Mobile Middleware Course

Introduction and Overview

Sasu Tarkoma
Contents

- Course outline
- Motivation
- Mobile middleware overview
Course Overview

- 3 credit course

- Three components
 - Lectures
 - Assignment (four exercises)
 - Literature (three papers and course book)

- Grading based on
 - Exam (60%)
 - Assignment (40%)
12.3 Introduction and assignments

19.3. Platforms, Middleware, Protocols

Assignment slot 1 (Hello World)

26.3. Patterns

Assignment slot 2 (client-server comms)

2.4. easter

9.4. Applications: Carat and energy awareness

Assignment slot 3 (HTTP to sensor data)

16.4. Applications and Summary

23.4. Assignment slot 4: Mockup app based on sensor data (map of friends’ positions)

Final submission in May

Exam: 3.5. 9:00 A111
Course Book

- Mobile Middleware – Architecture, Patterns, and Practice published by Wiley
 - Publication date 27.3.2009
 - Available through Helka with AD account

- Several papers to read
Included chapters

- Chapter 1: Introduction
- Chapter 2: Architectures (note 2.6 described old systems)
- Chapter 3: Support Technologies 3.1-3.3, 3.6
- Chapter 4: Principles and Patterns
- Chapter 8: Data Synchronization
- Chapter 10: Application and Service Case Studies
Additional reading

- Mobile platforms survey, 2011.
- CoAP specification (not for exam)
Assignment

- Android development supported on the department computers.
- You can also develop for IOS, Windows Phone, Meego etc. using your own hardware.
- Server resources provided by the department.
- Usage of 3rd party open source code is allowed, but remember the licencing policies.
- MIT licensing of your code encouraged.
Exercise sessions

- Exercise sessions 19.3. 26.3. and 9.4. and 23.4. at 14-16, location TBA.

- Traditional exercise style.

- Some exercises require returning the source code and/or automatic validation of the developed software.
Grading of the Exercises

- Four exercises
- Part 1: Sensor monitor
- Part 2: Client-server comms with CoAP
- Part 3: HTTP access to sensor data
- Part 4: Demo application based on sensor data (example: map of friends’ positions)
- Each step gives one point + one point for overall design and implementation
- Max points 5
Contacts

- Lectures and general course related issues
 - Prof. Sasu Tarkoma (@helsinki.fi)

- Exercises
 - Petri Savolainen (@hiit.fi)
Introduction to Mobile Middleware
Motivation

- Mobile computing has become one of the breakthrough technologies of today
 - Over 4 billion mobile phones in use
 - Tens of billions of downloads from Apple Appstore
 - Current trend is converged communications
 - Web resources integrate seamlessly with mobile systems
 - Mobile systems are increasingly dependent on software

- We give an overview of mobile middleware technology
Mobile software

- Mobile software is a growing area
 - Development processes, tools, APIs are crucial for the ecosystem
 - Integration with Web resources

- Key applications
 - Voice
 - Multimedia
 - Messaging
 - Web sites, mashups, services
 - Location-based services

- Forthcoming features
 - Context-awareness, adaptability, smart spaces
 - Internet of Things
Mobile Evolution

- 1st generation (1990-1999)
 - Text messages (SMS) and mobile data. Speeds up to tens of Kbps.

 - Limited browsers, WAP, iMode, and MMS. Speeds up to 144Kbps.

- 3rd generation (2003-2008)
 - Mobile platforms, middleware services. Series 60, J2ME, Android, iPhone. Speeds up to several Mbps.

- 4th generation (2008-)
 - Adaptive services, user interfaces, and protocols. Context-awareness, always-on connectivity. Speeds up to hundreds of Mbps.
 - Emergence of app stores.
 - Versatile devices: smartphones, pads.
 - Cloud-assisted applications with social networks.
Toward Internet of Things

- Global connectivity
- Personal mobile
- Digital Society
- Places
- People
- Things
- Hundreds of Billions
- 7 Billion
- ~0.5 Billion

Year:
- 1875
- 1900
- 1925
- 1950
- 1975
- 2000
- 2025

~0.5 Billion Places
7 Billion People
Hundreds of Billions Things
Example IoT products and services

- M2M traffic solutions (security, healthcare, energy, …)
- Cosm (Pachube) Web service for connecting sensor data
 - www.cosm.com
- There gateway for home automation and monitoring
 - http://therecorporation.com/fi
- Rymble By Symplo
 - http://www.rymble.com/
- NEST learning thermostat
- Withings products
- Karotz By Aldebaran Robotics
 - http://www.karotz.com/home
- Green Goose
 - http://greengoose.com/
- Google Q
- And many emerging products based on 802.15.4, WiFi, RFID and NFC, and the power of the cloud
Wireless Technologies

