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How to generate random vectors
from a Bayesian network?

« Sample parents first

Cloudy=no

Cloudy=yes

0.5

05

/

Cloudy |Sprinkler=onSprinkler=off
no (05 0.9
yes 0.9 0.1

N

N

Cloudy Rain=yes|Rain=no
no (0.2 0.8
yes 0.8 0.2

~

Sprinkler Rain WetGrass=yesWetGrass=no
on no [0.90 0.10
on yes (0.9 0.01
off no 0.01 0.99
off yes 0.90 0.10

« P(C,S,R,W)=P(yes,on,no,yes)
=0.5x0.9x0.2x0.9=0.081

P(C)

e (0.5,0,5) — yes
P(S|C=yes)

¢ (0.9,0.1) »> on
P(R | C=yes)

« (0.8,0.2) - no
P(W | S=on, R=no)

e (0.9,0.1) > yes
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Two types of probabilistic reasoning

» n (discrete) random variables X,,...,X_
joint probability distribution P(X,,...,X")

Input: a partial value aSS|gnment Q,
Q =< X,, X;=X,, X3, X,=X,, X=Xg, Xg,..0n, X >

Probabilistic reasoning, type | (marginal distribution):
- compute P(X=x| Q) for some X not instantiated in Q,
and for all values x of X.

* Probabilistic reasoning, type Il (MAP assignment):
- Given Q, find a maximum a posterior probability value
assignment jointly for all the X; not instantiated in Q

» N.B. These are not the same thing! B
- Bayesian networks: a family of probabilistic models and ,..¢ i
algorithms enabling computationally efficient probabilistic L f_
reasoning —
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Some famous (simple) Bayesian

network models

* Nalve Bayes classifier

* Finite mixture model

* Tree Augmented Naive Bayes
 Hidden Markov Models (HMMs)

Probabilistic Models, Spring 2013
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Naive Bayes classifier
P(C)

P(X,IC)
(X

-X are called predictors or indicators

P(X,IC)
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Naive Bayes Classifier
« Structure tailored for efficient diagnostics

P(CIX X ,....X ).

n

- Obs! Does NOT try to model directly the target
probability distribution P(C|x_,x ,....x )

n

* Unrealistic conditional independence
assumptions, but OK for the particular query
P(C\x1,x2,...,xn).

» Because of wrong independence
assumptions, NB is often poorly calibrated:

- Probabilities P(C|x_,x ,...,x ) may be way off, but
argmax_P(c|x_,x ,...,x ) still often correct.

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki
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Calculating P(C\x1,x2,...,xn,NB)
» Boldly calculate through joint probabillity
P(C|x1,...,x,,,)ocP(C,xL...,xn)=P(C)HP(x,.|C>

* No need to have all the predictors. Having just

set X, of predictors (and not X ):
P(C|XA)OCP<C1XA):ZP(C/XAle)
= PIOTTP(x/O)TP(xC

€A JjEB

—P(O)[TP(xJC) Y [ P(x/C)

€A x; JEB

=P(C)[[P(xj|C)]] 2 P(x|C)=P(C)]] P(x/C)

€A JEB x; ieA
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|
PX=0]C)| X; Xo X5 Xi X

Example C=0 |08 05 04 07 09
C=1 02 07 06 02 06

6 binary variables: C, X4,...X5, P(C=0)=0.4
P(C=0 | X1=0,X5=1,X3=0,X,=1,X5=0)

a0.4x0.8x05x0.4x0.3x0.9=0.017 17/27=63%
P(C=1 | X1=0,X>=1,X3=0,X4=1,X5=0)
a0.6x0.2x0.3x0.6x0.8x0.6=0.010 10/27=37%

P(C=0 | Xo=1,X3=0,X4=1,X5=0)

a04x05x04x03x0.9=0.022 22/74=30%
P(C=1 | Xo=1,X3=0,X,=1,X5=0)
a0.6x0.3x0.6x0.8x0.6=0.052 52/74=70%

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki IV-8
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Tree Augmented Naive Bayes (TANj

- X_may have at most one other X as an extra parent.

