Probabilistic Models: Spring 2013
 Exercise session 3 (exercises 10-13)

Instructions: All course participants are requested to submit their exercise solutions as follows:

- Deadline: before 12 o'clock noon of the Wednesday when the corresponding exercise session will be held
- Submission as a PDF file by email to joonas.paalasmaa at helsinki.fi (cc: to petri.myllymaki at cs.helsinki.fi)
- If you write the solutions by hand, please scan your paper. However, we strongly recommend that you type your solution by using a word processor. LaTeX is of course especially suitable for typesetting math, and it also has a convenient front-end LyX.
- Use as the title of your paper and subject of the email: "ProMo-2013, Exercise session n, yourlastname"
- Use as the file name:
"ProMo-2013, Exercise session n, yourlastname.pdf"
- In all the exercises, do not just give the answer, but also the derivation of how you obtained it.
- Participants are encouraged to write computer programs to derive solutions whenever appropriate. In this case, please enclose the program source code too as a separate file.

After the exercise session, you are allowed to send a modified version of one of the solutions you sent before the exercise session:

- You can only modify a solution that you submitted before the 12 o'clock deadline.
- You can only send a modified version for one solution, and only if you attended the exercise session.
- Deadline: midnight after the exercise session.
- Submission as before, but this time please send only the modified solution, not the other (unchanged) solutions. Enclose the original solution first and then continue with the new material: first explain what you did wrong in the first time and then continue with modifications.
- As the title of the submission, please use:
"ProMo-2013, Exercise session n, yourlastname, modified exercise x."

10.

a) Show by using the d-separation criterion that a node in a Bayesian network is conditionally independent of all the other nodes, given its Markov blanket.
b) List all d-separations in the following DAG (for each pair of d-separated variables, it is enough to give one set that d-separates them):

11.
a) List all the marginal and conditional pairwise independencies represented by the following DAG:

b) Given the above Bayesian network, suppose the variables are binary and the model parameters (conditional probabilities) are as follows:

$$
\begin{aligned}
P(A=1) & =0.80 \\
P(B=1) & =0.20 \\
P(C=1 \mid A=0, B=0) & =0.30 \\
P(C=1 \mid A=1, B=0) & =0.45 \\
P(C=1 \mid A=0, B=1) & =0.85 \\
P(C=1 \mid A=1, B=1) & =0.65 \\
P(D=1 \mid C=1) & =0.75 \\
P(D=1 \mid C=0) & =0.30
\end{aligned}
$$

i) Construct the joint probability table of the distribution represented by this model.
ii) What is $\max P(A, B, C, D)$?
iii) Compute the marginal probabilities $P(A), P(B), P(C)$ and $P(D)$.
iv) Compute the following conditional probabilities:

$$
\begin{array}{r}
P(A=1 \mid D=1) \\
P(B=1 \mid D=1) \\
P(A=1 \mid D=0) \\
P(B=1 \mid D=0) \\
P(A=1 \mid C=1) \\
P(B=1 \mid C=1) \\
P(A=0 \mid C=1) \\
P(B=0 \mid C=1) \\
P(C=1 \mid D=0) \\
P(C=1 \mid A=1) \\
P(D=1 \mid A=1) \\
P(A=1 \mid C=1, D=1) \\
P(B=1 \mid C=1, D=1) \\
P(A=1 \mid C=1, D=0) \\
P(B=1 \mid C=1, D=0) \\
P(A=1 \mid C=1, B=1) \\
P(A=1 \mid C=1, B=0) \\
P(A=1 \mid B=1) \\
P(A=1 \mid B=0) .
\end{array}
$$

12. List all 3-node Bayesian networks, and partition them into equivalence classes. For the notation, let us call the nodes X, Y and Z, and let $X Y$ means that there is a directed arc from X to Y. For example, $\}$ is an empty network with no arcs, and $\{X Y, X Z, Y Z\}$ is a fully connected network with $\operatorname{arcs} X \rightarrow Y$, $X \rightarrow Z$ and $Y \rightarrow Z$.
13. [Friedman and Koller 3.18] An edge $X \rightarrow Y$ in graph G is said to be covered if $P a_{G}(Y)=P a_{G}(X) \cup\{X\}$. Covered edges have the nice property that for every pair of Markov equivalent networks G and G^{\prime}, there exists a sequence of covered edge reversal operations that converts G to G^{\prime}.
a) Let G be a graph with a covered edge $X \rightarrow Y$ and G^{\prime} the graph that results by reversing the edge $X \rightarrow Y$ to produce $Y \rightarrow X$, but leaving everything else unchanged. Prove that G and G^{\prime} are Markov equivalent.
b) Provide a counterexample to this result in the case where $X \rightarrow Y$ is not a covered edge.
