(X_4=1, X_5=0 \mid C=1) = 0.8 \times 0.6 = 0.48$
- $P(X_4=0, X_5=0) = P(X_4=0, X_5=0 \mid C=0)P(C=0) + P(X_4=0, X_5=0 \mid C=1)P(C=1) = 0.63 \times 0.4 + 0.12 \times 0.6 = 0.324$
- $P(X_4=1, X_5=0) = P(X_4=1, X_5=0 \mid C=0)P(C=0) + P(X_4=1, X_5=0 \mid C=1)P(C=1) = 0.27 \times 0.4 + 0.48 \times 0.6 = 0.396$
- $P(X_4=0 \mid X_5=0) = P(X_4=0,X_5=0)/P(X_5=0) = 0.45$
- $P(X_4=1 \mid X_5=0) = P(X_4=1,X_5=0)/P(X_5=0) = 0.55$

Hidden Markov Models

- Temporal/sequential probabilistic models
- States of the process are hidden but an output dependent on the hidden state is observable
- Frequently applied in e.g. speech recognition, robot navigation, and other pattern recognition tasks

Markov chains

- Assume that the world has a finite number of states, and the changes in the world are caused by a stationary process:
 - The process does not change over time
- The wold has a Markov property:
 - The current state depends only on a <u>finite history</u> of previous states
- A Markov chain is a sequence of random variables X₀,X₁,X₁,... with the Markov property
 - We mainly consider first-order Markov chains where P(X_t | X_{0:t-1}) = P(X_t | X_{t-1})

Hidden Markov Models

 Models observations about a system that changes its state. Transition model

Hidden Markov Model as a BN

- For inference, easier to think of as a long chain of variables
- (For learning, the two-state model more fitting)
- No head-to-head nodes!
- Node X_t represents the (hidden) state at time t, and E_t is the observation at time t

Hidden Markov Model as a BN

- For inference, easier to think of as a long chain of variables
- (For learning, the two-state model more fitting)
- No head-to-head nodes!
- Node X_t represents the (hidden) state at time t, and E_t is the observation at time t

The positioning problem

- Given some location-dependent observations
 O, measured by a mobile device, determine the location L of the device
- Why is this a good research problem?
 - The goodness of different solutions is extremely easy to validate (just go to a known location and test)
 - The results have immediate practical applications
 - Location-based services (LBS)
 - FCC Enhanced 911:
 - Network-based solutions: error below 100 meters for 67 percent of calls, 300 meters for 95 percent of calls
 - Handset-based solutions: error below 50 meters for 67 percent of calls, 150 meters for 95 percent of calls

Cell ID

Cell ID errors

Enhanced Observed Time Difference (E-OTD)

The signal propagation approach

Theory

Reality

A probabilistic approach to positioning

Bayes rule:
$$P(L \mid O) = \frac{P(O \mid L) P(L)}{P(O)}$$

- A probabilistic model assigns a probability for each possible location L given the observations O.
 - P(O | L) is the conditional probability of obtaining observations O at location L.
 - P(L) is the prior probability of location L. (Could be used to exploit user profiles, rails etc.)
 - P(O) is just a normalizing constant.
- How to obtain P(O | L)? ⇒ Empirical observations + machine learning

Tracking with Markov models

- Typically we have a sequence (history) of observations $O_1,...,O_n$, and wish to determine $P(L_n \mid O^n)$
- Assumption: $P(O_t | L_t)$ are known, and given location L_t , the observation O_t is independent of the rest of the history
- The model: a hidden Markov model (HMM) where the locations $L_{\scriptscriptstyle t}$ are the hidden unobserved states
- The transition probabilities $P(L_t \mid L_{t-1})$ can be easily determined from the physical properties of the moving object

One more assumption

- The observation at time t typically consists of several measurements (e.g., strengths of signals from all the transmitters that can be heard)
- If the wireless network is designed in a reasonable manner (the transmitters are far from each other), it makes sense to assume that the individual observations are independent, given the location
- The "Naïve Bayes" model

