

How to generate random vectors from a Bayesian network?

- Sample parents first

- P(C)
- $(0.5,0,5) \rightarrow$ yes
- $P(S \mid C=y e s)$
- $(0.9,0.1) \rightarrow$ on
- $P(R \mid C=y e s)$
- $(0.8,0.2) \rightarrow$ no
- $P(W \mid S=o n, R=n o)$
- $(0.9,0.1) \rightarrow$ yes
- $P(C, S, R, W)=P($ yes,on, no,yes $)$ $=0.5 \times 0.9 \times 0.2 \times 0.9=0.081$

Two types of probabilistic reasoning

- n (discrete) random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
- joint probability distribution $P\left(X_{1}, \ldots, X_{n}\right)$
- Input: a partial value assignment Ω,

$$
\left.\Omega=<X_{1}, X_{2}=x_{2}, X_{3}, X_{4}=x_{4}, X_{5}=x_{5}, X_{6}, \ldots, X_{n}\right\rangle
$$

- Probabilistic reasoning, type I (marginal distribution):
- compute $P(X=x \mid \Omega)$ for some X not instantiated in Ω, and for all values x of X.
- Probabilistic reasoning, type II (MAP assignment):
- Given Ω, find a maximum a posterior probability value assignment jointly for all the X_{i} not instantiated in Ω
- N.B. These are not the same thing!
- Bayesian networks: a family of probabilistic models and algorithms enabling computationally efficient probabilistic reasoning

Some famous (simple) Bayesian network models

- Naïve Bayes classifier
- Finite mixture model
- Tree Augmented Naïve Bayes
- Hidden Markov Models (HMMs)

Naïve Bayes classifier

- X_{i} are called predictors or indicators

Naïve Bayes Classifier

- Structure tailored for efficient diagnostics $P\left(C \mid x_{1}, x_{2}, \ldots, x_{n}\right)$.
- Obs! Does NOT try to model directly the target probability distribution $\mathrm{P}\left(\mathrm{C} \mid \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
- Unrealistic conditional independence assumptions, but OK for the particular query $P\left(C \mid x_{1}, x_{2}, \ldots, x_{n}\right)$.
- Because of wrong independence assumptions, NB is often poorly calibrated:
- Probabilities $P\left(C \mid x_{1}, x_{2}, \ldots, x_{n}\right)$ may be way off, but $\operatorname{argmax}_{\mathrm{c}} \mathrm{P}\left(\mathrm{c} \mid \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ still often correct.

Calculating $\mathrm{P}\left(\mathrm{C} \mid \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{NB}\right)$

- Boldly calculate through joint probability

$$
P\left(C \mid x_{1}, \ldots, x_{n}\right) \propto P\left(C, x_{1}, \ldots, x_{n}\right)=P(C) \prod_{i=1}^{n} P\left(x_{i} \mid C\right)
$$

- No need to have all the predictors. Having just set X_{A} of predictors (and not X_{B}):

$$
\begin{aligned}
P\left(C \mid x_{A}\right) & \propto P\left(C, x_{A}\right)=\sum_{x_{B}} P\left(C, x_{A}, x_{B}\right) \\
& =\sum_{x_{B}} P(C) \prod_{i \in A} P\left(x_{i} \mid C\right) \prod_{j \in B} P\left(x_{j} \mid C\right) \\
& =P(C) \prod_{i \in A} P\left(x_{i} \mid C\right) \sum_{x_{B}} \prod_{j \in B} P\left(x_{j} \mid C\right) \\
& =P(C) \prod_{i \in A} P\left(x_{i} \mid C\right) \prod_{j \in B} \sum_{x_{j}} P\left(x_{j} \mid C\right)=P(C) \prod_{i \in A} P\left(x_{i} \mid C\right)
\end{aligned}
$$

Example

$$
\begin{array}{c|lllll}
P\left(X_{i}=0 \mid C\right) & X_{1} & X_{2} & X_{3} & X_{4} & X_{5} \\
\hline C=0 & 0.8 & 0.5 & 0.4 & 0.7 & 0.9 \\
C=1 & 0.2 & 0.7 & 0.6 & 0.2 & 0.6
\end{array}
$$

6 binary variables: $C, X_{1}, \ldots X_{5}, P(C=0)=0.4$
$P\left(C=0 \mid X_{1}=0, X_{2}=1, X_{3}=0, X_{4}=1, X_{5}=0\right)$
$\alpha 0.4 \times 0.8 \times 0.5 \times 0.4 \times 0.3 \times 0.9=0.017$
$17 / 27=63 \%$
$P\left(C=1 \mid X_{1}=0, X_{2}=1, X_{3}=0, X_{4}=1, X_{5}=0\right)$
$\alpha 0.6 \times 0.2 \times 0.3 \times 0.6 \times 0.8 \times 0.6=0.010$
$10 / 27=37 \%$
$P\left(C=0 \mid X_{2}=1, X_{3}=0, X_{4}=1, X_{5}=0\right)$
$\alpha 0.4 \times 0.5 \times 0.4 \times 0.3 \times 0.9=0.022$
$22 / 74=30 \%$
$P\left(C=1 \mid X_{2}=1, X_{3}=0, X_{4}=1, X_{5}=0\right)$
$\alpha 0.6 \times 0.3 \times 0.6 \times 0.8 \times 0.6=0.052$
52/74=70\%

Tree Augmented Naïve Bayes (TAN)

- X_{i} may have at most one other X_{j} as an extra parent.

