

Handling Missing Data

- Different types of missing data: missing completely a random, missing at random, not missing at random
- Latent (hidden) variable models, like the finite mixture model, always have to deal with hidden data
- We either are interested in the missing data (e.g., we could be interested in the values of the a hidden variable if it corresponds to a clustering of data), or it is treated as "nuicance" (e.g., if the hidden "class" variable is only used as a modeling tool to produce a joint probability distribution on the observed variables)
- In the latter case, a Bayesian attempts to marginalize over the hidden data

The Finite Mixture Model

$$
\begin{aligned}
& P(D)=P\left(X_{1}^{n}, \ldots, X_{5}^{n}\right) \\
& =\sum_{C^{n}} P\left(C^{n}\right) P\left(X_{1}^{n}, \ldots, X_{5}^{n} \mid C^{n}\right) \\
& =\sum_{C^{n}} P\left(C^{n}\right) \prod_{i} P\left(X_{i}^{n} \mid C^{n}\right)
\end{aligned}
$$

- With hidden data imposed by C , it is computationally infeasible to compute
- Maximum likelihood parameters
- Expected parameters (or max. posterior)
- Marginal likelihood
- Model "structure" learning: how many values for C?

K-Means

- Normally, a geometric clustering algorithm
- A probabilistic version:

1 Start with a random initial clustering c_{1}, \ldots, c_{n}
2 Build a model Θ using complete data ($\mathrm{X}^{\mathrm{n}}, \mathrm{C}^{n}$)
3 Using Θ, assign each data vector X independently to it's most probable cluster (i.e., find $\max P\left(C_{i} \mid X_{i}, \Theta\right)$ for all i)

4 Go to 2.

Expectation Maximization (EM)

- A "soft" version of K-Means
- Intuitively: data vectors are assigned "fractionally" to each cluster (with the fractions determined by the classification probabilities)
- The new model Θ is computed from semicomplete data (fractional sufficient statistics)
- For HMMs: the Baum-Welch algorithm

K-Means and EM in practice

- Both provably monotonically improve the likelihood (or posterior), so they converge to a local optimum only
- Convergence can be slow
- To get reasonable results, need to repeat several runs from different starting points
- Can be used together: e.g., first run Kmeans, then continue with EM
- Can be used to find good starting points for other heuristics

Structure learning with FMM's

- Can find models Θ using different number of values for the hidden variable (different number of parameters)
- Which Θ to choose? (max. likelihood chooses always the model obtained with the highest number of parameters)
- Computing the marginal likelihood not feasible with the missing data imposed by the hidden variable

$$
\begin{aligned}
& P(K \mid D) \propto P(D \mid K) P(K) \\
& P(D \mid K)=\int P(D \mid K, \theta) P(\theta \mid K) d \theta \\
& P(D \mid K, \theta)=\prod_{i} \sum_{k=1}^{K} P\left(d_{i} \mid c_{k}, \theta\right) P\left(c_{k} \mid \theta\right)
\end{aligned}
$$

Approximating the marginal likelihood

- Laplace (Gaussian) approximation
- Bayesian Information Criterion (BIC)
- Akaike Information Criterion (AIC)
- Missing data completion
- Stochastic methods (MCMC etc.)
- Variational methods

Laplace's method / Gaussian approximation

- Based on Taylor approximation at the maximum likelihood parameters:
$-\log P(D \mid M) \approx-\log P(D \mid M, \hat{\theta})-\log P(\hat{\theta} \mid M)+\frac{k}{2} \log \frac{n}{2 \pi}+\log \sqrt{|I(\hat{\theta})|}$
- Here " k " is the number of parameters, " n " is the size of the data, and $|/(\Theta)|$ is the determinant of the Fisher information matrix at Θ
- A "penalized log-likelihood" criterion: likelihood grows with more complex models, but it compensated by the penalizing factors
- Jeffreys' prior: $\quad P(\theta \mid M)=\frac{\sqrt{|I(\theta)|}}{\int \sqrt{|I(\theta)|} d \theta}$

BIC and AIC

- Bayesian Information Criterion (BIC):

$$
-\log P(D \mid M) \approx-\log P(D \mid M, \hat{\theta})+\frac{k}{2} \log n
$$

- Akaike Information Criterion (AIC):

$$
-\log P(D \mid M) \approx-\log P(D \mid M, \hat{\theta})+k
$$

- Both converge asymptotically to the marginal likelihood (minus a constant)
- Hence marginal likelihood is also in a sense a penalized maximum likelihood criterion!
- It is a non-trivial problem to determine the "correct" value of k

Missing data completion

- Direct marginalization not feasible:

$$
P\left(X^{n} \mid M\right)=\sum_{C^{n}} P\left(X^{n}, C^{n} \mid M\right)=\sum_{C^{n}} P\left(X^{n} \mid C^{n}, M\right) P\left(C^{n} \mid M\right)
$$

- C^{n} is like an unknown "parameter"
- If you cannot marginalize over a parameter, you can try to maximize it

$$
P\left(X^{n} \mid M\right) \propto \max _{C^{n}} P\left(X^{n} \mid C^{n}, M\right) P\left(C^{n} \mid M\right)
$$

- As the "parameter" C^{n} is actually data, it is easy to think of reasonable "priors" $\mathrm{P}\left(\mathrm{C}^{n} \mid \mathrm{M}\right)$
- With fixed $\mathrm{M}, \mathrm{C}^{\mathrm{n}}$ can be optimized with K means, EM, or whatever...