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki IV-9
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Calculating P(C|x_,x_,...,x ,TAN)

* Again, boldly calculate via joint probability

P(Clx, ...,x,)<P(C,x, ...,Xn)zP(C)f[P(xi|C,Pa (x,))

* But missing predictors may hurt more. For
example:

P(C|X )OCP( ) ( 5|C ZP X4|C) ( 5|X4,C>

ZP (x5]C, xy4) (X4|C)

ZP (Xx5|C, x,) ZP (%,|C, x3)P(x,|C)
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NB as a Finite Mixture Model

 \When the Naive Bayes structure is reasonable,
it also makes a nice (marginal) joint probability
model P(X ,X ,...,X ) for “predictors”.

* A computationally effective alternative for
building a Bayesian network for X1,X2,...,X .

« Joint probabillity P(X1,X2,...,Xn) IS represented as

a mixture of K joint probability distributions
P (X ,X,...X)=P (X )P (X)..P(X), where

P (-) = P(-|C=k). n

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki IV-11
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Calculating with P(X1,X2,...,XH\NB)

 Joint probability a simple marginalization:

* Inference .
P(X|e)xP(e,X)=) P(e,X,C=k)
k=1

K
=Y P(C=k)|] P(X|/C=k)]] P(e|C=k)

k=1 X,eX e.ce

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki
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Exam

e Consider the previous example ( Pe NB model).
« What is P(X4 | X5=O)?

+ P(X4=0, X5=0 | C=0) = 0.7 x 0.9 = 0.63
. P(X4=1, X5=0 | C=0) = 0.3 x 0.9 = 0.27
. P(X4=0, X5=0 | C=1)=0.2 X 0.6 = 0.12
+ P(X4=1, X5=0 | C=1) = 0.8 x 0.6 = 0.48

. P(X4=0, X5=0) = P
X5=0 | C=1)P(C=1

« P(X4=1, X5=0) =
X5=0 | C=1)P(C=1

=0.63x04+0.12x0.6 =0.324

=0.27 x 0.4 + 0.48 x 0.6 = 0.396
. P(X4=0 | X5=0) = P(X4=0,X5=0)/P(X5=0) = 0.45
. P(X4=1| X5=0) = P(X4=1,X5=0)/P(X5=0) = 0.55

X4=0, X5=0 | C=0)P(C=0) + P(X4=0,

P(X4=1, X5=0 | C=0)P(C=0) + P(X4=1,

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki

IV-13



07.02.13

Hidden Markov Models

 Temporal/sequential probabilistic models

o States of the process are hidden but an

output dependent on the hidden state is
observable

* Frequently applied in e.g. speech
recognition, robot navigation, and other
pattern recognition tasks

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki
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Markov chains -~ -T&a

. Assume that the world has a finite number of -

states, and the changes in the world are
caused by a stationary process:

- The process does not change over time
 The wold has a Markov property:

- The current state depends only on a finite history
of previous states

A Markov chain is a sequence of random
variables Xg,X1,X1,... with the Markov

property

- We mainly consider first-order Markov chains
where P(Xt | Xo:t-1) = P(Xt [ Xt-1)

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki IV-15
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Hidden Markov Models

 Models observations about a system that

ChangeS its state. Transition model ]
No colliding arcs, thus

P(X.,,IX) independences are

i easy to determine.
-

P(elX)

Sensor model

depend on time t.

) NB! Sensor model does not

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki
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Hidden Markov Model as a BN

For inference, easier to think of as a long chain of
variables

* (For learning, the two-state model more fitting)
 No head-to-head nodes!

« Node X; represents the (hidden) state at time t,
and E; is the observation at time t

- - 9@
® @

o ®
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Hidden Markov Model as a BN

For inference, easier to think of as a long chain of
variables

* (For learning, the two-state model more fitting)
 No head-to-head nodes!

« Node X; represents the (hidden) state at time t,
and E; is the observation at time t

- - 9@
® @

o ®
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The positioning problem

e Given some location-dependent observations
O, measured by a mobile device, determine the
location L of the device

 Why is this a good research problem?