The Model

First-order "semi-hidden" Markov model

Tracking as probabilistic inference

- As our hidden Markov model is a tree, we can compute the marginal of any L_t, given the history Oⁿ, in linear time by using a simple forward-backward algorithm
- Alternatively, we can compute the maximum probability path $L_1,...,L_n$ given the history (this is known as the **Viterbi** algorithm)
- Kalman filter: all the conditional distributions of the HMM model are normal distributions (linear dependencies with Gaussian noise)

Recursive tracking

- Assume that $P(L_{n-1} | O^{n-1})$ has been computed.
- Our model defines the transition probabilities $P(L_t | L_{t-1})$ and the local observation probabilities $P(O_t | L_t)$
- Now $P(L_n | O^n) \alpha P(L_n, O^n)$ = $P(O_n | L_n, O^{n-1}) P(L_n, O^{n-1})$ = $P(O_n | L_n) \sum_{L_{n-1}} P(L_n, L_{n-1}, O^{n-1})$ $\alpha P(O_n | L_n) \sum_{L_{n-1}} P(L_n | L_{n-1}) P(L_{n-1} | O^{n-1})$
- With a Kalman filter, the recursive process operates all the time with Gaussians

NYC Trial 2001

http://cosco.hiit.fi/demo/manhattan/

Details

- Covering downtown Manhattan (10th -114th St)
- Data gathering by car
- Modeling: 10 person days
- Target accuracy: less than 911 handset requirements
- Tests using cars

Accuracy of NYC Trial 2001

- 20166 points
- tracking; testing done in a car;

Trials: Manhattan 2002

Challenges

- "real 911" simulation
 - No tracking information
 - Only up to 60 seconds of signal measurements
- Target accuracy: "theater level"
- Indoor testing (without indoor modeling)

Accuracy NYC Trial 2002

- 30 points
- static; testing done by walking;

Thesis topic: semi-supervised modeling in positioning

- "automatic calibration"
- T. Pulkkinen, T. Roos, and P. Myllymäki: Semisupervised learning for WLAN positioning.

Joint probability of a HMM

Joint probability factorizes like a BN

- HMM is a Bayesian network!

$$P(X_0, X_1, E_1, X_2, E_2, \dots, X_t, E_t) = P(X_0) \prod_{i=1}^t P(X_i | X_{i-1}) P(E_i | X_i)$$

- Common inference tasks:
 - Filtering / monitoring: P(X_t | e_{1:t})
 - Prediction: $P(X_{t+k} \mid e_{1:t})$, k>0
 - Smoothing: $P(X_k \mid e_{1:t})$, k<t
 - Explanation: arg max $X_{1:t}$ $P(X_{1:t} | e_{1:t})$

Inference tasks visualized

Filtering Prediction **Smoothing** Most likely sequence

Calculating $P(X_t | e_{1:t})$ in HMM

Lets shoot for a recursive formula:

$$egin{aligned} P(X_{t+1}|e_{1:t+1}) = & P(X_{t+1}|e_{t+1},e_{1:t}) \\ & \propto & P(e_{t+1}|X_{t+1},e_{1:t}) P(X_{t+1}|e_{1:t}) \\ = & P(e_{t+1}|X_{t+1}) \underline{P(X_{t+1}|e_{1:t})} \end{aligned}$$

and

$$\begin{split} P(X_{t+1}|e_{1:t}) &= \sum_{x_t} P(X_{t+1}, x_t|e_{1:t}) \\ &= \sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(X_t|e_{1:t}) \\ &= \sum_{x_t} P(X_{t+1}|x_t) \underline{P(x_t|e_{1:t})} \end{split}$$

Forward algorithm for P(X, | e_{1:t})

Combining formulas we get a recursion

$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1}) \sum_{x_t} P(X_{t+1}|x_t) \underline{P(x_t|e_{1:t})}$$