Calculating $\mathrm{P}\left(\mathrm{C} \mid \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{TAN}\right)$

- Again, boldly calculate via joint probability

$$
P\left(C \mid x_{1}, \ldots, x_{n}\right) \propto P\left(C, x_{1}, \ldots, x_{n}\right)=P(C) \prod_{i=1}^{n} P\left(x_{i} \mid C, P a\left(x_{i}\right)\right)
$$

- But missing predictors may hurt more. For example:

NB as a Finite Mixture Model

- When the Naive Bayes structure is reasonable, it also makes a nice (marginal) joint probability model $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$ for "predictors".
- A computationally effective alternative for building a Bayesian network for $X_{1}, X_{2}, \ldots, X_{n}$.
- Joint probability $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is represented as a mixture of K joint probability distributions $P_{k}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=P_{k}\left(X_{1}\right) P_{k}\left(X_{2}\right) \ldots P_{k}\left(X_{n}\right)$, where $P_{k}(\cdot)=P(\cdot \mid C=k)$.

Calculating with $P\left(X_{1}, X_{2}, \ldots, X_{n} \mid N B\right)$

- Joint probability a simple marginalization:

$$
\begin{aligned}
P\left(X_{1}, \ldots, X_{n}\right) & =\sum_{k=1}^{K} P\left(X_{1}, \ldots, X_{n}, C=k\right) \\
& =\sum_{k=1}^{K} P(C=k) \prod_{i=1}^{n} P\left(X_{i} \mid C=k\right)
\end{aligned}
$$

- Inference

$$
\begin{aligned}
P(X \mid e) & \propto P(e, X)=\sum_{k=1}^{K} P(e, X, C=k) \\
& =\sum_{k=1}^{K} P(C=k) P(e, X \mid C=k) \\
& =\sum_{k=1}^{K} P(C=k) \prod_{X_{i} \in X} P\left(X_{i} \mid C=k\right) \prod_{e_{i} \in e} P\left(e_{i} \mid C=k\right)
\end{aligned}
$$

Example

- Consider the previous example (the NB model).
- What is $P\left(X_{4} \mid X_{5}=0\right)$?
- $P\left(X_{4}=0, X_{5}=0 \mid C=0\right)=0.7 \times 0.9=0.63$
- $P\left(X_{4}=1, X_{5}=0 \mid C=0\right)=0.3 \times 0.9=0.27$
- $P\left(X_{4}=0, X_{5}=0 \mid C=1\right)=0.2 \times 0.6=0.12$
- $P\left(X_{4}=1, X_{5}=0 \mid C=1\right)=0.8 \times 0.6=0.48$
- $\mathrm{P}\left(\mathrm{X}_{4}=0, \mathrm{X}_{5}=0\right)=\mathrm{P}\left(\mathrm{X}_{4}=0, \mathrm{X}_{5}=0 \mid \mathrm{C}=0\right) \mathrm{P}(\mathrm{C}=0)+\mathrm{P}\left(\mathrm{X}_{4}=0\right.$, $\left.X_{5}=0 \mid C=1\right) P(C=1)=0.63 \times 0.4+0.12 \times 0.6=0.324$
- $P\left(X_{4}=1, X_{5}=0\right)=P\left(X_{4}=1, X_{5}=0 \mid C=0\right) P(C=0)+P\left(X_{4}=1\right.$, $\left.\mathrm{X}_{5}=0 \mid \mathrm{C}=1\right) \mathrm{P}(\mathrm{C}=1)=0.27 \times 0.4+0.48 \times 0.6=0.396$
- $P\left(X_{4}=0 \mid X_{5}=0\right)=P\left(X_{4}=0, X_{5}=0\right) / P\left(X_{5}=0\right)=0.45$
- $P\left(X_{4}=1 \mid X_{5}=0\right)=P\left(X_{4}=1, X_{5}=0\right) / P\left(X_{5}=0\right)=0.55$

Hidden Markov Models

- Temporal/sequential probabilistic models
- States of the process are hidden but an output dependent on the hidden state is observable
- Frequently applied in e.g. speech recognition, robot navigation, and other pattern recognition tasks

Markov chains

- Assume that the world has a finite number of states, and the changes in the world are caused by a stationary process:
- The process does not change over time
- The wold has a Markov property:
- The current state depends only on a finite history of previous states
- A Markov chain is a sequence of random variables $\mathrm{X}_{0}, \mathrm{X}_{1}, \mathrm{X}_{1}, \ldots$ with the Markov property
- We mainly consider first-order Markov chains where $P\left(X_{t} \mid X_{0: t-1}\right)=P\left(X_{t} \mid X_{t-1}\right)$

Hidden Markov Models

- Models observations about a system that changes its state.