- The goodness of different solutions is extremely
easy to validate (just go to a known location and
test)

- The results have immediate practical applications

« Location-based services (LBS)
« FCC Enhanced 911:

- Network-based solutions: error below 100 meters for 67 percent of calls, 300
meters for 95 percent of calls

- Handset-based solutions: error below 50 meters for 67 percent of calls, 150
meters for 95 percent of calls

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki IV-21
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Cell ID

varable cell-size:
n. 50 m {indoors) == 30 km {rural areas)

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki IV-22
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Cell ID errors

& tmic - GSview —1O] =]
File Edit ©ptions “Wiew Orientation Media Help
HERRRHIERRDCIKREIE IR

CeELL-TID [

File: trmc

188, 326pt  Page: "11" 11 af 13

Probabilistic Models, Spring 2013
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Enhanced Observed Time
Difference (E-OTD)

#I hyperbola: d3-d2 = constant

ﬁ 1. o Hﬁ-H_ hyperbola; d1-d2 = constant

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki
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Problems with E-OTD
In ufban positioning

- multi-paths
- no line of sight to BS
- extra hardware
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-100

-150

=200

-250
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The signal propagation
approach

-~ Universal model for location estimation

 Max
Min
Show route | Show coverage | RTﬂall Start SG | Save | Sahara | Load | Propagate | Contour plot | Contour line | Data contour | ﬁny!l’l \: b Diff | AP: LAN-AP-04 ﬁ Quit
werage
~ Propag

- Universal model for location estimation

Min
Show muuzl Show Dn\lEr‘ij| RTdat | Start SG| Save| Sahml Lnau| Pmpagate| Contour pln!| Contour Iine| Dam:nnmur| Finger : - Diff | AP: [JLAN-AP-04 3 quit
werage

-

\ i

P

— T L
e

- Max

~~ Propag

e
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Empirical modeling In
urban positioning

L ll ’h

+accurate L
+handset or network based
-calibration measurements required
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A probabillistic approach to positioning
P(O|L)P(L)

P(O)

- A probabilistic model assigns a probability for
each possible location L given the
observations O.

- P(O | L) is the conditional probability of obtaining
observations O at location L.

- P(L) is the prior probability of location L. (Could
be used to exploit user profiles, rails etc.)

- P(O) is just a normalizing constant.

* How to obtain P(O | L)? = Empirical
observations + machine learning

Bayes rule: P(L|O)=

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki IV-31
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Tracking with Markov models

* Typically we have a sequence (history) of observations
O,,...,0_, and wish to determine P( L_| O")

« Assumption: P(O, | L)) are known, and given location L,
the observation O, 1s independent of the rest of the history

* The model: a hidden Markov model (HMM) where the
locations L, are the hidden unobserved states

 The transition probabilities P(L, | L, ;) can be easily
determined from the physical properties of the moving

object

% ‘q co® q‘q
Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki IV-32
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One more assumption

 The observation at time ¢ typically consists of
several measurements (e.g., strengths of
signals from all the transmitters that can be
heard)

* |f the wireless network is designed in a
reasonable manner (the transmitters are far
from each other), it makes sense to assume
that the individual observations are
iIndependent, given the location

L,
« The “Naive Bayes” model / J \
O, O,, eee O,

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki
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The Model

First-order “semi-hidden” Markov model

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki IV-34
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Tracking as probabilistic
inference

* As our hidden Markov model 1s a tree, we can compute
the marginal of any L, given the history O", in linear

time by using a simple forward-backward algorithm

* Alternatively, we can compute the maximum probability
path L ,....L._given the history (this is known as the
Viterbi algorithm)

« Kalman filter: all the conditional distributions of the

HMM model are normal distributions (linear
dependencies with Gaussian noise)

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki IV-35
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Recursive tracking

Assume that P(L_, | O™') has been computed.

