- 10. a) We want to prove that any node X is conditionally independent of any other node Y given its Markov blanket MB(X) (assuming $Y \notin \{X\} \cup MB(X)$). Let's look at an arbitrary trail from X to Y. We divide in three separate cases (in the following "-" means arc with any direction, that is, both " \rightarrow " or " \leftarrow " are allowed):
 - 1) The trail is of form $X \leftarrow Z \dots Y$. Node Z blocks the connection along the trail. Since $Z \in MB(X)$, X and Y are not d-connected by MB(X) along the trail.
 - 2) The trail is of form $X \to Z \to \dots Y$. Node *Z* blocks the connection along the trail. Since $Z \in MB(X)$, *X* and *Y* are not d-connected by MB(X) along the trail.
 - 3) The trail is of form $X \to Z \leftarrow W \cdots Y$. Node *W* blocks the connection along the trail. Since $W \in MB(X)$, *X* and *Y* are not d-connected by MB(X) along the trail.

In all three cases the connection was blocked by MB(X). Since the trail was arbitrary this holds for all trails. As *X* and *Y* are not d-connected by MB(X) along any trail, they are d-separated by MB(X). Therefore *X* is independent of *Y* given MB(X).

b) $A \perp C \mid B$ $A \perp D \mid B$ $A \perp E \mid B$ $A \perp F \mid B$ $B \perp E \mid C$ $B \perp F \mid \{C, D\}$ $C \perp F \mid \{D, E\}$ $D \perp E \mid C$

11. a) $A \perp B$ $A \perp D \mid C$ $A \perp D \mid \{B,C\}$ $B \perp D \mid C$

 $\begin{array}{c} B \perp D \mid C \\ B \perp D \mid \{A, C\} \end{array}$

b) i) Based on the above independencies we get

$$P(A,B,C,D) = P(A) P(B | A) P(C | A,B) P(D | A,B,C)$$

= P(A) P(B) P(C | A,B) P(D | C).

Using this we can calculate the following joint probabilities:

A	B	С	D	P(A,B,C,D)
0	0	0	0	0.07840
0	0	0	1	0.03360
0	0	1	0	0.01200
0	0	1	1	0.03600
0	1	0	0	0.00420
0	1	0	1	0.00180
0	1	1	0	0.00850
0	1	1	1	0.02550
1	0	0	0	0.24640
1	0	0	1	0.10560
1	0	1	0	0.07200
1	0	1	1	0.21600
1	1	0	0	0.03920
1	1	0	1	0.01680
1	1	1	0	0.02600
1	1	1	1	0.07800

ii) From the table we see that $\max P(A, B, C, D) = 0.24640$.

iii) P(A = 0) = 0.2 P(A = 1) = 0.8 P(B = 0) = 0.8 P(B = 1) = 0.2 $P(C = 0) = \sum_{a,b,d} P(A = a, B = b, C = 0, D = d) \approx 0.5260$ $P(C = 1) = \sum_{a,b,d} P(A = a, B = b, C = 1, D = d) \approx 0.4740$ $P(D = 0) = \sum_{a,b,c} P(A = a, B = b, C = c, D = 0) \approx 0.4867$ $P(D = 1) = \sum_{a,b,c} P(A = a, B = b, C = c, D = 1) \approx 0.5133$

In general we can calculate all these from the joint probabilities calculated in i). For example:

$$P(A = 1 \mid D = 1) = \frac{P(A = 1, D = 1)}{P(D = 1)} = \frac{\sum_{c, b} P(A = 1, B = b, C = c, D = 1)}{\sum_{a, c, d} P(A = a, B = b, C = c, D = 1)} = \dots \approx 0.8112$$

