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How to generate random vectors 
from a Bayesian network?

● Sample parents first

− P(C)

• (0.5, 0,5) → yes
− P(S|C=yes) 

• (0.9, 0.1) → on
− P(R | C=yes)

• (0.8, 0.2) → no
− P(W | S=on, R=no)

• (0.9, 0.1) → yes
● P(C,S,R,W) = P(yes,on,no,yes) 

= 0.5 x 0.9 x 0.2 x 0.9 = 0.081

Cloudy=no Cloudy=yes
0.5 0.5

Cloudy Sprinkler=onSprinkler=off
no 0.5 0.5
yes 0.9 0.1

Cloudy Rain=yes Rain=no
no 0.2 0.8
yes 0.8 0.2

Sprinkler Rain WetGrass=yesWetGrass=no
on no 0.90 0.10
on yes 0.99 0.01
off no 0.01 0.99
off yes 0.90 0.10
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Two types of probabilistic reasoning
● n (discrete) random variables X1,...,Xn

● joint probability distribution P(X1,...,Xn)
● Input: a partial value assignment Ω,

      Ω =< X1, X2=x2, X3, X4=x4, X5=x5, X6,...,Xn>
● Probabilistic reasoning, type I (marginal distribution): 

− compute P(X=x| Ω) for some X not instantiated in Ω, 
and for all values x of X.

● Probabilistic reasoning, type II (MAP assignment): 
− Given Ω, find a maximum a posterior probability value 

assignment jointly for all the Xi not instantiated in Ω

● N.B. These are not the same thing!
● Bayesian networks: a family of probabilistic models and 

algorithms enabling computationally efficient probabilistic 
reasoning
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Some famous (simple) Bayesian 
network models

● Naïve Bayes classifier
● Finite mixture model
● Tree Augmented Naïve Bayes
● Hidden Markov Models (HMMs)
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Naïve Bayes classifier
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●X
i
 are called predictors or indicators

Class
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Naïve Bayes Classifier
● Structure tailored for efficient diagnostics     

P(C|x
1
,x

2
,...,x

n
).

− Obs! Does NOT try to model directly the target 
probability distribution P(C|x

1
,x

2
,...,x

n
)

● Unrealistic conditional independence 
assumptions, but OK for the particular query 
P(C|x

1
,x

2
,...,x

n
).

● Because of wrong independence 
assumptions, NB is often poorly calibrated:

− Probabilities P(C|x
1
,x

2
,...,x

n
) may be way off, but    

 argmax
c
 P(c|x

1
,x

2
,...,x

n
) still often correct.
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Calculating P(C|x
1
,x

2
,...,x

n
,NB)

● Boldly calculate through joint probability

PC∣x1, ... , xn∝PC,x1, ... , xn=PC∏
i=1

n

P xi∣C

PC∣xA∝P C,xA=∑
xB

P C,xA ,xB

=∑
xB

P C∏
i∈A

P xi∣C∏
j∈B

P x j∣C

=PC∏
i∈A

P xi∣C∑
xB

∏
j∈B

P x j∣C

=PC∏
i∈A

P xi∣C∏
j∈B

∑
x j

P x j∣C=P C∏
i∈A

P x i∣C

● No need to have all the predictors. Having just 
set X

A
 of predictors (and not X

B
):
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Example

6 binary variables: C, X1,...X5, P(C=0)=0.4

P(C=0 | X1=0,X2=1,X3=0,X4=1,X5=0) 

α 0.4 x 0.8 x 0.5 x 0.4 x 0.3 x 0.9 = 0.017

P(C=1 | X1=0,X2=1,X3=0,X4=1,X5=0)

α 0.6 x 0.2 x 0.3 x 0.6 x 0.8 x 0.6 = 0.010

P(C=0 | X2=1,X3=0,X4=1,X5=0) 

α 0.4 x 0.5 x 0.4 x 0.3 x 0.9 = 0.022

P(C=1 | X2=1,X3=0,X4=1,X5=0)

α 0.6 x 0.3 x 0.6 x 0.8 x 0.6 = 0.052

17/27=63%

10/27=37%

22/74=30%

52/74=70%
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Tree Augmented Naïve Bayes (TAN) 

Class

X
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● X
i
 may have at most one other X

j
 as an extra parent.
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Calculating P(C|x
1
,x

2
,...,x

n
,TAN)

● Again, boldly calculate via joint probability

PC∣x1,... , xn∝P C,x1, ... , xn=P C∏
i=1

n

P xi∣C,Pa xi

PC∣x5∝P CP x5∣C=P C∑
x4

P x4∣CP x5∣x4,C

=PC∑
x4

P x5∣C,x4P x4∣C

=PC∑
x4

P x5∣C,x4∑
x3

Px4∣C, x3Px3∣C

=...

