
Probabilistic models, Spring 2013
Exercise 2: Solutions

5. The numbers of heads and tails are NH = 9, NT = 6.

a)

P(H|θ) = θ

P(T |θ) = 1−θ

P(D|θ) = θ
NH (1−θ)NT

∂

∂θ
P(D|θ) = θ

(NH−1)(1−θ)(NT−1) [NH −θ(NH +NT )]

∂

∂θ
P(D|θ) = 0 → θ

(NH−1)(1−θ)(NT−1) [NH −θ(NH +NT )] = 0

→ NH −θ(NH +NT ) = 0

→ θ =
NH

NH +NT

θ̂ = argmax
θ

P(D | θ) = NH

NH +NT
=

9
15

= 0.6

b)

P(D | θ = θ̂) = θ̂
NH (1− θ̂)NH =

(
9
15

)9( 6
15

)6

≈ 0.000041

c)

P(D | θ =
1
2
) =

(
1
2

)9(1
2

)6

≈ 0.000031

d)

Both uniform and Jeffreys priors are special cases of the Beta distribution, so the posterior with a Beta prior
is calculated. The Beta prior is

P(θ) = θ
α−1 (1−θ)β−1 c

where α and β are its parameters and c is a normalization constant. The posterior distribution with the Beta
prior is thus

P(θ|D) = P(D|θ)P(θ) = θ
NH (1−θ)NT ×θ

α−1 (1−θ)β−1 c

= θ
NH+α−1 (1−θ)NT+β−1

which itself is a Beta distribution: Beta(α+NH ,β+NT ).

The posteriors with the uniform and Jeffreys priors can now be easily calculated:

Uniform prior: α = 1, β = 1 ⇒ P(θ | D)∼ Beta(10,7)

Jeffreys prior: α = 0.5, β = 0.5 ⇒ P(θ | D)∼ Beta(9.5,6.5)

e)

ML parameters: P(X = H | D) = NH
NH+NT

Uniform prior: P(X = H | D) = NH+1
NH+NT+2
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ML parameters uniform prior
P(X = H) = – 1/2
P(X = H | H) = 1/1 2/3
P(X = T | HH) = 0/2 1/4
P(X = H | HHT ) = 2/3 3/5
P(X = T | HHT H) = 1/4 2/6
P(X = T | HHT HT ) = 2/5 3/7
P(X = H | HHT HT T ) = 3/6 4/8
P(X = H | HHT HT T H) = 4/7 5/9
P(X = T | HHT HT T HH) = 3/8 4/10
P(X = H | HHT HT T HHT ) = 5/9 6/11
P(X = T | HHT HT T HHT H) = 4/10 5/12
P(X = T | HHT HT T HHT HT ) = 5/11 6/13
P(X = H | HHT HT T HHT HT T ) = 6/12 7/14
P(X = H | HHT HT T HHT HT T H) = 7/13 8/15
P(X = H | HHT HT T HHT HT T HH) = 8/14 9/16
Product ≈ – 0.0000125

6. The numbers of heads and tails are NH = 7, NT = 3.

i)

θ̂ =
7

10
= 0.7

ii)
P(D | θ̂)≈ 0.00222

iii)

P(D | θ =
1
2
)≈ 0.00098

iv)

Uniform prior: P(θ | D)∼ Beta(8,4)

Jeffreys prior: P(θ | D)∼ Beta(7.5,3.5)

v)

ML parameters uniform prior
P(X = T ) = – 1/2
P(X = T | T ) = 1 2/3
P(X = T | T T ) = 1 3/4
P(X = H | T T T ) = 0 1/5
P(X = H | T T T H) = 1/4 2/6
P(X = H | T T T HH) = 2/5 3/7
P(X = H | T T T HHH) = 3/6 4/8
P(X = H | T T T HHHH) = 4/7 5/9
P(X = H | T T T HHHHH) = 5/8 6/10
P(X = H | T T T HHHHHH) = 6/9 7/11
Product ≈ – 0.000758

7. a) The maximum likelihood parameters θ1,θ2, . . . ,θ6 are known(∗) to be of form θ̂i =
Ni

N1+N2+...+N6
. That

is:

θ̂1 =
8

50

θ̂2 =
4

50
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θ̂3 =
9

50

θ̂4 =
7

50

θ̂5 =
12
50

θ̂6 =
10
50

(∗) Proof (not required): Let’s assume a multinomial model with k classes and observed counts
N1,N2, . . . ,Nk. We want to maximise the likelihood function

L(θ1,θ2, . . . ,θk) = θ
N1
1 θ

N2
2 · · ·θ

Nk
k

subject to restrictions g(θ1,θ2, . . . ,θk) = θ1 + θ2 + . . .+ θk = 1 and θi ≥ 0 for i = 1, . . . ,k. If θi = 0
for any i, then L = 0 (unless Ni = 0). On the other hand, if θi > 0 for all i, then L > 0. Therefore, L is
maximized in the open set where θi > 0 for all i. Since the logarithm is a strictly increasing function,
we can instead maximize the logarithm of L, that is:

l(θ1,θ2, . . . ,θk) = lnL(θ1,θ2, . . . ,θk) = N1 lnθ1 +N2 lnθ2 + . . .+Nk lnθk

So we want to find argmaxθ1,θ2,...,θk
l(θ1,θ2, . . . ,θk). Using Lagrange multipliers we get the following

equations that need to be satisfied for some λ ∈ R:

{
∇l = λ∇g
g = 1

⇔



∂l
∂θ1

= λ
∂g
∂θ1

∂l
∂θ2

= λ
∂g
∂θ2

...
∂l

∂θk
= λ

∂g
∂θk

g = 1

⇔



N1
θ1

= λ

N2
θ2

= λ

...
Nk
θk

= λ

θ1 +θ2 + . . .+θk = 1

⇔



θ1 =
N1
λ

θ2 =
N2
λ

...
θk =

Nk
λ

θ1 +θ2 + . . .+θk = 1

By inserting the k first equations to the last equation we can solve λ = N1 +N2 + . . .+Nk. Thus the
likelihood L is maximized when

θi =
Ni

N1 +N2 + . . .+Nk
, i = 1,2, . . . ,k.

b) (i) uniform prior:

P(θ1,θ2, . . . ,θ6 | D)∼ Dir(N1 +1,N2 +1, . . . ,N6 +1) = Dir(9,5,10,8,13,11)

(ii) Jeffreys prior:

P(θ1,θ2, . . . ,θ6 | D)∼ Dir(N1 +0.5,N2 +0.5, . . . ,N6 +0.5) = Dir(8.5,4.5,9.5,7.5,12.5,10.5)

c) In uniform prior we have α1 = α2 = . . .= α6 = 1. Thus we get
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P(X = 1 | D) =
1+N1

∑
6
j=1(1+N j)

=
9

56

P(X = 2 | D) =
1+N2

∑
6
j=1(1+N j)

=
5

56

P(X = 3 | D) =
1+N3

∑
6
j=1(1+N j)

=
10
56

P(X = 4 | D) =
1+N4

∑
6
j=1(1+N j)

=
8

56

P(X = 5 | D) =
1+N5

∑
6
j=1(1+N j)

=
13
56

P(X = 6 | D) =
1+N6

∑
6
j=1(1+N j)

=
11
56

d) Since have two equations and 6 free variables (α1,α2,α3,α4,α5,α6), we can fix four of them arbitrar-
ily: for example let α1 = α2 = α4 = α6 = 1. Now by solving

P(X = 3 | D) =
1
4

P(X = 5 | D) =
1
4

⇔


α3 +9

50+∑
6
i=1 αi

=
1
4

α5 +12
50+∑

6
i=1 αi

=
1
4

⇔


α3 +9

α3 +α5 +54
=

1
4

α5 +12
α3 +α5 +54

=
1
4

⇔

{
4α3 +36 = α3 +α5 +54
4α5 +48 = α3 +α5 +54

⇔

{
3α3 = α5 +18
3α5 = α3 +6

⇔

{
α5 = 3α3−18
α3 = 3α5−6

That gives us

α5 = 3(3α5−6)−18 = 9α5−36 ⇔ 36 = 8α5 ⇔ α5 = 4.5

α3 = 3×4.5−6 = 7.5

so α3 = 7.5 and α5 = 4.5. Thus an example of such prior distribution is Dir(1,1,7.5,1,4.5,1).
It is finally verified that the prior distribution gives correct probablities:

P(X = 3 | D) =
9+α3

50+∑
6
j=1 α j

=
9+7.5

54+7.5+4.5
=

16.5
66

=
1
4

P(X = 5 | D) =
12+α5

50+∑
6
j=1 α j

=
12+4.5

54+7.5+4.5
=

16.5
66

=
1
4

8. Let

f (θ) = P(D | θ)P(θ)

= θ
Nb(1−θ)Nw · cθ

α−1(1−θ)β−1

= cθ
Nb+α−1(1−θ)Nw+β−1

where c = Γ(α+β)
Γ(α)Γ(β) is a constant.

We want to find the maximum of f (θ) on the interval 0≤ θ≤ 1. If θ = 0 or θ = 1, then f (θ) = 0. Otherwise
f (θ)> 0. Thus the maximum can be found from the open interval θ ∈ (0,1). Now f (θ) is maximized when
the logarithm of it

ln f (θ) = lnc+(Nb +α−1) lnθ+(Nw +β−1) ln(1−θ)
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is maximized, which in turn happens when its derivative is 0, that is:

Nb +α−1
θ

− Nw +β−1
1−θ

= 0

(Nb +α−1)(1−θ) = (Nw +β−1)θ
(Nb +Nw +α+β−2)θ = Nb +α−1

θ =
Nb +α−1

Nb +Nw +α+β−2
.

9. Let’s first construct a full DAG:

This corresponds to the following factorization:

P(A,B,C,D,E) = P(A)P(B | A)P(C | A,B)P(D | A,B,C)P(E | A,B,C,D)

From the description given by the expert we can derive the following independencies:
P(E | A,B,C,D) = P(E |C)
P(D | A,B,C) = P(D | B,C)
P(C | A,B) = P(C | A)

In another form:
E ⊥ A |C
E ⊥ B |C
E ⊥ D |C
D⊥ A | {B,C}
C ⊥ B | A

Note: The expert did not say anything about possible dependence or independence between the A and B. So
we can’t say that A and B are (conditionally) independent. In some situations it might make sense to assume
independence if not explicitly told otherwise. But here we can’t be sure so we are not going to remove the
corresponding arc from the DAG.

After removing the arcs corresponding the independencies listed above we get:

This is our final DAG. To make it a bit easier to read, we can still rearrange the nodes as follows:
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