Transition model

NB! Sensor model does not depend on time t.

Hidden Markov Model as a BN

- For inference, easier to think of as a long chain of variables
- (For learning, the two-state model more fitting)
- No head-to-head nodes!
- Node X_{t} represents the (hidden) state at time t, and E_{t} is the observation at time t

Hidden Markov Model as a BN

- For inference, easier to think of as a long chain of variables
- (For learning, the two-state model more fitting)
- No head-to-head nodes!
- Node X_{t} represents the (hidden) state at time t, and E_{t} is the observation at time t

Location positioning problem

The positioning problem

- Given some location-dependent observations O, measured by a mobile device, determine the location L of the device
- Why is this a good research problem?
- The goodness of different solutions is extremely easy to validate (just go to a known location and test)
- The results have immediate practical applications
- Location-based services (LBS)
- FCC Enhanced 911:
- Network-based solutions: error below 100 meters for 67 percent of calls, 300 meters for 95 percent of calls
- Handset-based solutions: error below 50 meters for 67 percent of calls, 150 meters for 95 percent of calls

Cell ID

Cell-id in urban positioning

- errors > 500 m common
+ simple

Cell ID errors

Probabilistic Models, Spring 2013
Petri Myllymäki, University of Helsinki

Enhanced Observed Time Difference (E-OTD)

Problems with E-OTD in ufban positioning

- multi-paths
- no line of sight to BS
- extra hardware

"Theory"

"Practice"

The signal propagation approach

Theory

Reality

Empirical modeling in urblan positioning

A probabilistic approach to positioning

$$
\text { Bayes rule: } \quad P(L \mid O)=\frac{P(O \mid L) P(L)}{P(O)}
$$

- A probabilistic model assigns a probability for each possible location L given the observations O.
$-\mathrm{P}(\mathrm{O} \mid \mathrm{L})$ is the conditional probability of obtaining observations O at location L .
$-P(L)$ is the prior probability of location L. (Could be used to exploit user profiles, rails etc.)
$-\mathrm{P}(\mathrm{O})$ is just a normalizing constant.
- How to obtain $P(O \mid L)$? \Rightarrow Empirical observations + machine learning

Tracking with Markov models

- Typically we have a sequence (history) of observations $\mathrm{O}_{1}, \ldots, \mathrm{O}_{\mathrm{n}}$, and wish to determine $\mathrm{P}\left(\mathrm{L}_{\mathrm{n}} \mid \mathrm{O}^{\mathrm{n}}\right)$
- Assumption: $\mathrm{P}\left(\mathrm{O}_{\mathrm{t}} \mid \mathrm{L}_{\mathrm{t}}\right)$ are known, and given location L_{t}, the observation O_{t} is independent of the rest of the history
- The model: a hidden Markov model (HMM) where the locations L_{t} are the hidden unobserved states
- The transition probabilities $\mathrm{P}\left(\mathrm{L}_{\mathrm{t}} \mid \mathrm{L}_{\mathrm{t}-1}\right)$ can be easily determined from the physical properties of the moving object

One more assumption

- The observation at time t typically consists of several measurements (e.g., strengths of signals from all the transmitters that can be heard)
- If the wireless network is designed in a reasonable manner (the transmitters are far from each other), it makes sense to assume that the individual observations are independent, given the location
- The "Naïve Bayes" model

The Model

First-order "semi-hidden" Markov model

Tracking as probabilistic inference

- As our hidden Markov model is a tree, we can compute the marginal of any L_{t}, given the history O^{n}, in linear time by using a simple forward-backward algorithm
- Alternatively, we can compute the maximum probability path L_{1}, \ldots, L_{n} given the history (this is known as the Viterbi algorithm)
- Kalman filter: all the conditional distributions of the HMM model are normal distributions (linear dependencies with Gaussian noise)