So first calculate

$$P(X_1|e_1) \propto P(e_1|X_1) \sum_{x_0} P(X_1|x_0) P(x_0)$$

and then

$$\begin{split} &P(X_2|e_1,e_2) \propto P(e_2|X_2) \sum_{x_1} P(X_2|x_1) P(x_1|e_1) \\ &P(X_3|e_1,e_2,e_3) \propto P(e_3|X_3) \sum_{x_2} P(X_3|x_2) P(x_2|e_1,e_2) \end{split}$$

Prediction: $P(X_{t+k} \mid e_{1:t}), k>0$

- P(X_{t+1} | e_{1:t}) part of the forward algorithm
- and from that on evidence does not count, and one can just calculate forward:

$$\begin{split} P(X_{t+2}|e_{1:t}) &= \sum_{\mathbf{x}_{t+1}} P(X_{t+2}|\mathbf{x}_{t+1}, e_{1:t}) P(\mathbf{x}_{t+1}|e_{1:t}) \\ &= \sum_{\mathbf{x}_{t+1}} P(X_{t+2}|\mathbf{x}_{t+1}) P(\mathbf{x}_{t+1}|e_{1:t}) \\ P(X_{t+3}|e_{1:t}) &= \sum_{\mathbf{x}_{t+2}} P(X_{t+3}|\mathbf{x}_{t+2}, e_{1:t}) P(\mathbf{x}_{t+2}|e_{1:t}) \\ &= \sum_{\mathbf{x}_{t+2}} P(X_{t+3}|\mathbf{x}_{t+2}) P(\mathbf{x}_{t+2}|e_{1:t}) \end{split}$$

Smoothing: $P(X_k | e_{1:t})$, k<t

Obvious move: divide e_{1:t} to e_{1:k} and e_{k+1:t}.

$$\begin{split} P(X_{k}|e_{1:t}) &= P(X_{k}|e_{1:k}, e_{k+1:t}) \\ &\propto P(X_{k}|e_{1:k}) P(e_{k+1:t}|X_{k}, e_{1:k}) \\ &= P(X_{k}|e_{1:k}) \underline{P(e_{k+1:t}|X_{k})} \\ P(e_{k+1:t}|X_{k}) &= \sum_{X_{k+1}} P(X_{k+1}, e_{k+1:t}|X_{k}) \\ &= \sum_{X_{k+1}} P(X_{k+1}|X_{k}) P(e_{k+1:t}|X_{k+1}, X_{k}) \\ &= \sum_{X_{k+1}} P(X_{k+1}|X_{k}) P(e_{k+1}, e_{k+2:t}|X_{k+1}) \\ &= \sum_{X_{k+1}} P(X_{k+1}|X_{k}) P(e_{k+1}, e_{k+2:t}|X_{k+1}) \\ &= \sum_{X_{k+1}} P(X_{k+1}|X_{k}) P(e_{k+1}|X_{k+1}) \underline{P(e_{k+2:t}|X_{k+1})} \end{split}$$

and the first (last) step:

$$\begin{split} P(e_t|X_{t-1}) &= \sum_{x_t} P(x_t, e_t|X_{t-1}) = \sum_{x_t} P(e_t|x_t, X_{t-1}) P(x_t|X_{t-1}) \\ &= \sum_{x_t} P(e_t|x_t) P(x_t|X_{t-1}) \end{split}$$

Back and forth

- "Brute-force" smoothing of the whole sequence takes O(t²) time
- Forward-backward algorithm: O(t)
- Finding the most probable sequence works in the same manner (the Viterbi algorithm / Viterbi path)

Finding the most probable sequence

Want to compute:

$$\begin{aligned} & \max_{X_{1,\dots,X_{n}}} P(X_{1},\dots,X_{n}|e_{1},\dots,e_{n}) \\ &= \max_{X_{n}} \max_{X_{1},\dots,X_{n-1}} P(X_{1},\dots,X_{n-1},X_{n},e_{1},\dots,e_{n}) \end{aligned}$$