Supervised BN Learning

- Parameter learning
- Generative modeling: Find $\arg \max _{\theta} P\left(X^{n}, C^{n} \mid M, \theta\right)$
- Discriminative modeling: Find $\arg \max _{\theta} P\left(C^{n} \mid X^{n}, M, \theta\right)$
- In general, the result is not the same!
- Structure learning
- Generative modeling: Find $\arg \max _{M} P\left(X^{n}, C^{n} \mid M\right)$
- Discriminative modeling: Find $\arg \max _{M} P\left(C^{n} \mid X^{n}, M\right)$
- In general, the result is not the same!
- Marginal conditional likelihood not feasible
- Kontkanen et al. (UAI 1999): approximations, connection to cross-validation

Optimizing the conditional likelihood

- Bad news: even for the Naive Bayes model, the maximum of the conditional likelihood cannot be presented in closed form
- Good news: For some Bayesian networks (e.g., NB and TAN), the the conditional log-likelihood space is concave (Roos et al., MLJ 2005) \rightarrow it has a single global optimum
- "Supervised" Naive Bayes = logistic regression
- For model structure learning: marginal conditional likelihood not feasible (Kontkanen et al., UAI 1999)

Models with many hidden nodes

- Is it sensible to first learn a Bayesian network (NP-hard) and then try to transform it to a simpler representation for probabilistic inference (NP-hard)?
- How about learning directly structures where inference is easy?

Dynamic Bayesian networks

- Complex Markov models involving temporal dependencies

Definitions of independence

- Following definitions equivalent for $\mathrm{X} 1 \perp \mathrm{X} 2 \mid$ Z:
- $p(X 1, X 2 \mid Z)=p(X 1 \mid Z) p(X 2 \mid Z)$ whenever $p(Z)>0$
- $p(X 1 \mid X 2, Z)=p(X 1 \mid Z)$ whenever $p(X 2, Z)>0$
- $p(X 2 \mid X 1, Z)=p(X 2 \mid Z)$ whenever $p(X 1, Z)>0$
- $p(X 1, X 2, Z)=f(X 1, Z) g(X 2, Z)$ for non-negative functions $f(\cdot), g(\cdot)$
- Definitions symmetric in X1 and X2

Image models

- The graph on the right says that each pixel is influenced only by its neighbors

Undirected graphical models

- Local Markov property:
- $X \perp$ (G-nbrs(X)-\{X\})|nbrs(X)
- Minimal independence properties to uniquely determine a graph
- Global Markov property:
- For all $X_{1}, X_{2}, Z: X_{1} \perp X_{2} \mid Z$ iff X_{1} is separated in the graph from X_{2} by Z.
- How to test for independence
- Functional form: $P\left(X_{1}, \ldots, X_{n}\right)=\prod f_{C}\left(X_{C}\right)$
- Product over cliques C (X_{C} denoting the members of the clique)
- Definition for purposes of computation

For example...

- Local Markov property:
- E.g.: $\mathrm{B}^{\perp} \mathrm{E}, \mathrm{F} \mid \mathrm{A}, \mathrm{C}, \mathrm{D} ; \mathrm{C} \perp_{\mathrm{A}, \mathrm{F} \mid \mathrm{B}, \mathrm{D}, \mathrm{E} ; \ldots}$
- Global Markov property:
- E.g.: A,B \perp E,F|C,D.
- Functional form:
- P(A,B,C,D,E)=e(A,B)f(B,C,D)g(C,D,E)h(E,F)

The three properties are equivalent

- Global Markov property implies the local
- Functional form implies the global Markov property
- Hammersley-Clifford theorem: Local Markov property implies the functional form (for discrete variables)

Markov Random Fields

- Undirected graphical models, a.k.a. Markov networks
- Typically use alternative functional form:

$$
P(X)=\frac{1}{Z} \exp \left(\sum_{C} \alpha_{C} f_{C}\left(X_{C}\right)\right)
$$

- Sometimes also called the Gibbs distribution
- The cliquewise functions f_{C} are called clique potentials
- The normalizer Z is called the partition function

Mapping a DAG to a MRF is possible...

- Mapping is straightforward if a node and its parents in a DAG belong to the same clique in the MRF

$$
\prod_{i} P\left(X_{i} \mid P a_{i}\right) \rightarrow \prod_{c} f_{c}\left(X_{c}\right)
$$

- This means that to get the corresponding MRF, we need to "marry" nodes with common children (this is called moralizing the graph)
- It follows that inference in undirected graphs is NP-hard too...

...but DAGs and MRFs are not equivalent independence models

- $A \perp D \mid B, C$ and $B \perp C \mid A, D$

- $A \perp B$ and A HB|C

Final remarks

- The Bayesian framework offers an elegant, consistent formalism for uncertain reasoning
- The basic principle is simple: compute the probability of what you want to know while marginalizing over the other unknown factors
- We have focused on the discrete Dirichlet-multinomial case and directed acyclic graphs (Bayesian networks), but the same principles apply with other probabilistic model families as well
- Graphical models offer a unifying framework where many popular methods are easily understood
- E.g. Factor analysis, PCA, ICA, mPCA, HMM, Kalman filter, switching Kalman filter, AR models,...
- See: http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