Recursive tracking

- Assume that $\mathbf{P}\left(\mathbf{L}_{\mathrm{n}-1} \mid \mathbf{O}^{\mathrm{n}-1}\right)$ has been computed.
- Our model defines the transition probabilities $\mathbf{P}\left(\mathbf{L}_{\mathbf{t}} \mid \mathbf{L}_{\mathbf{t}-1}\right)$ and the local observation probabilities $\mathbf{P}\left(\mathbf{O}_{\mathbf{t}} \mid \mathbf{L}_{\mathbf{t}}\right)$
- Now $\mathbf{P}\left(\mathbf{L}_{\mathrm{n}} \mid \mathbf{O}^{\mathbf{n}}\right) \boldsymbol{\alpha} \mathbf{P}\left(\mathbf{L}_{\mathrm{n}}, \mathbf{O}^{\mathrm{n}}\right)$

$$
\begin{aligned}
& =P\left(O_{n} \mid L_{n}, O^{n-1}\right) P\left(L_{n}, O^{n-1}\right) \\
& =P\left(O_{n} \mid L_{n}\right) \Sigma_{L_{n-1}} P\left(L_{n}, L_{n-1}, O^{n-1}\right) \\
& \boldsymbol{\alpha} \mathbf{P}\left(\mathbf{O}_{n} \mid L_{n}\right) \Sigma_{L_{n-1}} \mathbf{P}\left(L_{n} \mid L_{n-1}\right) P\left(L_{n-1} \mid O^{n-1}\right)
\end{aligned}
$$

- With a Kalman filter, the recursive process operates all the time with Gaussians

2x.
 Mulle

GSM-positioning trials

NYC Trial 2001

http://cosco.hiit.fi/demo/manhattan/

Details

- Covering downtown Manhattan (10th 114th St)
- Data gathering by car
- Modeling: 10 person days
- Target accuracy: less than 911 handset requirements
- Tests using cars

Accuracy of NYC Trial 2001

- 20166 points
- tracking; testing done in a car;

Trials: Manhattan 2002

Challenges

- "real 911" simulation
- No tracking information
- Only up to 60 seconds of signal measurements
- Target accuracy: "theater level"
- Indoor testing (without indoor modeling)

Accuracy NYC Trial 2002

- 30 points
- static; testing done by walking;

Thesis topic: semi-supervised modeling in positioning

- "automatic calibration"
- T. Pulkkinen, T. Roos, and P. Myllymäki: Semisupervised learning for WLAN positioning.

Joint probability of a HMM

- Joint probability factorizes like a BN
- HMM is a Bayesian network!
$P\left(X_{0}, X_{1}, E_{1}, X_{2}, E_{2}, \ldots, X_{t}, E_{t}\right)=P\left(X_{0}\right) \prod_{i=1}^{t} P\left(X_{i} \mid X_{i-1}\right) P\left(E_{i} \mid X_{i}\right)$
- Common inference tasks: E_{1}

- Filtering / monitoring: $P\left(X_{t} \mid e_{1: t}\right)$
- Prediction: $P\left(X_{t+k} \mid e_{1: t}\right), k>0$
- Smoothing: $P\left(X_{k} \mid e_{1: t}\right), k<t$
- Explanation: $\arg \max _{x_{1: t}} P\left(X_{1: t} \mid e_{1: t}\right)$

Inference tasks visualized

 Filtering

Prediction

Smoothing

Most likely sequence

Calculating $P\left(X_{t} \mid e_{1: t}\right)$ in $H M M$

- Lets shoot for a recursive formula:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t+1}\right) & =P\left(X_{t+1} \mid e_{t+1}, e_{1: t}\right) \\
& \propto P\left(e_{t+1} \mid X_{t+1}, e_{1: t}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid X_{t+1}\right) \underline{P\left(X_{t+1} \mid e_{1: t}\right)}
\end{aligned}
$$

- and

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(X_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) \underline{P\left(x_{t} \mid e_{1: t}\right)}
\end{aligned}
$$

Forward algorithm for $P\left(X_{t} \mid e_{1: t}\right)$

- Combining formulas we get a recursion

$$
P\left(X_{t+1} \mid e_{1: t+1}\right) \propto P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) \underline{P\left(x_{t} \mid e_{1: t}\right)}
$$

- So first calculate

$$
P\left(X_{1} \mid e_{1}\right) \propto P\left(e_{1} \mid X_{1}\right) \sum_{x_{0}} P\left(X_{1} \mid x_{0}\right) P\left(x_{0}\right)
$$

- and then

$$
\begin{aligned}
& P\left(X_{2} \mid e_{1}, e_{2}\right) \propto P\left(e_{2} \mid X_{2}\right) \sum_{x_{1}} P\left(X_{2} \mid x_{1}\right) P\left(x_{1} \mid e_{1}\right) \\
& P\left(X_{3} \mid e_{1}, e_{2}, e_{3}\right) \propto P\left(e_{3} \mid X_{3}\right) \sum_{x_{2}} P\left(X_{3} \mid x_{2}\right) P\left(x_{2} \mid e_{1}, e_{2}\right)
\end{aligned}
$$