● But missing predictors may hurt more. For 
example:

C

X
1

X
2

X
3

X
4

X
5
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NB as a Finite Mixture Model
● When the Naive Bayes structure is reasonable, 

it also makes a nice (marginal) joint probability 
model P(X

1
,X

2
,...,X

n
) for “predictors”.

● A computationally effective alternative for 
building a Bayesian network for  X

1
,X

2
,...,X

n
.

● Joint probability P(X
1
,X

2
,...,X

n
) is represented as 

a mixture of K joint probability distributions 
P

k
(X

1
,X

2
,...,X

n
) = P

k
(X

1
)P

k
(X

2
)...P

k
(X

n
), where 

P
k
(·) = P(·|C=k).
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Calculating with P(X
1
,X

2
,...,X

n
|NB)

● Joint probability a simple marginalization:

PX1,... ,Xn=∑
k=1

K

PX1,... ,Xn ,C=k 

=∑
k=1

K

PC=k ∏
i=1

n

P Xi∣C=k 

P X∣e∝P e, X =∑
k=1

K

P e, X ,C=k

=∑
k=1

K

P C=kP e, X∣C=k

=∑
k=1

K

P C=k ∏
X i∈X

P X i∣C=k∏
ei∈e

P ei∣C=k

● Inference
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Example
● Consider the previous example (the NB model). 

● What is P(X4 | X5=0)?

● P(X4=0, X5=0 | C=0) = 0.7 x 0.9 = 0.63

● P(X4=1, X5=0 | C=0) = 0.3 x 0.9 = 0.27

● P(X4=0, X5=0 | C=1) = 0.2 x 0.6 = 0.12

● P(X4=1, X5=0 | C=1) = 0.8 x 0.6 = 0.48

● P(X4=0, X5=0) = P(X4=0, X5=0 | C=0)P(C=0) + P(X4=0, 
X5=0 | C=1)P(C=1) = 0.63 x 0.4 + 0.12 x 0.6 = 0.324

● P(X4=1, X5=0) = P(X4=1, X5=0 | C=0)P(C=0) + P(X4=1, 
X5=0 | C=1)P(C=1) = 0.27 x 0.4 + 0.48 x 0.6 = 0.396

● P(X4=0 | X5=0) = P(X4=0,X5=0)/P(X5=0) = 0.45

● P(X4=1 | X5=0) = P(X4=1,X5=0)/P(X5=0) = 0.55
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Hidden Markov Models

● Temporal/sequential probabilistic models
● States of the process are hidden but an 

output dependent on the hidden state is 
observable

● Frequently applied in e.g. speech 
recognition, robot navigation, and other 
pattern recognition tasks
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Markov chains
● Assume that the world has a finite number of 

states, and the changes in the world are 
caused by a stationary process:
− The process does not change over time

● The wold has a Markov property:
− The current state depends only on a finite history 

of previous states

● A Markov chain is a sequence of random 
variables X0,X1,X1,... with the Markov 
property
− We mainly consider first-order Markov chains 

where P(Xt | X0:t-1) = P(Xt | Xt-1)
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Hidden Markov Models
● Models observations about a system that 

changes its state.

X
t

X
t+1

e
t

e
t+1

P(X
t+1

|X
t
)

P(e
t
|X

t
)

Transition model

Sensor model NB! Sensor model does not 
depend on time t.

No colliding arcs, thus 
independences are  
easy to determine.
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Hidden Markov Model as a BN
● For inference, easier to think of as a long chain of 

variables

● (For learning, the two-state model more fitting)

● No head-to-head nodes!

● Node Xt represents the (hidden) state at time t, 
and Et is the observation at time t 

X1
X1 X2

X2 Xt-1
Xt-1 Xt

Xt…

E1
E1 E2

E2 Et-1
Et-1 Et

Et
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Hidden Markov Model as a BN
● For inference, easier to think of as a long chain of 

variables

● (For learning, the two-state model more fitting)

● No head-to-head nodes!