Our model defines the transition probabilities P(L, | L)
and the local observation probabilities P(O, | L,)

Now P(L_ | O™ a P(L_, O")
=P, | L, O™ P(L,_, O
=P0O, L)X, PL,,L,,O0")

oPO,|L)X, PL,|L_)PL,|O™)

With a Kalman filter, the recursive process operates all
the time with Gaussians

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki IV-36
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* Covering downtown Manhattan (10th -

114th St)

Detalls

» Data gathering by car
 Modeling: 10 person days

e Target accuracy: less than 911 handset

requirements

* Tests using cars

Probabilistic Models, Spring 2013

Petri Myllymaki, University of Helsinki
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Accuracy of NYC Trial 2001

67% | 957% | 98.6%
1600 | |

L

124

188

1415

=151

400

cy

=l _,-o-'-"\J— _rx_,_,—FI—'—'_"‘-\-\.._

5] 506 166 156 e 250
17m 57m

« 20166 points
 tracking; testing done in a car;
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Trials: Manhattan 20
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Challenges

e “real 911" simulation
- No tracking information

- Only up to 60 seconds of signal
measurements

» Target accuracy: “theater level”

* |Indoor testing (without indoor
modeling)

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki IV-42
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67%

95%

Accuracy NYC Trial 2002

98.6%

40

35

/)

20 /
15 /
10

5

0

wa

N A

-5

D 10 20 30 40 50 60 70 80

90 100 110 120 130 140

+ 30 points

27m

85m

- static; testing done by walking;
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Thesis topic: semi-supervised
modeling in positioning
e "automatic calibration”

* T. Pulkkinen, T. Roos, and P. Myllymaki: Semi-
supervised learning for WLAN positioning.
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Joint probability of a HMM

 Joint probability factorizes like a BN

- HMM is a Bayesian network!

t
P(X,,X,,E, X, ,E,,...X,,E)=P(X,)[[P(X|X,_,)P(E|X,)
i=1
X, = X, = =X, =X,
e Common inference tasks: & (E E.. (E

- Filtering / monitoring: P(X | e, )
- Prediction: P(X _ | e, ), k>0
- Smoothing: P(X |e, ), k<t

- Explanation: arg max . P(X  |e,)

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki IV-46
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Calculating P(X | e, ) in HMM

e | ets shoot for a recursive formula:

P(Xt+1|et+1/el:t)
OCP(et+1|Xt+1/el:t)P(Xt+1|el:t)

P(e,,|X,.1)P(X,, ,le;.)

P(X,..le1.;:1)

e and
P t+1|el -t ZP t+1/Xt|el:t)

_ZP t+1|Xt’el:t)P<Xt|el:t)
_ZP (X 11x)P(x,]ey.,)

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki
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Forward algorithm for P(X | e )

 Combining formulas we get a recursion

P(Xt+1|el:t+1)OCP(et+1|Xt+1)ZP(Xt+1|xt>P(Xt|el:t)
e So first calculate

P(X1|91>OCP(91|X1)ZP(X1|X0)P(Xo)

 and then
P(X,le, e,;)cP(e,|X,) ZP X,|x1)P(x4le;)

( |€1 e, 93)OCP 93|X ZP 3|X2) (X2|el,ez>

Probabilistit Models, Spring 2013 Petri Myllymaki, University of Helsinki I'V-49
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Prediction: P(X _ | e, ), k>0
- P(X . | e, )partof the forward algorithm

» and from that on evidence does not count, and
one can just calculate forward:

P(X,.,le.,) ZP (X, olXi1.€1.) P (X qleq )
_ZP t+2|Xt+1 P<Xt+1|el:t>
P(X,, sle;..) ZP (X, 3lX0.€1.0)P(X5leq )

_ZP t+3|Xt+2 P(Xt+2|el:t)

Probabilistic Models, Spring 2013 Petri Myllyméki, University of Helsinki IV-50
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P(X,le,..)=P(X,
«P (X,
=P (X,

P<ek+1:t|X ZP
_ZP
_ZP

 and the flkrst
P(e/X,_,) ZP

_Zp

Smoothing: P(

« Obvious move: divide e, to e, and e

:XZ P(

€1.k,Cxi1:t)
e, Ple . /X . e )

e..Ple . 1.4X,)

