Exercise session 3: Solutions

10. a) We want to prove that any node X is conditionally independent of any other node Y given its Markov blanket $M B(X)$ (assuming $Y \notin\{X\} \cup M B(X)$). Let's look at an arbitrary trail from X to Y. We divide in three separate cases (in the following "-" means arc with any direction, that is, both " \rightarrow " or " \leftarrow " are allowed):
1) The trail is of form $X \leftarrow Z-\cdots-Y$. Node Z blocks the connection along the trail. Since $Z \in$ $M B(X), X$ and Y are not d-connected by $M B(X)$ along the trail.
2) The trail is of form $X \rightarrow Z \rightarrow \cdots-Y$. Node Z blocks the connection along the trail. Since $Z \in M B(X), X$ and Y are not d-connected by $M B(X)$ along the trail.
3) The trail is of form $X \rightarrow Z \leftarrow W-\cdots-Y$. Node W blocks the connection along the trail. Since $W \in M B(X), X$ and Y are not d-connected by $M B(X)$ along the trail.
In all three cases the connection was blocked by $M B(X)$. Since the trail was arbitrary this holds for all trails. As X and Y are not d-connected by $M B(X)$ along any trail, they are d-separated by $M B(X)$. Therefore X is independent of Y given $M B(X)$.
b) $A \perp C \mid B$
$A \perp D \mid B$
$A \perp E \mid B$
$A \perp F \mid B$
$B \perp E \mid C$
$B \perp F \mid\{C, D\}$
$C \perp F \mid\{D, E\}$
$D \perp E \mid C$
11. a) $A \perp B$
$A \perp D \mid C$
$A \perp D \mid\{B, C\}$
$B \perp D \mid C$
$B \perp D \mid\{A, C\}$
b) i) Based on the above independencies we get

$$
\begin{aligned}
P(A, B, C, D) & =P(A) P(B \mid A) P(C \mid A, B) P(D \mid A, B, C) \\
& =P(A) P(B) P(C \mid A, B) P(D \mid C)
\end{aligned}
$$

Using this we can calculate the following joint probabilities:

A	B	C	D	$P(A, B, C, D)$
0	0	0	0	0.07840
0	0	0	1	0.03360
0	0	1	0	0.01200
0	0	1	1	0.03600
0	1	0	0	0.00420
0	1	0	1	0.00180
0	1	1	0	0.00850
0	1	1	1	0.02550
1	0	0	0	$\mathbf{0 . 2 4 6 4 0}$
1	0	0	1	0.10560
1	0	1	0	0.07200
1	0	1	1	0.21600
1	1	0	0	0.03920
1	1	0	1	0.01680
1	1	1	0	0.02600
1	1	1	1	0.07800

ii) From the table we see that $\max P(A, B, C, D)=0.24640$.
iii)

$$
P(A=0)=0.2
$$

$$
P(A=1)=0.8
$$

$P(B=0)=0.8$
$P(B=1)=0.2$
$P(C=0)=\sum_{a, b, d} P(A=a, B=b, C=0, D=d) \approx 0.5260$
$P(C=1)=\sum_{a, b, d} P(A=a, B=b, C=1, D=d) \approx 0.4740$
$P(D=0)=\sum_{a, b, c} P(A=a, B=b, C=c, D=0) \approx 0.4867$
$P(D=1)=\sum_{a, b, c} P(A=a, B=b, C=c, D=1) \approx 0.5133$

iv)

In general we can calculate all these from the joint probabilities calculated in i). For example:

$$
P(A=1 \mid D=1)=\frac{P(A=1, D=1)}{P(D=1)}=\frac{\sum_{c, b} P(A=1, B=b, C=c, D=1)}{\sum_{a, c, d} P(A=a, B=b, C=c, D=1)}=\ldots \approx 0.8112
$$

In many of these cases we can also get the result easier way. For example, since $A \perp B$:

$$
P(A=1 \mid B=1)=P(A=1)=0.8
$$

$$
\begin{aligned}
& P(A=1 \mid D=1) \approx 0.8112 \\
& P(B=1 \mid D=1) \approx 0.2379 \\
& P(A=1 \mid D=0) \approx 0.7882 \\
& P(B=1 \mid D=0) \approx 0.1601 \\
& P(A=1 \mid C=1) \approx 0.8270 \\
& P(B=1 \mid C=1) \approx 0.2911 \\
& P(A=0 \mid C=1) \approx 0.1730 \\
& P(B=0 \mid C=1) \approx 0.7089 \\
& P(C=1 \mid D=0) \approx 0.2435 \\
& P(C=1 \mid A=1) \approx 0.4900 \\
& P(D=1 \mid A=1) \approx 0.5205 \\
& P(A=1 \mid C=1, D=1) \approx 0.8270 \\
& P(B=1 \mid C=1, D=1) \approx 0.2911 \\
& P(A=1 \mid C=1, D=0) \approx 0.8270 \\
& P(B=1 \mid C=1, D=0) \approx 0.2911 \\
& P(A=1 \mid C=1, B=1) \approx 0.7536 \\
& P(A=1 \mid C=1, B=0) \approx 0.8571 \\
& P(A=1 \mid B=1) \approx 0.8000 \\
& P(A=1 \mid B=0) \approx 0.8000
\end{aligned}
$$

12. We get the following equivalence classes:

Class	Networks
1	$\}$
2	$\{X Y\},\{Y X\}$
3	$\{X Z\},\{Z X\}$
4	$\{Y Z\},\{Z Y\}$
5	$\{X Y, Y Z\},\{Z Y, Y X\},\{Y X, Y Z\}$
6	$\{X Z, Z Y\},\{Y Z, Z X\},\{Z X, Z Y\}$
7	$\{Y X, X Z\},\{Z X, X Y\},\{X Y, X Z\}$
8	$\{X Y, Z Y\}$
9	$\{X Z, Y Z\}$
10	$\{Y X, Z X\}$
11	$\{X Y, Y Z, X Z\},\{Y X, Y Z, X Z\},\{X Z, Z Y, X Y\},\{Z X, Z Y, X Y\},\{Y Z, Z X, Y X\},\{Z Y, Z X, Y X\}$

Total: 25 networks in 11 equivalence classes.
13. a) Let's assume that G is a DAG (implicit assumption). To prove that G and G^{\prime} are Markov equivalent we need to show that 1) they have the same skeleton, 2) they have the same v-structures and 3) G^{\prime} is a DAG.

1) Since we only reversed the arc $X \rightarrow Y$, the skeleton did not change.
2) We want to show that no v-structures were added or removed.

- If a v-structure was removed, it needed to be of form $X \rightarrow Y \leftarrow Z$. But since $Z \in P a_{G}(Y)$ and the $\operatorname{arc} X \rightarrow Y$ is covered, $Z \in P a_{G}(X)$, that is, there is an $\operatorname{arc} Z \rightarrow X$. Therefore $X \rightarrow Y \leftarrow Z$ is not a v-structure in G, which is a contradiction. Thus no v-structures were removed.
- Likewise, if a v-structure was added, it needed to be of form $Y \rightarrow X \leftarrow Z$. But since $Z \in$ $P a_{G}(X)$ and the $\operatorname{arc} X \rightarrow Y$ is covered, $Z \in P a_{G}(Y)$, that is, there is an $\operatorname{arc} Z \rightarrow Y$. Therefore $Y \rightarrow X \leftarrow Z$ is not a v-structure in G^{\prime}, which is a contradiction. Thus no v-structures were added.
Therefore G and G^{\prime} have the same v-structures.

3) We need to show that there are not cycles in G^{\prime}. If we had introduced a cycle by reversing the $\operatorname{arc} X \rightarrow Y$, the cycle would need to go through the new $\operatorname{arc} Y \rightarrow X$ and therefore be of form $X \rightarrow \cdots \rightarrow Z \rightarrow Y \rightarrow X$. But since arc $X \rightarrow Y$ was covered and $Z \in P a_{G}(Y)$, there must also be an arc $Z \rightarrow X$ in G (and in G^{\prime}). By using this arc as a shortcut on the above cycle we get another cycle $X \rightarrow \cdots \rightarrow Z \rightarrow X$. But since this shorter cycle does not contain arc between X and Z, it must have existed in the original network G. This is a contradiction with our assumption of G being a DAG, so G^{\prime} must be acyclic.
b) Consider the following network G of three nodes: $X \rightarrow Y \leftarrow Z$. Now $\operatorname{Pa}_{G}(Y)=\{X, Z\} \neq\{X\}=$ $P a_{G}(X) \cup\{X\}$, so the $\operatorname{arc} X \rightarrow Y$ is not covered. And indeed, if the $\operatorname{arc} X \rightarrow Y$ is reversed, the resulting network $X \leftarrow Y \leftarrow Z$ has a different set of v-structures and is not Markov equivalent to G.