● Node Xt represents the (hidden) state at time t, 
and Et is the observation at time t 

X1
X1 X2

X2 Xt-1
Xt-1 Xt

Xt…

E1
E1 E2

E2 Et-1
Et-1 Et

Et
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Graphical models Graphical models 
on Manhattan on Manhattan 

─ ─ A probabilistic approach to A probabilistic approach to 
mobile device positioningmobile device positioning 
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Location positioning problem
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The positioning problem
● Given some location-dependent observations 

O, measured by a mobile device, determine the 
location L of the device

● Why is this a good research problem?
− The goodness of different solutions is extremely 

easy to validate (just go to a known location and 
test)

− The results have immediate practical applications
• Location-based services (LBS)
• FCC Enhanced 911:

− Network-based solutions: error below 100 meters for 67 percent of calls, 300 
meters for 95 percent of calls 

− Handset-based solutions: error below 50 meters for 67 percent of calls, 150 
meters for 95 percent of calls
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Cell ID
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Cell-id in urban positioning

- errors  > 500m common
+ simple
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Cell ID errors 
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Enhanced Observed Time 
Difference (E-OTD)
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Problems with E-OTD 
in urban positioning

- multi-paths
- no line of sight  to BS
- extra hardware
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”Theory”
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”Practice”
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The signal propagation 
approach

Theory Reality
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Empirical modeling in 
urban positioning

+accurate
+handset or network based
-calibration measurements required
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A probabilistic approach to positioning

• A probabilistic model assigns a probability for 
each possible location L given the 
observations O.
– P(O | L) is the conditional probability of obtaining 

observations O at location L.

– P(L) is the prior probability of location L. (Could 
be used to exploit user profiles, rails etc.)

– P(O) is just a normalizing constant.
● How to obtain P(O | L)?  Empirical 

observations + machine learning

P(O | L) P(L)

P(O)
         P(L | O) =Bayes rule:
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Tracking with Markov models
• Typically we have a sequence (history) of observations  

O1,…,On, and wish to determine P( Ln | On)

• Assumption: P(Ot | Lt) are known, and given location Lt, 
the observation Ot is independent of the rest of the history

• The model: a hidden Markov model (HMM) where the 
locations Lt are the hidden unobserved states

• The transition probabilities P(Lt | Lt-1) can be easily 
determined from the physical properties of the moving 
object

L1
L1 L2

L2 Ln-1
Ln-1 Ln

Ln…

O1
O1 O2

O2 On-1
On-1 On

On
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One more assumption
● The observation at time t typically consists of 

several measurements (e.g., strengths of 
signals from all the transmitters that can be 
heard)

● If the wireless network is designed in a 
reasonable manner (the transmitters are far 
from each other), it makes sense to assume 
that the individual observations are 
independent, given the location

● The “Naïve Bayes” model
Lt
Lt

Ot1
Ot1 Ot2

Ot2 Otm
Otm…
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The Model

Lt
Lt

Ot1
Ot1 Ot2

Ot2 Otm
Otm…

Lt+1
Lt+1

Ot+1,1
Ot+1,1 Ot+1,2

Ot+1,2 Ot+1,m
Ot+1,m…

First-order ”semi-hidden” Markov model
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Tracking as probabilistic 
inference

• As our hidden Markov model is a tree, we can compute 
the marginal of any Lt, given the history On, in linear 
time by using a simple forward-backward algorithm 

• Alternatively, we can compute the maximum probability 
path L1,…,Ln given the history (this is known as the 
Viterbi algorithm)

• Kalman filter: all the conditional distributions of the 
HMM model are normal distributions (linear 
dependencies with Gaussian noise)
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Recursive tracking
• Assume that P(Ln-1 | On-1) has been computed.