Recursion:

$$\begin{split} & \max_{X_{1,...,X_{n-1}}} P(X_{1},...,X_{n-1},X_{n}|e_{1},...,e_{n}) = \max_{X_{1,...,X_{n-1}}} P(X_{1},...,X_{n-1},X_{n},e_{1},...,e_{n}) \\ & = \max_{X_{1,...,X_{n-1}}} P(e_{n}|X_{n},X_{1},...,X_{n-1},e_{1},...,e_{n-1}) P(X_{n},X_{1},...,X_{n-1},e_{1},...,e_{n-1}) \\ & = \max_{X_{1,...,X_{n-1}}} P(e_{n}|X_{n}) P(X_{n}|X_{1},...,X_{n-1},e_{1},...,e_{n-1}) P(X_{1},...,X_{n-1},e_{1},...,e_{n-1}) \\ & = P(e_{n}|X_{n}) \max_{X_{n-1}} P(X_{n}|X_{n-1}) \max_{X_{1},...,X_{n-2}} P(X_{1},...,X_{n-2},X_{n-1}|e_{1},...,e_{n-1}) \end{split}$$

- More:
 - see e.g. Russel & Norvig, Chapter 15.2.

The Viterbi algorithm

Let
$$p(X, i) = \max_{X_1, ..., X_{i-1}} P(X_1, ..., X_{i-1}, X | e_1, ..., e_i)$$

denote the probability of the most probable sequence of length i ending in state X.

$$p(X,1) = P(e_1|X)P(X) = P(e_1|X)\sum_{X_o} (P(X|X_o)P(X_o))$$

$$p(X,i) = P(e_i|X)max_Y[p(Y,i-1)P(X|Y)], for i > 1.$$

The Viterbi algorithm

Let
$$p(X, i) = \max_{X_1, ..., X_{i-1}} P(X_1, ..., X_{i-1}, X | e_1, ..., e_i)$$

denote the probability of the most probable sequence of length i ending in state X.

$$p(X,1) = P(e_1|X)P(X) = P(e_1|X)\sum_{X_o} (P(X|X_o)P(X_o))$$

$$p(X,i) = P(e_i|X)max_Y[p(Y,i-1)P(X|Y)], for i > 1.$$

Probabilistic inference in DAGs

Types of inference

- Assume that both the structure of the model (the DAG), and the parameters (local probability tables) are fixed
- Recall the two types of inference task:
 either compute the conditional probability of
 a (set of) variables, given the values of
 others, or compute the maximum
 probability assignment
- Inference can be either <u>exact</u> or <u>approximative</u>

Exact inference in singly-connected BNs

 a singly connected BN = polytree (disregarding the arc directions, no two nodes can be connected with more than one path).

singly-connected

multi-connected

Probabilistic reasoning in singlyconnected BNs

$$\begin{split} &P(X|E) \propto P(X , E_{+}, E_{-}) \propto P(E_{-}|X) P(X|E_{+}) \\ &P(E_{-}|X) = \prod_{Y} P(E_{Y-}|X) \\ &P(E_{Y-}|X) = \sum_{Y} P(E_{Y-}|Y) P(Y|X) \\ &P(X|E_{+}) = \sum_{Z} P(X|Z) P(Z|E_{Z^{+}}) \end{split}$$

 a computationally efficient messagepassing scheme: time requirement linear in the number of conditional probabilities in Θ.

Belief propagation

- A message passing algorithm developed by Judea Pearl
- Computes the marginal distribution of an unobserved variable given the observed ones
- Each node maintains a belief of its state (the conditional probability distribution, given the evidence)
- Nodes pass messages to their neighbors and update their beliefs based on received messages

Belief propagation in chains

- A node can have at most one parent and child, no loops.
- We want to compute the marginal probability P(X | e), where the evidence e is an instantiation of node set E.
- Let us partition the evidence e into evidence from "upstream" e⁺ and evidence from "downstream" e⁻.