Xk+1 ek+1.t|}{ )
Xk+1 Xk)P(ek+1:t|Xk+11Xk>

(X 11X ) Pley,s 'ek+2:t|xk+1)

Xk ‘ e1:t)’ K<t

k+1:t"

> &

$& & ¢

Xk+1Xk)P(ek+1|Xk+1)P(ek+2:t|xk+1)

(last) step:

(X;,elX; 1) ZP (ex,, X, 1) P(x,X, ;)

(edx,)P(x,|X,_ 1)

Probabilistic Models, Spring 2013
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Back and forth

» "Brute-force” smoothing of the whole sequence
takes O(t?) time

* Forward-backward algorithm: O(t)

* Finding the most probable sequence works in the
same manner (the Viterbi algorithm / Viterbi path)

| L

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki

IV-52



07.02.13

Finding the most probable sequence

* \Want to compute:

maxy _y P (X, ... X, le,,....e,)
=maxy max P(X,,..X _,,X, e,..e,)

n—l

Recursion:
max, .y 1P(X v XX ey, e)=maxy o P(X ., X, ,X,,e,...e,)
=max, , Ple |X X,...X, ,e,..,e, )P(X ,X,,...X ,,e,...e )
=max, y Ple|X,)P(X,|X,,...X,_.e,...e, ) )P(X,,.. X, . e,....e_)

=P(e n|Xn)maxXn_l (X X, Jmax,  P(X,,..X,,.X, |le...e_ )

More:
- see e.g. Russel & Norvig, Chapter 15.2.
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The Viterbi algorithm

Let p(X’i):maxXl,...,Xi_IP(Xl’"')Xi—l’Xel)°°°’ei)

denote the probability of the most probable
sequence of length i ending in state X.

p(X.,1)=P(e|X)P(X)=P(e|X) 2., (P(X]X,)P(X,)
(e| X )max,[p(Y,i—1)P(X|Y)], fori>1.

N
<
m
.

X1 X 2 X3 X_4 X5

A A A A M A

E 9 B M E P B | B
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Probabilistic inference In

PROBABILISTIC REASONING
IN INTELLIGENT SYSTEMS:

-_""-:-:'I:'.'.'l.'u"-.:-: l.:ll- ]"l_'||_|:-..:'|':|-;- ]I'I“.'IL_'I'IL'-.'

N dea Pearf
B F =L L LD O T TS

DAGs
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Types of inference

* Assume that both the structure of the
model (the DAG), and the parameters
(local probability tables) are fixed

» Recall the two types of inference task:
either compute the conditional probability of
a (set of) variables, given the values of
others, or compute the maximum
probability assignment

* Inference can be either exact or
approximative
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Exact inference in

singly-connected BNs

 a singly connected BN = polytree
(disregarding the arc directions, no two

nodes can be connected with more than
one path).

NVAA A
/A NN
9 v | 9 9 v 9

singly-connected multi-connected
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Probabilistic reasoning in singly-
connected BNs

’ (X|E)OCP(X £, E)OCP<E_|X)P(X|E+>
Y HP Y|X

(E,|X) ZP E,|Y)P(Y|X)

‘ ‘ (X|E, P(X|Z)P(Z|E,,)

» a computationally efficient message-
passing scheme: time requirement linear in
the number of conditional probabilities in ©.
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Belief propagation
A message passing algorithm developed by
Judea Pear

« Computes the marginal distribution of an
unobserved variable given the observed
ones

 Each node maintains a belief of its state
(the conditional probability distribution,
given the evidence)

 Nodes pass messages to their neighbors
and update their beliefs based on received
messages
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Belief propagation in chains

A node can have at most one parent and child, no loops.

 We want to compute the marginal probability P(X | e),
where the evidence e is an instantiation of node set E.

» Let us partition the evidence e into evidence from
“upstream” e” and evidence from “downstream” e".