• Our model defines the transition probabilities P(Lt | Lt-1) 
and the local observation probabilities P(Ot | Lt)

• Now P(Ln | On) α P(Ln, On) 

= P(On | Ln, On-1) P(Ln , On-1) 

= P(On | Ln) Σ Ln-1
 P(Ln , Ln-1 , On-1) 

α P(On | Ln) Σ Ln-1
 P(Ln | Ln-1)P(Ln-1 | On-1) 

• With a Kalman filter, the recursive process operates all 
the time with Gaussians
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GSM-positioning trials
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NYC Trial 2001
http://cosco.hiit.fi/demo/manhattan/

http://cosco.hiit.fi/demo/manhattan/
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Details

● Covering downtown Manhattan (10th - 
114th St)

● Data gathering by car
● Modeling: 10 person days
● Target accuracy: less than 911 handset 

requirements
● Tests using cars
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Accuracy of NYC Trial 2001

● 20166 points
● tracking; testing done in a car;

98.6%67% 

17m 

95%

57m 
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Trials: Manhattan 2002

http://www.cs.helsinki.fi/research/cosco/demo/tsq
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Challenges

● “real 911” simulation
− No tracking information
− Only up to 60 seconds of signal 

measurements
● Target accuracy: “theater level”
● Indoor testing (without indoor 

modeling)
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Accuracy NYC Trial 2002
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• 30 points
• static; testing done by walking;

67% 

27m 

95%

85m 

98.6%
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WiFi-positioning 

P.Myllymäki, T. Roos, H.Tirri, P.Misikangas and J.Sievänen. A 
Probabilistic Approach to WLAN User Location Estimation. 
International Journal of Wireless Information Networks, Vol. 
9, No. 3, July 2002.

More information: www.ekahau.com
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Thesis topic: semi-supervised 
modeling in positioning

● ”automatic calibration”

● T. Pulkkinen, T. Roos, and P. Myllymäki: Semi-
supervised learning for WLAN positioning.
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Joint probability of a HMM
● Joint probability factorizes like a BN

− HMM is a Bayesian network!

PX0 ,X1,E1 ,X2 ,E2, ... ,Xt ,Et=PX0∏
i=1

t

P X i∣X i−1P Ei∣Xi

● Common inference tasks:

− Filtering / monitoring: P(X
t
 | e

1:t
)

− Prediction: P(X
t+k

 | e
1:t

), k>0

− Smoothing: P(X
k
 | e

1:t
), k<t

− Explanation: arg max x1:t
 P(X

1:t
 | e

1:t
)

X1
X1 X2

X2 Xt-1
Xt-1 Xt

Xt…
E1
E1 E2

E2 Et-1
Et-1 Et

Et
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Inference tasks visualized
Filtering

Prediction

Smoothing

Most likely 
sequence

X1
X1 X2

X2 Xt-1
Xt-1 Xt

Xt

E1
E1 E2

E2 Et-1
Et-1 Et

Et

Xk
Xk

Ek
Ek

X1
X1 X2

X2 Xt-1
Xt-1 Xt

Xt

E1
E1 E2

E2 Et-1
Et-1 Et

Et

Xk
Xk

Ek
Ek

X1
X1 X2

X2 Xt-1
Xt-1 Xt

Xt

E1
E1 E2

E2 Et-1
Et-1 Et

Et

Xk
Xk

Ek
Ek

X1
X1 X2

X2 Xt-1
Xt-1 Xt

Xt

E1
E1 E2

E2 Et-1
Et-1 Et

Et

Xk
Xk

Ek
Ek
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Calculating P(X
t
 | e

1:t
) in HMM

● Lets shoot for a recursive formula:

P Xt1∣e1: t1=PXt1∣et1 ,e1: t
∝Pet1∣Xt1 ,e1:tPXt1∣e1 : t
=Pet1∣Xt1P Xt1∣e1: t

● and 
P Xt1∣e1: t=∑

xt

P Xt1 , xt∣e1: t

=∑
xt

P Xt1∣xt ,e1: tP Xt∣e1 : t

=∑
xt

P Xt1∣xtP xt∣e1: t
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Forward algorithm for P(X
t
 | e

1:t
)

● Combining formulas we get a recursion

PXt1∣e1 :t1∝Pet1∣Xt1∑
xt

PXt1∣xtP xt∣e1:t 

● So first calculate

PX1∣e1∝Pe1∣X1∑
x0

P X1∣x0Px0

● and then

PX2∣e1,e2∝P e2∣X2∑
x1

PX2∣x1P x1∣e1

PX3∣e1,e2,e3∝P e3∣X3∑
x2

P X3∣x2P x2∣e1,e2


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Prediction: P(X
t+k

 | e
1:t

), k>0

● P(X
t+1

 | e
1:t

) part of the forward algorithm

● and from that on evidence does not count, and 
one can just calculate forward:

P Xt2∣e1: t=∑
xt1

P Xt2∣xt1 ,e1 : tP xt1∣e1:t

=∑
xt1

P Xt2∣xt1Pxt1∣e1 : t

P Xt3∣e1: t=∑
xt2

P Xt3∣xt2 ,e1 : tP xt2∣e1:t

=∑
xt2

P Xt3∣xt2Pxt2∣e1 : t


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Smoothing: P(X
k
 | e

1:t
), k<t

● Obvious move: divide e
1:t

 to e
1:k

 and e
k+1:t

.
PXk∣e1 :t =PXk∣e1 :k ,ek1 :t

∝P Xk∣e1 : kP ek1 :t∣Xk ,e1 :k
=PXk∣e1 :kP ek1 : t∣Xk

Pet∣X t−1=∑
xt

Px t ,et∣Xt−1=∑
xt

Pet∣xt ,X t−1Px t∣X t−1

=∑
xt

P et∣xt P xt∣Xt−1

P (ek+1: t∣X k)=∑
xk+1

P (xk+1 ,ek+1:t∣Xk)

=∑
xk+1

P (xk+1∣X k)P (ek+1:t∣xk+1 , Xk)

=∑
xk+1

P (xk+1∣X k)P (ek+1 ,ek+2:t∣xk+1)

=∑
xk+1

P (xk+1∣X k)P (ek+1∣xk+1)P (ek+2:t∣xk+1)

● and the first (last) step:

X1
X1 X2

X2 Xt-1
Xt-1 Xt

Xt

E1
E1 E2

E2 Et-1
Et-1 Et

Et

Xk
Xk

Ek
Ek
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Back and forth
● ”Brute-force” smoothing of the whole sequence 

takes O(t2) time

● Forward-backward algorithm: O(t)

● Finding the most probable sequence works in the 
same manner (the Viterbi algorithm / Viterbi path)

…X1
X1 X2

X2 Xt-1
Xt-1 Xt

Xt

E1
E1 E2

E2 Et-1
Et-1 Et

Et

Xk
Xk

Ek
Ek

…
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Finding the most probable sequence

● Want to compute:

max X 1,... X n
P (X 1 , ... , X n∣e1 , ... , en)

=maxX n
max X 1 ,... , X n−1

P ( X 1 , ... , X n−1 , X n , e1 , ... , en)

maxX 1, ... , X n−1
P X 1 , ... , X n−1 , X n∣e1 , ... , en=maxX 1, ... , X n−1

P X 1 , ... , X n−1 , X n , e1 , ... , en
=max X 1,... , X n−1

P en∣X n , X 1 , ... , X n−1 , e1 , ... , en−1P X n , X 1 , ... , X n−1 , e1 , ... , en−1
=max X 1,... , X n−1

P en∣X nP  X n∣X 1 ,... , X n−1 , e1 , ... , en−1P X 1 , ... , X n−1 , e1 , ... , en−1
=P en∣X nmax X n−1

P X n∣X n−1maxX 1 ,... , X n−2
P X 1 ,... , X n−2 , X n−1∣e1 ,... , en−1

● Recursion:

● More: 
− see e.g. Russel & Norvig, Chapter 15.2.



Probabilistic Models, Spring 2013  Petri Myllymäki, University of Helsinki IV-54

07.02.13

The Viterbi algorithm

Let

denote the probability of the most probable 
sequence of length i ending in state X.

p(X ,i)=max X 1 ,... , X i−1
P(X 1 , ... , X i−1 , X∣e1 , ... , ei)

p( X ,1)=P (e1∣X )P( X )=P (e1∣X )∑X 0

(P (X∣X o)P ( X 0))

p( X ,i)=P (ei∣X )maxY [ p(Y , i−1)P ( X∣Y )] , for i>1.
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The Viterbi algorithm

Let

denote the probability of the most probable 
sequence of length i ending in state X.

p(X ,i)=max X 1 ,... , X i−1
P(X 1 , ... , X i−1 , X∣e1 , ... , ei)

p( X ,1)=P (e1∣X )P( X )=P (e1∣X )∑X 0

(P (X∣X o)P ( X 0))

p( X ,i)=P (ei∣X )maxY [ p(Y , i−1)P ( X∣Y )] , for i>1.