Prediction: $P\left(X_{t+k} \mid e_{1: t}\right), k>0$

- $P\left(X_{t+1} \mid e_{1: t}\right)$ part of the forward algorithm
- and from that on evidence does not count, and one can just calculate forward:

$$
\begin{aligned}
P\left(X_{t+2} \mid e_{1: t}\right) & =\sum_{x_{t+1}} P\left(X_{t+2} \mid x_{t+1}, e_{1: t}\right) P\left(x_{t+1} \mid e_{1: t}\right) \\
& =\sum_{x_{t+1}} P\left(X_{t+2} \mid x_{t+1}\right) P\left(x_{t+1} \mid e_{1: t}\right) \\
P\left(X_{t: t} \mid e_{1: t}\right) & =\sum_{x_{t+2}} P\left(X_{t+3} \mid x_{t+2}, e_{1: t}\right) P\left(x_{t+2} \mid e_{1: t}\right) \\
& =\sum_{x_{t+2}} P\left(X_{t+3} \mid x_{t+2}\right) P\left(x_{t+2} \mid e_{1: t}\right)
\end{aligned}
$$

Smoothing: $P\left(X_{k} \mid e_{1: t}\right), k<t$

- Obvious move: divide $e_{1: t}$ to $e_{1: k}$ and $e_{k+1: t^{*}}$

$$
\begin{aligned}
P\left(X_{k} \mid e_{1: t}\right) & =P\left(X_{k} \mid e_{1: k}, e_{k+1: t}\right) \\
& \left.\propto P\left(X_{k}\right) e_{1: k}\right) P\left(e_{k+1: t} \mid X_{k}, e_{1: k}\right) \\
& =P\left(X_{k} \mid e_{1: k}\right) P\left(e_{k+1: t} \mid X_{k}\right) \\
P\left(e_{k+1: t} \mid X_{k}\right) & =\sum_{0} P\left(x_{k+1}, e_{k+1: t} \mid X_{k}\right) \\
& =\sum_{0} P\left(x_{k+1} \mid X_{k}\right) P\left(e_{k+1: t} \mid x_{k+1}, X_{k}\right) \\
& =\sum_{x_{k+1}} P\left(x_{k+1} \mid X_{k}\right) P\left(e_{k+1}, e_{k+2: t} \mid x_{k+1}\right) \\
& =\sum_{x_{k+1}} P\left(x_{k+1} \mid X_{k}\right) P\left(e_{k+1} \mid x_{k+1}\right) \xrightarrow{P\left(e_{k+2: t} \mid x_{k+1}\right)}
\end{aligned}
$$

- and the first (last) step:

$$
\begin{aligned}
P\left(e_{t} \mid X_{t-1}\right) & =\sum_{x_{t_{1}}} P\left(x_{t}, e_{t} \mid X_{t-1}\right)=\sum_{x_{t}} P\left(e_{t} \mid x_{t}, X_{t-1}\right) P\left(x_{t} \mid X_{t-1}\right) \\
& =\sum_{x_{t}} P\left(e_{t} \mid x_{t}\right) P\left(x_{t} \mid X_{t-1}\right)
\end{aligned}
$$

Back and forth

- "Brute-force" smoothing of the whole sequence takes $\mathrm{O}\left(\mathrm{t}^{2}\right)$ time
- Forward-backward algorithm: O(t)
- Finding the most probable sequence works in the same manner (the Viterbi algorithm / Viterbi path)

Finding the most probable sequence

- Want to compute:

$$
\begin{aligned}
& \max _{X_{1}, \ldots X_{n}} P\left(X_{1}, \ldots, X_{n} \mid e_{1}, \ldots, e_{n}\right) \\
& =\max _{X_{n}} \max _{X_{1}, \ldots, X_{n-1}} P\left(X_{1}, \ldots, X_{n-1}, X_{n}, e_{1}, \ldots, e_{n}\right)
\end{aligned}
$$

- Recursion:

$$
\begin{aligned}
& \max _{X_{1, \ldots}, X_{n-1}} P\left(X_{1}, \ldots, X_{n-1}, X_{n} \mid e_{1}, \ldots, e_{n}\right)=\max _{X_{1}, \ldots, X_{n-1}} P\left(X_{1}, \ldots, X_{n-1}, X_{n}, e_{1}, \ldots, e_{n}\right) \\
& =\max _{X_{1}, \ldots X_{n-1}} P\left(e_{n} \mid X_{n}, X_{1}, \ldots, X_{n-1}, e_{1}, \ldots, e_{n-1}\right) P\left(X_{n}, X_{1}, \ldots, X_{n-1}, e_{1}, \ldots, e_{n-1}\right) \\
& =\max _{X_{1}, \ldots X_{n-1}} P\left(e_{n} \mid X_{n}\right) P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}, e_{1}, \ldots, e_{n-1}\right) P\left(X_{1}, \ldots, X_{n-1}, e_{1}, \ldots, e_{n-1}\right) \\
& =P\left(e_{n} \mid X_{n}\right) \max _{X_{n-1}} P\left(X_{n} \mid X_{n-1}\right) \max _{X_{1}, \ldots, X_{n-2}} P\left(X_{1}, \ldots, X_{n-2}, X_{n-1} \mid e_{1}, \ldots, e_{n-1}\right)
\end{aligned}
$$

- More:
- see e.g. Russel \& Norvig, Chapter 15.2.