$$P(X \mid e) = P(X \mid e^+, e^-)$$

 $\propto P(e^- \mid X, e^+)P(X \mid e^+)$
 $= P(e^- \mid X)P(X \mid e^+)$

Message passing in chains

$$\lambda(U = u) = P(e^{-} | U = u)$$

$$= \sum_{x} P(e^{-} | X = x)P(X = x | U = u)$$

$$= \sum_{x} \lambda(X = x)P(X = x | U = u)$$

$$\pi(X = x) = P(X = x \mid e^{+})$$

$$= \sum_{u} P(X = x \mid U = u) P(U = u \mid e^{+})$$

$$= \sum_{u} P(X = x \mid U = u) \pi(U = u)$$

Initialization

For nodes E with evidence e:

$$\lambda(E=e)=1$$
, otherwise $\lambda(E=x)=0$
 $\pi(E=e)=1$, otherwise $\pi(E=x)=0$

Nodes with no parents:

$$\pi(x) = P(x)$$
 (prior probabilities)

Nodes with no children:

$$\lambda(x)=1$$
, for all x

Belief propagation in trees

- Every node has at most one parent.
- Differences compared to chains:
 - Each node must combine impacts of the λ-messages obtained from its children.
 - Each node should distribute a separate
 π-message to each of its children.

Message passing in trees

Initialization like with chains. Then (in any order):

Belief updating:

$$BEL(x) = P(x|e) \propto \lambda(x) \pi(x).$$

$$\lambda(x) = \prod_{j} \lambda_{Y_{j}}(x).$$

$$\pi(x) = \sum_{u} P(x|u) \pi_{X}(u).$$

Bottom-up propagation:

$$\lambda_X(u) = \sum_x \lambda(x) P(x|u).$$

Top-down propagation:

$$\pi_{Y_j}(x) \propto \pi(x) \prod_{k \neq j} \lambda_{Y_k}(x).$$

Belief propagation in polytrees

- Nodes can have multiple parents
- No loops
- Differences compared to trees:
 - Each node must combine impacts of the π-messages obtained from its parents.
 - Each node should distribute a separate
 λ-message to each of its parents.

Message passing in polytrees

• For details, see e.g. Neapolitan (Chapter 3.2.), or Pearl (Chapter 4.2.)

- Number of messages sent depends linearly on the diameter of the network
- The time needed to compute a message is linear with respect to the size of the local probability table
 - But note that this means that the time (and size) is exponential with respect to the number of parents!
- The message-passing algorithm does not work with multi-connected networks

Probabilistic reasoning in multi-connected BNs

- Generally not computationally feasible as the problem has been shown to be NP-hard (Cooper 1990, Shimony 1994).
- Exact methods:
- clustering
- conditioning
- variable elimination
- Approximative methods:
 - stochastic sampling algorithms
 - loopy belief propagation
- Even approximative inference (both in terms of absolute and relative error) is NP-hard

Variable elimination

- Idea: eliminate (marginalize) one variable at a time
- Usually, each step depends on a limited number of variables only
- Time (and space) complexity of the algorithm depends on the structure of the network, and on the elimination order

Variable elimination: a simple example

$$P(D) = \sum_{A,B,C} P(A,B,C,D)$$

$$= \sum_{C} \sum_{B} \sum_{A} P(A)P(B|A)P(C|B)P(D|C)$$

$$= \sum_{C} \sum_{B} P(C|B)P(D|C) \sum_{A} P(A)P(B|A)$$

$$= \sum_{C} P(D|C) \sum_{B} P(C|B) \sum_{A} P(A)P(B|A)$$

Approximate inference in Bayesian networks

- How to estimate how probably it rains next day, if the previous night temperature is above the month average?
 - count rainy and non rainy days after warm nights (and count relative frequencies).
- Rejection sampling for P(X|e):
 - 1.Generate random vectors $(\mathbf{x}_r, \mathbf{e}_r, \mathbf{y}_r)$.
 - 2.Discard those those that do not match e.
 - 3. Count frequencies of different \mathbf{x}_{r} and normalize.

Rejection sampling, bad news

- Good news first:
 - super easy to implement
- Bad news:
 - if evidence e is improbable, generated random vectors seldom conform with e, thus it takes a long time before we get a good estimate P(X|e).
 - With long **E**, all **e** are improbable.
- So called likelihood weighting can alleviate the problem a little bit, but not enough.

