

Probabilistic Models, Spring 2013

Petri Myllymäki, University of Helsinki

Handling Missing Data

- Different types of missing data: missing completely a random, missing at random, not missing at random
- Latent (hidden) variable models, like the finite mixture model, always have to deal with hidden data
- We either are interested in the missing data (e.g., we could be interested in the values of the a hidden variable if it corresponds to a clustering of data), or it is treated as "nuicance" (e.g., if the hidden "class" variable is only used as a modeling tool to produce a joint probability distribution on the observed variables)
- In the latter case, a Bayesian attempts to marginalize over the hidden data

The Finite Mixture Model

P(C

- With hidden data imposed by C, it is computationally infeasible to compute
 - Maximum likelihood parameters
 - Expected parameters (or max. posterior)
 - Marginal likelihood
- Model "structure" learning: how many values for C?

19.02.13

K-Means

- Normally, a geometric clustering algorithm
- A probabilistic version:
 - 1 Start with a random initial clustering c₁,...,c_n
 - 2 Build a model Θ using complete data (Xⁿ,Cⁿ)
 - 3 Using Θ , assign each data vector X *independently* to it's most probable cluster (i.e., find max P(C_i | X_i, Θ) for all i)
 - 4 Go to 2.

Expectation Maximization (EM)

- A "soft" version of K-Means
- Intuitively: data vectors are assigned "fractionally" to each cluster (with the fractions determined by the classification probabilities)
- The new model Θ is computed from semicomplete data (fractional sufficient statistics)
- For HMMs: the Baum-Welch algorithm

K-Means and EM in practice

- Both provably monotonically improve the likelihood (or posterior), so they converge to a local optimum only
- Convergence can be slow
- To get reasonable results, need to repeat several runs from different starting points
- Can be used together: e.g., first run Kmeans, then continue with EM
- Can be used to find good starting points for other heuristics

Structure learning with FMM's

- Can find models Θ using different number of values for the hidden variable (different number of parameters)
- Which Θ to choose? (max. likelihood chooses always the model obtained with the highest number of parameters)
- Computing the marginal likelihood not feasible with the missing data imposed by the hidden variable

$$P(K|D) \propto P(D|K) P(K)$$

$$P(D|K) = \int P(D|K, \theta) P(\theta|K) d\theta$$

$$P(D|K, \theta) = \prod_{i} \sum_{k=1}^{K} P(d_{i}|c_{k}, \theta) P(c_{k}|\theta)$$

Approximating the marginal likelihood

- Laplace (Gaussian) approximation
- Bayesian Information Criterion (BIC)
- Akaike Information Criterion (AIC)
- Missing data completion
- Stochastic methods (MCMC etc.)
- Variational methods

Laplace's method / Gaussian approximation

 Based on Taylor approximation at the maximum likelihood parameters:

 $-\log P(D|M) \approx -\log P(D|M, \hat{\theta}) - \log P(\hat{\theta}|M) + \frac{k}{2}\log \frac{n}{2\pi} + \log \sqrt{|I(\hat{\theta})|}$

- Here "k" is the number of parameters, "n" is the size of the data, and |*I*(Θ)| is the determinant of the Fisher information matrix at Θ
- A "penalized log-likelihood" criterion: likelihood grows with more complex models, but it compensated by the penalizing factors
- Jeffreys' prior: $P(\theta|M) = \frac{\sqrt{|I(\theta)|}}{\int \sqrt{|I(\theta)|} d\theta}$

BIC and AIC

- Bayesian Information Criterion (BIC): $-\log P(D|M) \approx -\log P(D|M, \hat{\theta}) + \frac{k}{2}\log n$
- Akaike Information Criterion (AIC):

 $-\log P(D|M) \approx -\log P(D|M, \hat{\theta}) + k$

- Both converge <u>asymptotically</u> to the marginal likelihood (minus a constant)
- Hence marginal likelihood is also in a sense a penalized maximum likelihood criterion!
- It is a non-trivial problem to determine the "correct" value of k

Missing data completion

• Direct marginalization not feasible:

$$P(X^{n}|M) = \sum_{C^{n}} P(X^{n}, C^{n}|M) = \sum_{C^{n}} P(X^{n}|C^{n}, M) P(C^{n}|M)$$

- Cⁿ is like an unknown "parameter"
- If you cannot marginalize over a parameter, you can try to maximize it

 $P(X^{n}|M) \propto max_{C^{n}} P(X^{n}|C^{n}, M) P(C^{n}|M)$

- As the "parameter" Cⁿ is actually data, it is easy to think of reasonable "priors" P(Cⁿ | M)
- With fixed M, Cⁿ can be optimized with Kmeans, EM, or whatever...