The Viterbi algorithm

Let $p(X, i)=\max _{X_{1}, \ldots, X_{i-1}} P\left(X_{1}, \ldots, X_{i-1}, X \mid e_{1}, \ldots, e_{i}\right)$
denote the probability of the most probable sequence of length i ending in state X.

$$
\begin{aligned}
& p(X, 1)=P\left(e_{1} \mid X\right) P(X)=P\left(e_{1} \mid X\right) \sum_{X_{0}}\left(P\left(X \mid X_{o}\right) P\left(X_{0}\right)\right) \\
& p(X, i)=P\left(e_{i} \mid X\right) \max _{Y}[p(Y, i-1) P(X \mid Y)], \text { for } i>1 .
\end{aligned}
$$

The Viterbi algorithm

Let $p(X, i)=\max _{X_{1}, \ldots, X_{i-1}} P\left(X_{1}, \ldots, X_{i-1}, X \mid e_{1}, \ldots, e_{i}\right)$
denote the probability of the most probable sequence of length i ending in state X.

$$
\begin{aligned}
& p(X, 1)=P\left(e_{1} \mid X\right) P(X)=P\left(e_{1} \mid X\right) \sum_{X_{0}}\left(P\left(X \mid X_{o}\right) P\left(X_{0}\right)\right) \\
& p(X, i)=P\left(e_{i} \mid X\right) \max _{Y}[p(Y, i-1) P(X \mid Y)], \text { for } i>1 .
\end{aligned}
$$

Probabilistic inference in DAGs

PROBABILISTIC REASONING IN INTELLIGENT SYSTEMS:

Networks of Plausible Inference

Types of inference

- Assume that both the structure of the model (the DAG), and the parameters (local probability tables) are fixed
- Recall the two types of inference task: either compute the conditional probability of a (set of) variables, given the values of others, or compute the maximum probability assignment
- Inference can be either exact or approximative

Exact inference in singly-connected BNs

- a singly connected BN = polytree (disregarding the arc directions, no two nodes can be connected with more than one path).

multi-connected

Probabilistic reasoning in singlyconnected BNs

$$
\begin{aligned}
& P(X \mid E) \propto P\left(X, E_{+}, E_{-}\right) \propto P\left(E_{-} \mid X\right) P\left(X \mid E_{+}\right) \\
& P(E \mid X)=\prod_{Y} P\left(E_{Y-} \mid X\right) \\
& P\left(E_{Y-} \mid X\right)=\sum_{Y} P\left(E_{Y-} \mid Y\right) P(Y \mid X) \\
& P\left(X \mid E_{+}\right)=\sum_{Z} P(X \mid Z) P\left(Z \mid E_{Z+}\right)
\end{aligned}
$$

- a computationally efficient messagepassing scheme: time requirement linear in the number of conditional probabilities in $\boldsymbol{\Theta}$.

Belief propagation

- A message passing algorithm developed by Judea Pearl
- Computes the marginal distribution of an unobserved variable given the observed ones
- Each node maintains a belief of its state (the conditional probability distribution, given the evidence)
- Nodes pass messages to their neighbors and update their beliefs based on received messages

Belief propagation in chains

- A node can have at most one parent and child, no loops.
- We want to compute the marginal probability $P(X \mid e)$, where the evidence e is an instantiation of node set E.
- Let us partition the evidence e into evidence from "upstream" e^{+}and evidence from "downstream" e-.

$$
\begin{aligned}
P(X \mid e) & =P\left(X \mid e^{+}, e^{-}\right) \\
& \propto P\left(e^{-} \mid X, e^{+}\right) P\left(X \mid e^{+}\right) \\
& =P\left(e^{-} \mid X\right) P\left(X \mid e^{+}\right)
\end{aligned}
$$

Message passing in chains

$$
\begin{aligned}
\lambda(U=u) & =P\left(e^{-} \mid U=u\right) \\
& =\sum_{x} P\left(e^{-} \mid X=x\right) P(X=x \mid U=u) \\
& =\sum_{x} \lambda(X=x) P(X=x \mid U=u) \\
\pi(X=x) & =P\left(X=x \mid e^{+}\right) \\
& =\sum_{u} P(X=x \mid U=u) P\left(U=u \mid e^{+}\right) \\
& =\sum_{u} P(X=x \mid U=u) \pi(U=u)
\end{aligned}
$$

Initialization

- For nodes E with evidence e:

$$
\begin{aligned}
& \lambda(E=e)=1, \text { otherwise } \lambda(E=x)=0 \\
& \pi(E=e)=1, \text { otherwise } \pi(E=x)=0
\end{aligned}
$$

- Nodes with no parents:

$$
\pi(x)=P(x) \quad(\text { prior probabilities })
$$

- Nodes with no children:
$\lambda(x)=1$, for all x

Belief propagation in trees

- Every node has at most one parent.
- Differences compared to chains:
- Each node must combine impacts of the λ-messages obtained from its children.
- Each node should distribute a separate π-message to each of its children.

