Probabilistic models, Spring 2013
Exercise 1: Solutions

1. a) The requirement for the probability table is that $P(X, Y) = P(X)P(Y)$ holds for all values of X and Y. One such table is shown below.

<table>
<thead>
<tr>
<th>X</th>
<th>$\neg X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>$1/4$</td>
</tr>
<tr>
<td>$\neg Y$</td>
<td>$1/4$</td>
</tr>
</tbody>
</table>

b) A probability table where the independence criterion does not hold is shown below.

<table>
<thead>
<tr>
<th>X</th>
<th>$\neg X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>$1/2$</td>
</tr>
<tr>
<td>$\neg Y$</td>
<td>0</td>
</tr>
</tbody>
</table>

b) Conditional distribution $P(X|Y)$:

- $P(X = 0|Y = 1) = \frac{P(X = 0, Y = 1)}{P(Y = 1)} = \frac{2/16}{9/16} = \frac{2}{9}$
- $P(X = 1|Y = 1) = \frac{P(X = 1, Y = 1)}{P(Y = 1)} = \frac{3/16}{9/16} = \frac{1}{3}$
- $P(X = 2|Y = 1) = \frac{P(X = 2, Y = 1)}{P(Y = 1)} = \frac{3/16}{9/16} = \frac{1}{3}$
- $P(X = 3|Y = 1) = \frac{P(X = 3, Y = 1)}{P(Y = 1)} = \frac{1/16}{9/16} = \frac{1}{9}$

2. a) The marginal distribution of X:

- $P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 0, Y = 2) = \frac{1}{16} + \frac{2}{16} + 0 = \frac{3}{16} \approx 0.188$
- $P(X = 1) = P(X = 1, Y = 0) + P(X = 1, Y = 1) + P(X = 1, Y = 2) = \frac{1}{16} + \frac{3}{16} + \frac{1}{16} = \frac{5}{16} \approx 0.312$
- $P(X = 2) = P(X = 2, Y = 0) + P(X = 2, Y = 1) + P(X = 2, Y = 2) = \frac{1}{16} + \frac{3}{16} + \frac{2}{16} = \frac{6}{16} \approx 0.375$
- $P(X = 3) = P(X = 3, Y = 0) + P(X = 3, Y = 1) + P(X = 3, Y = 2) = 0 + \frac{1}{16} + \frac{1}{16} = \frac{2}{16} \approx 0.125$

The marginal distribution of Y:

- $P(Y = 0) = \frac{1}{16} + \frac{1}{16} + 0 = \frac{3}{16} \approx 0.188$
- $P(Y = 1) = \frac{3}{16} + \frac{3}{16} + \frac{1}{16} = \frac{7}{16} \approx 0.562$
- $P(Y = 2) = 0 + \frac{1}{16} + \frac{2}{16} = \frac{3}{16} \approx 0.250$

b) Conditional distribution $P(Y|X)$:

- $P(Y = 0|X = 1) = \frac{P(Y = 0, X = 1)}{P(X = 1)} = \frac{\frac{2}{16}}{\frac{3}{16}} = \frac{2}{3}$
- $P(Y = 1|X = 1) = \frac{P(Y = 1, X = 1)}{P(X = 1)} = \frac{\frac{1}{16}}{\frac{3}{16}} = \frac{1}{3}$
- $P(Y = 2|X = 1) = \frac{P(Y = 2, X = 1)}{P(X = 1)} = \frac{\frac{1}{16}}{\frac{3}{16}} = \frac{1}{3}$
- $P(Y = 0|X = 3) = \frac{P(Y = 0, X = 3)}{P(X = 3)} = \frac{\frac{1}{16}}{\frac{2}{16}} = \frac{1}{2}$
- $P(Y = 1|X = 3) = \frac{P(Y = 1, X = 3)}{P(X = 3)} = \frac{\frac{1}{16}}{\frac{2}{16}} = \frac{1}{2}$
- $P(Y = 2|X = 3) = \frac{P(Y = 2, X = 3)}{P(X = 3)} = \frac{\frac{1}{16}}{\frac{2}{16}} = \frac{1}{2}$
Let’s define the following events:

- W: "the person in question has a white car"
- S: "the person in question likes sushi"
- A: "the person in question is Alice"

Using the above expression the solution is calculated as below.

The prior beliefs concerning the car color and sushi are independent for both persons, that is, $W \perp S | A$. This means that we only need to be able to compute the joint distribution values $P(A, \neg S, W)$ and $P(\neg A, \neg S, W)$. Thanks to the chain rule, e.g., $P(A, \neg S, W)$ can be formulated as $P(A, \neg S, W) = P(A)P(\neg S | A)P(W | A, \neg S)$, which simplifies to $P(A, \neg S, W) = P(A)P(\neg S | A)P(W | A)$, because $W \perp S | A$.

Using the above expression the solution is calculated as below.
\[
\frac{P(A, \neg S, W)}{P(A, \neg S, W) + P(\neg A, \neg S, W)} = \frac{P(A)P(\neg S|A)P(W|A)}{P(A)P(\neg S|A)P(W|A) + P(\neg A)P(\neg S|\neg A)P(W|\neg A)}
\]
\[
= \frac{P(A)(1 - P(S|A))P(W|A) + (1 - P(A))(1 - P(S|\neg A))P(W|\neg A)}{0.5 \cdot (1 - 0.5) \cdot 0.8}
\]
\[
= 0.5 \cdot 0.8 + (1 - 0.5) \cdot (1 - 0.9) \cdot 0.5 = 0.888\ldots
\]