Probabilistic Models, Spring 2013  Petri Myllymäki, University of Helsinki IV-56

07.02.13

Probabilistic inference in DAGs
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Types of inference

● Assume that both the structure of the 
model (the DAG), and the parameters 
(local probability tables) are fixed

● Recall the two types of inference task: 
either compute the conditional probability of 
a (set of) variables, given the values of 
others, or compute the maximum 
probability assignment

● Inference can be either exact or 
approximative
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Exact inference in 
singly-connected BNs

● a singly connected BN = polytree 
(disregarding the arc directions, no two 
nodes can be connected with more than 
one path).

singly-connected multi-connected
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Probabilistic reasoning in singly-
connected BNs

● a computationally efficient message-
passing scheme: time requirement linear in 
the number of conditional probabilities in ϴ.

Y1

X

Z

Ym. . .

P X∣E ∝P X , E + , E -∝P E -∣X P  X∣E +
P E-∣X =∏

Y

P E Y -∣X 

P EY -∣X =∑
Y

P EY -∣Y P Y∣X 

P  X∣E+=∑
Z

P  X∣Z P Z∣EZ +
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Belief propagation
● A message passing algorithm developed by 

Judea Pearl
● Computes the marginal distribution of an 

unobserved variable given the observed 
ones

● Each node maintains a belief of its state 
(the conditional probability distribution, 
given the evidence)

● Nodes pass messages to their neighbors 
and update their beliefs based on received 
messages
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Belief propagation in chains
● A node can have at most one parent and child, no loops.

● We want to compute the marginal probability P(X | e), 
where the evidence e is an instantiation of node set E.

● Let us partition the evidence e into evidence from 
“upstream” e+ and evidence from “downstream” e-.
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Message passing in chains
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Initialization
● For nodes E with evidence e:

● Nodes with no parents:

● Nodes with no children:

λ(E=e)=1,otherwiseλ(E=x)=0
π(E=e)=1,otherwiseπ(E=x)=0

π(x)=P (x)      ( prior probabilities)

λ(x)=1, for all x
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Belief propagation in trees

● Every node has at most one parent.
● Differences compared to chains:

− Each node must combine impacts of the 
λ-messages obtained from its children.

− Each node should distribute a separate 
π-message to each of its children.
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Message passing in trees
Initialization like with chains. Then (in any order):

● Belief updating:

● Bottom-up propagation:

● Top-down propagation:

BEL(x)=P (x∣e)∝λ (x)π(x).
λ (x)=∏ j

λY j
(x).

π(x)=∑u
P (x∣u)πX (u).

λX (u)=∑x
λ(x )P (x∣u).

πY j
(x)∝π(x)∏k≠ j

λY k(x).
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Belief propagation in polytrees

● Nodes can have multiple parents
● No loops 
● Differences compared to trees:

− Each node must combine impacts of the 
π-messages obtained from its parents.

− Each node should distribute a separate 
λ-message to each of its parents.
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Message passing in polytrees
● For details, see e.g. Neapolitan (Chapter 3.2.), or Pearl 

(Chapter 4.2.)
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Complexity
● Number of messages sent depends linearly 

on the diameter of the network
● The time needed to compute a message is 

linear with respect to the size of the local 
probability table
− But note that this means that the time (and 

size) is exponential with respect to the number 
of parents!

● The message-passing algorithm does not 
work with multi-connected networks
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● Generally not computationally feasible as the 
problem has been shown to be NP-hard (Cooper 
1990, Shimony 1994).

● Exact methods:
– clustering
– conditioning
– variable elimination

● Approximative methods:
– stochastic sampling algorithms
– loopy belief propagation

● Even approximative inference (both in terms of absolute 
and relative error) is NP-hard

Probabilistic reasoning in 
multi-connected BNs

A

B C

D

A

B, C

D
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Variable elimination

● Idea: eliminate (marginalize) one variable 
at a time

● Usually, each step depends on a limited 
number of variables only

● Time (and space) complexity of the 
algorithm depends on the structure of the 
network, and on the elimination order
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Variable elimination: a simple 
example

P D = ∑
A , B ,C

P A , B ,C , D

=∑
C
∑
B
∑
A

P AP B∣AP C∣B P D∣C 

=∑
C
∑
B

P C∣B P D∣C ∑
A

P AP B∣A

=∑
C

P D∣C ∑
B

P C∣B ∑
A

P AP B∣A

AA BB CC DD
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Approximate inference in 
Bayesian networks

● How to estimate how probably it rains next 
day, if the previous night temperature is 
above the month average?
− count rainy and non rainy days after warm nights 

(and count relative frequencies).