P(X | e)

P(X |et,e™)
P(e” | X,e")P(X | e")
Ple | X)P(X | e™)

=
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Message passing in chains

me) mT)  mU) Xy  my)  m(Z)

— = - — — —
<+ - @ -— @ -— @ - -

Ae?)  AT) AU)  AX)  A(Y) NZ)

AMU=u) = Ple” |U=u)
= ) Ple | X=x)P(X=x|U=u)

= ) MX=x)P(X =x| U=u)

(X =x) = P(X=x]|¢e")
= Y PX=x|U=u)P(U=u]|e")

ZP(X:x] U= u)r(U=u)
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Initialization

 For nodes E with evidence e:

M E=e)=1,otherwise .(E=x)=0
n(E=e)=1,otherwisen(E=x)=0

« Nodes with no parents:

n(x)=P(x) (prior probabilities)

« Nodes with no children:
N x)=1, forall x
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Belief propagation in trees

* Every node has at most one parent.

» Differences compared to chains:

- Each node must combine impacts of the
A-messages obtained from its children.

- Each node should distribute a separate
m-message to each of its children.
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Message passing in trees

Initialization like with chains. Then (in any order):

» Belief updating:

BEL(x)=P (x|e)och(x)m(x).

o)=[1, % (x)
X)= 3, Plxlu)y(u)

* Bottom-up propagation:
Z Mx)P(x|u).

* Top-down propagation:

x () ()T, o ().
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Belief propagation in polytrees

 Nodes can have multiple parents
 No loops
e Differences compared to trees:

- Each node must combine impacts of the
TT-messages obtained from its parents.

- Each node should distribute a separate
A-message to each of its parents.
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Message passing Iin polytrees

* For details, see e.g. Neapolitan (Chapter 3.2.), or Pearl
(Chapter 4.2.)
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Complexity

 Number of messages sent depends linearly
on the diameter of the network

* The time needed to compute a message is
linear with respect to the size of the local
probability table

- But note that this means that the time (and
size) is exponential with respect to the number
of parents!

* The message-passing algorithm does not
work with multi-connected networks
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Probabilistic reasoning Iin
multi-connected BNs

» Generally not computationally feasible as the
problem has been shown to be NP-hard (Cooper
1990, Shimony 1994).

» Exact methods:

- clustering

- conditioning

- variable elimination

* Approximative methods:
- stochastic sampling algorithms
- loopy belief propagation

* Even approximative inference (both in terms of absolute
and relative error) is NP-hard
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Variable elimination

» |dea: eliminate (marginalize) one variable
at a time

« Usually, each step depends on a limited
number of variables only

* Time (and space) complexity of the
algorithm depends on the structure of the
network, and on the elimination order
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Variable elimination: a simple
example

PD=§:PABCD)

A,B,C

—L Z Z P(A)P(B|4)P(C|B)P(D|C)

_ZZPCw MCZP P(B|A)
_ZPMCZPQBZP P(B|A)
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Approximate inference in
Bayesian networks

 How to estimate how probably it rains next
day, if the previous night temperature is
above the month average?

- count rainy and non rainy days after warm nights
(and count relative frequencies).

* Rejection sampling for P(X|e) :
1.Generate random vectors (x ,e .y ).

r r r

2.Discard those those that do not match e.
3.Count frequencies of different x and normalize.
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Rejection sampling, bad news

e Good news first:
- super easy to implement
 Bad news:

- if evidence e is improbable, generated random
vectors seldom conform with e, thus it takes a
long time before we get a good estimate P(X|e).

- With long E, all e are improbable.

» So called likelihood weighting can alleviate
the problem a little bit, but not enough.
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Gibbs sampling

A Markov Chain Monte Carlo (MCMC) method
that approximates the probability distribution by
sampling from a “cleverly” selected Markov Chain

« Given a Bayesian network for n variables XU E U
Y, calculate P(X]|e) as follows:

N = (associative) array of zeros
Generate random vector x,v.

While not enough samples:
for V in X,Y:

generate v from P(V | MarkovBlanket(V))
replace v in x,vV.