- Global System for Mobile (GSM),
- General Packet Radio Service (GPRS)
- Universal Mobile Telecommunications System (UMTS)
- Long Term Evolution (LTE)
- Wireless LAN (WLAN)
- Worldwide Interoperability for Microwave Access (WiMax)
- Ultra-wideband (UWB)
- Wireless Personal Area Network (WPAN)
- Bluetooth, Wibree
- RFID
WiMAX

Bandwidth
200 Mbps
54 Mbps
5-11 Mbps
4 Mbps
1 Mbps
384 Kbps
56 Kbps

Range
10 - 30 m
50-200 m
200 m-4 km
5 km -20 km

802.11n
802.11a, g
802.11b
802.15.1

LTE: 4G, 100Mbps down, 50 Mbps up
802.11a,g point-to point
WiMAX
UMTS/WCDMA-HSDPA, CDMA 2000-1xEVDO
3G enhanced
LTE Advanced: 4G, 1 Gbps
UMTS/WCDMA, CDMA 2000
IS-95, CDMA, GSM
3G
2G
Current state of the art

- **Communications**
 - WiFi and LTE for mobile data
 - WiFi and Bluetooth for local communications (also NFC)

- **Applications**
 - More APIs available, cloud integration
 - Fragmentation and control challenges

- **Cloud-based APIs, storage, control functions**
 - Cloud offerings from operators and manufacturers
 - Cloud in the access network

- **Mobile traffic**
 - Machine-to-machine as a new component in mobile traffic
 - Increasing video component
Views to Mobile Software

- Distributed
 - Device
 - Device neighbourhood
 - Web and the Cloud

- Current topics
 - Sensing (pollution, health, medical, …)
 - Offloading and partitioning
 - Energy consumption
 - Indoor positioning
 - Cloud integration
 - Software defined networking (SDN)
 - Wireless video
 - …
Mobility in the Internet

- This topic pertains to mobility of
 - Networks
 - Hosts
 - Transport connections
 - Sessions
 - Objects (passive, active)
 - Services
 - Users

- Many solutions are needed on multiple layers
 - Link layer, network, transport, application
Role of Software and Algorithms

- Software has an increasingly important role in mobile devices
 - Increase in device capabilities
 - Interaction with sensors and other devices
 - Integration with the Web and cloud

- Applications and services
 - Development processes
 - Testing of mobile sw
 - Deployment and management
The Hourglass

- Diverse applications
- Divergence
- Transport Layer (TCP/IP)
- Convergence
- Diverse physical layers

Middleware
Middleware

- Widely used and popular term
- Fuzzy term
- One definition
 - “A set of service elements above the operating system and the communications stack”
- Second definition
 - “Software that provides a programming model above the basic building blocks of processes and message passing” (Colouris, Dollimore, Kindberg, 2001)
Why Middleware?

- Application development is complex and time-consuming
 - Should every developer code their own protocols for directories, transactions, ..?
 - How to cope with heterogeneous environments?
 - Networks, operating systems, hardware, programming languages

- Middleware is needed
 - To cut down development time
 - Rapid application development
 - Simplify the development of applications
 - Support heterogeneous environments and mask differences in OS/languages/hardware
Middleware cont.

- Middleware services include
 - directory, trading, brokering
 - remote invocation (RPC) facilities
 - transactions
 - persistent repositories
 - location and failure transparency
 - messaging and events
 - Security
 - synchronization
- Network stack (transport and below) is not part of middleware
Mobile Platforms

- Collections of central services and libraries with both reactive and proactive functions
- APIs typically logically centralized
- Distributed between elements of the environment
 - Multi-tier client-server
 - Peer-to-peer
 - Hybrids
- The platform running on the mobile terminal and the characteristics of the device determine how service is rendered for the end user
Platforms

- **2009**
 - Java Micro Edition (Java ME)
 - iOS
 - Symbian and Series 60
 - Windows Mobile
 - Linux Maemo (MeeGo)
 - Android
 - BREW
 - WAP

- **2012**
 - iOS
 - Android
 - Windows Phone 7 and 8
 - HTML5 web apps
Next

- Platforms, middleware, protocols
- Principles and Patterns
- Examples