In many of these cases we can also get the result easier way. For example, since $A \perp B$:

$$P(A = 1 | B = 1) = P(A = 1) = 0.8$$

 $P(A = 1 \mid D = 1) \approx 0.8112$ $P(B = 1 | D = 1) \approx 0.2379$ $P(A = 1 | D = 0) \approx 0.7882$ $P(B = 1 | D = 0) \approx 0.1601$ $P(A = 1 | C = 1) \approx 0.8270$ $P(B = 1 | C = 1) \approx 0.2911$ $P(A = 0 | C = 1) \approx 0.1730$ $P(B = 0 | C = 1) \approx 0.7089$ $P(C = 1 \mid D = 0) \approx 0.2435$ $P(C = 1 | A = 1) \approx 0.4900$ $P(D = 1 | A = 1) \approx 0.5205$ $P(A = 1 | C = 1, D = 1) \approx 0.8270$ $P(B = 1 | C = 1, D = 1) \approx 0.2911$ $P(A = 1 | C = 1, D = 0) \approx 0.8270$ $P(B = 1 | C = 1, D = 0) \approx 0.2911$ $P(A = 1 | C = 1, B = 1) \approx 0.7536$ $P(A = 1 | C = 1, B = 0) \approx 0.8571$ $P(A = 1 | B = 1) \approx 0.8000$ $P(A = 1 | B = 0) \approx 0.8000$

12. We get the following equivalence classes:

Class	Networks
1	{}
2	$\{XY\}, \{YX\}$
3	$\{XZ\}, \{ZX\}$
4	$\{YZ\}, \{ZY\}$
5	$\{XY,YZ\},\{ZY,YX\},\{YX,YZ\}$
6	$\{XZ,ZY\},\{YZ,ZX\},\{ZX,ZY\}$
7	$\{YX, XZ\}, \{ZX, XY\}, \{XY, XZ\}$
8	$\{XY, ZY\}$
9	$\{XZ, YZ\}$
10	$\{YX,ZX\}$
11	$\{XY, YZ, XZ\}, \{YX, YZ, XZ\}, \{XZ, ZY, XY\}, \{ZX, ZY, XY\}, \{YZ, ZX, YX\}, \{ZY, ZX, YX\}$

Total: 25 networks in 11 equivalence classes.

- 13. a) Let's assume that G is a DAG (implicit assumption). To prove that G and G' are Markov equivalent we need to show that 1) they have the same skeleton, 2) they have the same v-structures and 3) G' is a DAG.
 - 1) Since we only reversed the arc $X \rightarrow Y$, the skeleton did not change.
 - 2) We want to show that no v-structures were added or removed.
 - If a v-structure was removed, it needed to be of form $X \to Y \leftarrow Z$. But since $Z \in Pa_G(Y)$ and the arc $X \to Y$ is covered, $Z \in Pa_G(X)$, that is, there is an arc $Z \to X$. Therefore $X \to Y \leftarrow Z$ is not a v-structure in *G*, which is a contradiction. Thus no v-structures were removed.
 - Likewise, if a v-structure was added, it needed to be of form $Y \to X \leftarrow Z$. But since $Z \in Pa_G(X)$ and the arc $X \to Y$ is covered, $Z \in Pa_G(Y)$, that is, there is an arc $Z \to Y$. Therefore $Y \to X \leftarrow Z$ is not a v-structure in G', which is a contradiction. Thus no v-structures were added.

Therefore G and G' have the same v-structures.

- 3) We need to show that there are not cycles in G'. If we had introduced a cycle by reversing the arc X → Y, the cycle would need to go through the new arc Y → X and therefore be of form X → … → Z → Y → X. But since arc X → Y was covered and Z ∈ Pa_G(Y), there must also be an arc Z → X in G (and in G'). By using this arc as a shortcut on the above cycle we get another cycle X → … → Z → X. But since this shorter cycle does not contain arc between X and Z, it must have existed in the original network G. This is a contradiction with our assumption of G being a DAG, so G' must be acyclic.
- b) Consider the following network *G* of three nodes: $X \to Y \leftarrow Z$. Now $Pa_G(Y) = \{X, Z\} \neq \{X\} = Pa_G(X) \cup \{X\}$, so the arc $X \to Y$ is not covered. And indeed, if the arc $X \to Y$ is reversed, the resulting network $X \leftarrow Y \leftarrow Z$ has a different set of v-structures and is not Markov equivalent to *G*.