N[x] +=1

print normalize(N[x])

Probabilistic Models, Spring 2013 Petri Myllymaki, University of Helsinki IV-74



07.02.13

Sampling from the Markov blanket

P(X|mb(X))
=P(X|mb(x), Rest)
_ P(X,mb(X), Rest)
P(mb(X), Rest)
oc P(AIl)

= |1 P(x/|Pa(X)))

X.eX

=P(X|Pa(X)) ]I P(ClPa(C)) ]l P(R|Pa(R))

Cech(X) R¢{Xuch(X)}

oc P(X|Pa H P Pa(C))

Cech
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Why does it work

* All decent Markov Chains have a unique
stationary distribution P* that can be
estimated by simulation.

» Detailed balance of transition function g and
state distribution P* implies stationarity of P*.

* Proposed q = P(V|mb(V)), and P(X|e) form a
detailed balance, thus P(X|e) is a stationary

distribution, so it can be estimated by
simulation.
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Markov Chains:
stationary distribution

* Defined by transition probabilities q(x—x")
between states, where x and x' belong to a
set of states X.

 Distribution P* over X is called stationary
distribution for the Markov Chain q, if
P*(x")=2 P*(x)a(x—Xx).

* P*(X) can be found out by simulating Markov
Chain g starting from a random state x .
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Markov Chains:
detailed balance

* Distribution P over X and a state transition
distribution q are said to form a detailed
balance, if for any states x and x/,
P(x)q(x—x') = P(x")g(x'—Xx), i.e. it is equally
probable to witness transition from x to x' as
it is to witness transition from x' to x.

 |If P and g form a detailed balance,
2. P(x)a(x—x’) = 2 P(X)q(X'—X) =
P(x)2. a(x'—x) =P(X’), thus P is stationary.
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Gibbs sampler as Markov Chain
* Consider Z=(X,Y) to be states of a Markov

chain, and q((v,z, ))—(V',z, ))=P(vi|z,, e), where

Z  =Z-{V}. Now P*(Z)=P(Z|e) and q form a
detailed balance, thus P* is a stationary
distribution of g and it can be found with the
sampling algorithm.
- P*(z)q(z—Z') = P(z|e)P(V'z,, e)

=P(v.z, |e)P(Viz,, e)

= P(vlz,,e)P(z, |e)P(V]z,, e)

=P(v|z, ,e)P(V', z, |e) = q(z'—2z)P*(z'), thus balance.
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Loopy belief propagation
 What happens if you just keep iterating the

message passing algorithm in a multi-
connected network?

* |n some cases it produces the right results,
or at least a good approximation

 Turbo codes
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So let us play....

#J B-Course - Microsoft Internet Explorer
J File Edit ‘iew Favoites Toolz  Help ‘

j@,»,@ﬁ@@@@-@,

Back Eariard Stop  Refresh  Home Search Favortes  History GET Frint Edit
J.ﬂ.gldress IE hitp: /2 b-course. o3, helsink 2 j P Go “ Links *

home | library | feedback

B-Coltrse

Welcome to B-Course

B-Course is a web-based inferactive tutorial on Bayesian modeling, in particudar
depandence modeling. However, it is mare than just o fuforial 1 is also a_free data
analvsic tool that makes i possible for vou to use your own data as example data for
the tutorial. Consequently B-Course can be used as an analysic tool for any research
where dependence modeling based on data is of interest. B-Course can be frecly used |
for educational and research purposes only. (Disclaimer)

B-Course facilities

B-Course will guide you through the trail of dependency modeling. Tou will learn about
Bayesian modeling and inference using your own data as an example. In case you do not (yet)
have any data sets to analyze, you can take alook on a model we have prepared, or you can select among public data
sets provided in B-Course material and use the selected data as your example.

Along the trail you will find references to the B-Course lbrary for more detailed information. "We adwise you to study
those texts, because they are wital for truly understanding what 15 gomg on i the analysis. When you famiharize yourself
with the background information, you can use B-Course as any other software tool to help you in the analysis of your
data If you publish the results, we as the designers of B-Course would appreciate that you acknowledge that the results
were obtained by using B-Course.

» Read about the goals of B-Course

Begin dependence modeling =

|@ Done l_l_ 25 Local intranet 4
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