● Rejection sampling for P(X|e) :

1.Generate random vectors (x
r
,e

r
,y

r
).

2.Discard those those that do not match e.

3.Count frequencies of different x
r
 and normalize.
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Rejection sampling, bad news
● Good news first:

− super easy to implement

● Bad news:
− if evidence e is improbable, generated random 

vectors seldom conform with e, thus it takes a 
long time before we get a good estimate P(X|e). 

− With long E, all e are improbable.

● So called likelihood weighting can alleviate 
the problem a little bit, but not enough. 
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Gibbs sampling
● A Markov Chain Monte Carlo (MCMC) method 

that approximates the probability distribution by 
sampling from a ”cleverly” selected Markov Chain

● Given a Bayesian network for n variables X U E U 
Y, calculate P(X|e) as follows:

– N = (associative) array of zeros

– Generate random vector x,y.

– While not enough samples: 
● for V in X,Y:

– generate v from P(V | MarkovBlanket(V))

– replace v in x,y.

– N[x] +=1

– print normalize(N[x])
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P (X∣mb(X ))
=P (X∣mb(x) , Rest)

=
P (X ,mb(X ) ,Rest)
P (mb(X ) ,Rest)

∝P (All)

= ∏
X i∈X

P (X i∣Pa(X i))

=P (X∣Pa(X )) ∏
C∈ch(X )

P (C∣Pa(C)) ∏
R∉{X∪ch(X )}

P (R∣Pa(R))

∝P (X∣Pa(X )) ∏
C∈ch(X )

P (C∣Pa(C))

Sampling from the Markov blanket
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● All decent Markov Chains have a unique 
stationary distribution P* that can be 
estimated by simulation.

● Detailed balance of transition function q and 
state distribution P* implies stationarity of P*.

● Proposed q = P(V|mb(V)), and P(X|e) form a 
detailed balance, thus P(X|e) is a stationary 
distribution, so it can be estimated by 
simulation.

Why does it work
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Markov Chains:
stationary distribution

● Defined by transition probabilities q(x→x') 
between states, where x and x' belong to a 
set of states X.

● Distribution P* over X is called stationary 
distribution for the Markov Chain q, if 
P*(x')=∑

x
P*(x)q(x→x').

● P*(X) can be found out by simulating Markov 
Chain q starting from a random state x

r
.
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Markov Chains:
detailed balance

● Distribution P over X and a state transition 
distribution q are said to form a detailed 
balance, if for any states x and x',     
P(x)q(x→x') = P(x')q(x'→x), i.e. it is equally 
probable to witness transition from x to x' as 
it is to witness transition from x' to x.

● If P and q form a detailed balance,  
∑

x
P(x)q(x→x') = ∑

x
P(x')q(x'→x) = 

P(x')∑
x
q(x'→x) =P(x'), thus P is stationary.
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Gibbs sampler as Markov Chain
● Consider Z=(X,Y) to be states of a Markov 

chain, and q((v,z
-V

))→(v',z
-V

))=P(v'|z
-V

, e), where 

Z
-V

 = Z-{V}. Now P*(Z)=P(Z|e) and q form a 

detailed balance, thus P* is a stationary 
distribution of q and it can be found with the 
sampling algorithm.

− P*(z)q(z→z') = P(z|e)P(v'|z
-V

, e)                               

= P(v,z
-V

|e)P(v'|z
-V

, e)                                                

= P(v|z
-V

,e)P(z
-V

|e)P(v'|z
-V

, e)                                    

= P(v|z
-V

,e)P(v', z
-V

|e) = q(z'→z)P*(z'), thus balance.
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Loopy belief propagation
● What happens if you just keep iterating the 

message passing algorithm in a multi-
connected network?

● In some cases it produces the right results, 
or at least a good approximation

● Turbo codes
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So let us play….

http://b-course.cs.helsinki.fi/
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