Gibbs sampling

- A Markov Chain Monte Carlo (MCMC) method that approximates the probability distribution by sampling from a "cleverly" selected Markov Chain
- Given a Bayesian network for n variables X U E U
 Y, calculate P(X|e) as follows:

```
N = (associative) array of zeros
Generate random vector x,y.
While not enough samples:
  for V in X,Y:
    generate v from P(V | MarkovBlanket(V))
    replace v in x,y.
    N[x] +=1
    print normalize(N[x])
```

Sampling from the Markov blanket

$$\begin{split} &P(X|mb(X)) \\ &= P(X|mb(x), Rest) \\ &= \frac{P(X, mb(X), Rest)}{P(mb(X), Rest)} \\ &\propto P(All) \\ &= \prod_{X_i \in X} P(X_i|Pa(X_i)) \\ &= P(X|Pa(X)) \prod_{C \in ch(X)} P(C|Pa(C)) \prod_{R \notin \{X \cup ch(X)\}} P(R|Pa(R)) \\ &\propto P(X|Pa(X)) \prod_{C \in ch(X)} P(C|Pa(C)) \end{split}$$

Why does it work

- All decent Markov Chains have a unique stationary distribution P* that can be estimated by simulation.
- Detailed balance of transition function q and state distribution P* implies stationarity of P*.
- Proposed q = P(V|mb(V)), and P(X|e) form a detailed balance, thus P(X|e) is a stationary distribution, so it can be estimated by simulation.

Markov Chains: stationary distribution

- Defined by transition probabilities q(x→x') between states, where x and x' belong to a set of states X.
- Distribution P* over X is called stationary distribution for the Markov Chain q, if $P^*(x')=\sum_{x}P^*(x)q(x\rightarrow x')$.
- P*(X) can be found out by simulating Markov Chain q starting from a random state x_r.

Markov Chains: detailed balance

- Distribution P over X and a state transition distribution q are said to form a detailed balance, if for any states x and x', P(x)q(x→x') = P(x')q(x'→x), i.e. it is equally probable to witness transition from x to x' as it is to witness transition from x' to x.
- If P and q form a detailed balance, $\sum_{x} P(x)q(x \rightarrow x') = \sum_{x} P(x')q(x' \rightarrow x) = \sum_{x} P(x')\sum_{x} q(x' \rightarrow x) = P(x')$ P(x')\sum_{x} q(x' \rightarrow x) = P(x'), thus P is stationary.

Gibbs sampler as Markov Chain

- Consider Z=(X,Y) to be states of a Markov chain, and q((v,z_v))→(v',z_v))=P(v'|z_v, e), where Z_v = Z-{V}. Now P*(Z)=P(Z|e) and q form a detailed balance, thus P* is a stationary distribution of q and it can be found with the sampling algorithm.
 - $P^*(\mathbf{z})q(\mathbf{z} \rightarrow \mathbf{z}') = P(\mathbf{z}|\mathbf{e})P(\mathbf{v}'|\mathbf{z}_{_v}, \mathbf{e})$ $= P(\mathbf{v},\mathbf{z}_{_v}|\mathbf{e})P(\mathbf{v}'|\mathbf{z}_{_v}, \mathbf{e})$ $= P(\mathbf{v}|\mathbf{z}_{_v},\mathbf{e})P(\mathbf{z}_{_v}|\mathbf{e})P(\mathbf{v}'|\mathbf{z}_{_v}, \mathbf{e})$ $= P(\mathbf{v}|\mathbf{z}_{_v},\mathbf{e})P(\mathbf{v}', \mathbf{z}_{_v}|\mathbf{e}) = q(\mathbf{z}' \rightarrow \mathbf{z})P^*(\mathbf{z}'), \text{ thus balance.}$

Loopy belief propagation

- What happens if you just keep iterating the message passing algorithm in a multiconnected network?
- In some cases it produces the right results, or at least a good approximation
- Turbo codes

So let us play....