Message passing in trees

Initialization like with chains. Then (in any order):

- Belief updating:

$$
\begin{aligned}
& B E L(x)=P(x \mid e) \propto \lambda(x) \pi(x) . \\
& \lambda(x)=\prod_{j} \lambda_{Y_{j}}(x) . \\
& \pi(x)=\sum_{u} P(x \mid u) \pi_{X}(u) .
\end{aligned}
$$

- Bottom-up propagation:

$$
\lambda_{X}(u)=\sum_{x} \lambda(x) P(x \mid u) .
$$

- Top-down propagation:
 $\pi_{Y_{j}}(x) \propto \pi(x) \prod_{k \neq j} \lambda_{Y_{k}}(x)$.

Belief propagation in polytrees

- Nodes can have multiple parents
- No loops
- Differences compared to trees:
- Each node must combine impacts of the m-messages obtained from its parents.
- Each node should distribute a separate λ-message to each of its parents.

Message passing in polytrees

- For details, see e.g. Neapolitan (Chapter 3.2.), or Pearl (Chapter 4.2.)

Complexity

- Number of messages sent depends linearly on the diameter of the network
- The time needed to compute a message is linear with respect to the size of the local probability table
- But note that this means that the time (and size) is exponential with respect to the number of parents!
- The message-passing algorithm does not work with multi-connected networks

Probabilistic reasoning in multi-connected BNs

- Generally not computationally feasible as the problem has been shown to be NP-hard (Cooper 1990, Shimony 1994).
- Exact methods:
- clustering
- conditioning
- variable elimination
- Approximative methods:

- stochastic sampling algorithms
- loopy belief propagation
- Even approximative inference (both in terms of absolute and relative error) is NP-hard

Variable elimination

- Idea: eliminate (marginalize) one variable at a time
- Usually, each step depends on a limited number of variables only
- Time (and space) complexity of the algorithm depends on the structure of the network, and on the elimination order

Variable elimination: a simple example

$$
\begin{aligned}
& \mathrm{A} \\
& P(D)=\sum_{A, B, C} P(A, B, C, D) \\
& =\sum_{C} \sum_{B} \sum_{A} P(A) P(B \mid A) P(C \mid B) P(D \mid C) \\
& =\sum_{C} \sum_{B} P(C \mid B) P(D \mid C) \sum_{A} P(A) P(B \mid A) \\
& =\sum_{C} P(D \mid C) \sum_{B} P(C \mid B) \sum_{A} P(A) P(B \mid A)
\end{aligned}
$$

Approximate inference in Bayesian networks

- How to estimate how probably it rains next day, if the previous night temperature is above the month average?
- count rainy and non rainy days after warm nights (and count relative frequencies).
- Rejection sampling for $\mathrm{P}(\mathbf{X} \mid \mathbf{e})$:
1.Generate random vectors ($\mathbf{x}_{\mathrm{r}}, \mathbf{e}_{\mathrm{r}}, \mathbf{y}_{\mathrm{r}}$).
2.Discard those those that do not match e.
3.Count frequencies of different \mathbf{x}_{r} and normalize.

Rejection sampling, bad news

- Good news first:
- super easy to implement
- Bad news:
- if evidence \mathbf{e} is improbable, generated random vectors seldom conform with e, thus it takes a long time before we get a good estimate $\mathrm{P}(\mathbf{X} \mid \mathbf{e})$.
- With long E, all e are improbable.
- So called likelihood weighting can alleviate the problem a little bit, but not enough.

Gibbs sampling

- A Markov Chain Monte Carlo (MCMC) method that approximates the probability distribution by sampling from a "cleverly" selected Markov Chain
- Given a Bayesian network for n variables X U E U Y, calculate $\mathrm{P}(\mathbf{X} \mid \mathbf{e})$ as follows:

```
N = (associative) array of zeros
Generate random vector x,y.
While not enough samples:
    for V in X,Y:
        generate v from P(V | MarkovBlanket(V))
        replace v in x,y.
        N[x] +=1
        print normalize(N[x])
```