Supervised BN Learning

- Parameter learning
 - Generative modeling: Find arg $max_{\theta}P(X^{n}, C^{n}|M, \theta)$
 - Discriminative modeling: Find arg max $_{\theta}P(C^{n}|X^{n}, M, \theta)$
 - In general, the result is not the same!
- Structure learning
 - Generative modeling: Find arg max_M $P(X^n, C^n|M)$
 - Discriminative modeling: Find arg max_M $P(C^n|X^n, M)$
 - In general, the result is not the same!
 - Marginal conditional likelihood not feasible
 - Kontkanen et al. (UAI 1999): approximations, connection to cross-validation

Optimizing the conditional likelihood

- Bad news: even for the Naive Bayes model, the maximum of the conditional likelihood cannot be presented in closed form
- Good news: For some Bayesian networks (e.g., NB and TAN), the the conditional log-likelihood space is *concave* (Roos et al., MLJ 2005) → it has a single global optimum
- "Supervised" Naive Bayes = logistic regression
- For model structure learning: marginal conditional likelihood not feasible (Kontkanen et al., UAI 1999)

Models with many hidden nodes

- Is it sensible to first learn a Bayesian network (NP-hard) and then try to transform it to a simpler representation for probabilistic inference (NP-hard)?
- How about learning directly structures where inference is easy?

Dynamic Bayesian networks

 Complex Markov models involving temporal dependencies

Probabilistic Models, Spring 2013

Petri Myllymäki, University of Helsinki

Probabilistic Models, Spring 2013

19.02.13

Definitions of independence

- Following definitions equivalent for X1

 X2 | Z:
 - p(X1,X2 | Z) = p(X1 | Z)p(X2 | Z) whenever p(Z)>0
 - p(X1 | X2,Z) = p(X1 | Z) whenever p(X2,Z)>0
 - p(X2 | X1,Z) = p(X2 | Z) whenever p(X1,Z)>0
 - p(X1,X2,Z) = f(X1,Z)g(X2,Z) for non-negative functions f(·),g(·)
- Definitions symmetric in X1 and X2

Image models

 The graph on the right says that each pixel is influenced only by its neighbors

Undirected graphical models

- Local Markov property:
 - $X \perp (G-nbrs(X)-\{X\}) \mid nbrs(X)$
 - Minimal independence properties to uniquely determine a graph
- Global Markov property:
 - For all X_1, X_2, Z : $X_1 \perp X_2 \mid Z$ iff X_1 is separated in the graph from X_2 by Z.
 - How to test for independence
- Functional form: $P(X_1, ..., X_n) = \prod f_C(X_C)$
 - Product over cliques C (X_C denoting the members of the clique)
 - Definition for purposes of computation

- Local Markov property:
 - E.g.: B ⊥ E,F | A,C,D; C ⊥ A,F | B,D,E;...
- Global Markov property:
 - E.g.: A,B [⊥] E,F | C,D.
- Functional form:
 - P(A,B,C,D,E)=e(A,B)f(B,C,D)g(C,D,E)h(E,F)

The three properties are equivalent

- Global Markov property implies the local
- Functional form implies the global Markov property
- Hammersley-Clifford theorem: Local Markov property implies the functional form (for discrete variables)

Markov Random Fields

- Undirected graphical models, a.k.a. Markov networks
- Typically use alternative functional form: $P(X) = \frac{1}{Z} \exp\left(\sum_{C} \alpha_{C} f_{C}(X_{C})\right)$
- Sometimes also called the Gibbs distribution
- The cliquewise functions f_C are called *clique potentials*
- The normalizer Z is called the *partition function*

Probabilistic Models, Spring 2013

Mapping a DAG to a MRF is possible...

 Mapping is straightforward if a node and its parents in a DAG belong to the same clique in the MRF

$$\prod_{i} P(X_i | Pa_i) \to \prod_{C} f_C(X_C)$$

- This means that to get the corresponding MRF, we need to "marry" nodes with common children (this is called *moralizing* the graph)
- It follows that inference in undirected graphs is NP-hard too...

...but DAGs and MRFs are not equivalent independence models

• $A \perp D \mid B,C$ and $B \perp C \mid A,D$

• A [⊥] B and A [∦]/ B | C

Final remarks

- The Bayesian framework offers an elegant, consistent formalism for uncertain reasoning
- The basic principle is simple: compute the probability of what you want to know while marginalizing over the other unknown factors
- We have focused on the discrete Dirichlet-multinomial case and directed acyclic graphs (Bayesian networks), but the same principles apply with other probabilistic model families as well
- Graphical models offer a unifying framework where many popular methods are easily understood
 - E.g. Factor analysis, PCA, ICA, mPCA, HMM, Kalman filter, switching Kalman filter, AR models,...
 - See: http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html