Sampling from the Markov blanket

$$
\begin{aligned}
& P(X \mid m b(X)) \\
&=P(X \mid m b(x), \text { Rest }) \\
&=\frac{P(X, m b(X), \text { Rest })}{P(m b(X), \text { Rest })} \\
& \propto P(A l l) \\
& \quad=\prod_{X_{i} \in \mathbb{X}} P\left(X_{i} \mid P a\left(X_{i}\right)\right) \\
& \quad=P(X \mid \operatorname{Pa}(X)) \prod_{C \in c h(X)} P(C \mid P a(C)) \prod_{R \notin\{X \cup c h(X)\}} P(R \mid P a(R)) \\
& \quad \propto P(X \mid P a(X)) \prod_{C \in c h(X)} P(C \mid P a(C))
\end{aligned}
$$

Why does it work

- All decent Markov Chains have a unique stationary distribution P^{*} that can be estimated by simulation.
- Detailed balance of transition function q and state distribution P^{*} implies stationarity of P^{*}.
- Proposed $q=P(V \mid m b(V))$, and $P(X \mid e)$ form a detailed balance, thus $P(\mathbf{X} \mid \mathbf{e})$ is a stationary distribution, so it can be estimated by simulation.

Markov Chains: stationary distribution

- Defined by transition probabilities $q\left(x \rightarrow x^{\prime}\right)$ between states, where x and x ' belong to a set of states X .
- Distribution P^{*} over X is called stationary distribution for the Markov Chain q, if $P^{*}\left(x^{\prime}\right)=\sum_{x} P^{*}(x) q\left(x \rightarrow x^{\prime}\right)$.
- $\mathrm{P}^{*}(\mathrm{X})$ can be found out by simulating Markov Chain q starting from a random state X_{r}.

Markov Chains: detailed balance

- Distribution P over X and a state transition distribution q are said to form a detailed balance, if for any states x and x^{\prime}, $P(x) q\left(x \rightarrow x^{\prime}\right)=P\left(x^{\prime}\right) q\left(x^{\prime} \rightarrow x\right)$, i.e. it is equally probable to witness transition from x to x^{\prime} as it is to witness transition from x^{\prime} to x.
- If P and q form a detailed balance,
$\sum_{x} P(x) q\left(x \rightarrow x^{\prime}\right)=\sum_{x} P\left(x^{\prime}\right) q\left(x^{\prime} \rightarrow x\right)=$
$P\left(x^{\prime}\right) \sum_{x} q\left(x^{\prime} \rightarrow x\right)=P\left(x^{\prime}\right)$, thus P is stationary.

Gibbs sampler as Markov Chain

- Consider $\mathbf{Z}=(\mathbf{X}, \mathbf{Y})$ to be states of a Markov chain, and $\left.\mathrm{q}\left(\left(\mathrm{v}, \mathbf{z}_{-v}\right)\right) \rightarrow\left(\mathrm{v}^{\prime}, \mathbf{z}_{-\mathrm{v}}\right)\right)=\mathrm{P}\left(\mathrm{v}^{\prime} \mid \mathbf{z}_{-\mathrm{v}^{\prime}}, \mathbf{e}\right)$, where $\mathbf{Z}_{-v}=\mathbf{Z}-\{\mathrm{V}\}$. Now $\mathrm{P}^{*}(\mathbf{Z})=P(\mathbf{Z} \mid \mathbf{e})$ and q form a detailed balance, thus P^{*} is a stationary distribution of q and it can be found with the sampling algorithm.

$$
\begin{aligned}
& -\mathrm{P}^{*}(\mathbf{z}) \mathrm{q}\left(\mathbf{z} \rightarrow \mathbf{z}^{\prime}\right)=\mathrm{P}(\mathbf{z} \mid \mathbf{e}) \mathrm{P}\left(\mathrm{v}^{\prime} \mid \mathbf{z}_{-v^{\prime}} \mathbf{e}\right) \\
& =\mathrm{P}\left(v, \mathbf{z}_{--} \mid \mathbf{e}\right) \mathrm{P}\left(\mathrm{v}^{\prime} \mid \mathbf{z}_{-v}, \mathbf{e}\right) \\
& =\mathrm{P}\left(v \mid \mathbf{z}_{-v} \mathbf{e}\right) \mathrm{P}\left(\mathbf{z}_{-v} \mid \mathbf{e}\right) \mathrm{P}\left(\mathrm{v}^{\prime} \mid \mathbf{z}_{-\mathbf{z}^{\prime}} \mathbf{e}\right) \\
& =\mathrm{P}\left(v \mid \mathbf{z}_{-v} \mathbf{e} \mathbf{e}\right) \mathrm{P}\left(\mathrm{v}^{\prime}, \mathbf{z}_{-v} \mid \mathbf{e}\right)=\mathrm{q}\left(\mathbf{z}^{\prime} \rightarrow \mathbf{z}\right) \mathrm{P}^{*}\left(\mathbf{z}^{\prime}\right) \text {, thus balance. }
\end{aligned}
$$

Loopy belief propagation

- What happens if you just keep iterating the message passing algorithm in a multiconnected network?
- In some cases it produces the right results, or at least a good approximation
- Turbo codes

So let us play....

