
Early Start in Software Coaching

Thomas Vikberg Arto Vihavainen Matti Luukkainen
Jaakko Kurhila

Department of Computer Science, University of Helsinki, Finland,
{tvikberg, avihavai, mluukkai, kurhila} @ cs.helsinki.fi,
WWW home page: http://www.cs.helsinki.fi/rage

Final draft

Originally appeared as: Vikberg, T., Vihavainen, A., Luukkainen, M., and Kurhila, J.

(2013). Early start in software coaching. In Baumeister, H. and Weber, B. (ed.), Agile

Processes in Software Engineering and Extreme Programming, volume 149 of Lecture Notes

in Business Information Processing, pages 16–30. Springer Berlin Heidelberg.

Abstract

The demand for software coaching and coaches is increasing. As our
programming courses are organized according to the Extreme Appren-
ticeship method, it is relatively safe and straightforward to allow stu-
dents to participate as coaches in our CS1 course even as early as their
second semester. Safety is ensured by the hierarchical structure of CS1
course personnel that provides enough peer and faculty support for stu-
dents undertaking the task of coaching. We briefly describe the Extreme
Apprenticeship method as well as the organization and the learning objec-
tives in our coaching environment. Results acquired from student coaches
(N=46) indicate that the learning experience of coaching is highly valued
and deemed especially educational for the coaches without harming the
learning results of the coachees.

1 Introduction

Emergence of lean and agile methods [1, 2, 3] has led to an increasing demand
for software engineers that are able to perform as coaches for individual devel-
opers and teams. To satisfy this demand, higher education institutions with
software engineering (SE) education have to give their students opportunities
to learn agile coaching skills as well as traditional hard SE skills. As coaching
is about working with people [4], learning to coach requires educational struc-
tures which involve interaction and cooperation, i.e. opportunities to practice
coaching. Time and experience are needed to become an effective agile coach
[4]. Therefore, it is beneficial to start practicing it as early as possible, given
that supporting conditions can be put in place.

1

An agile coach not only performs as a teacher, facilitator, collaborator and
a mentor, but in addition, an important part is being a coach [5]. Coaches
guide people on their path towards better expertise through emphasizing best
software engineering practices. Acting as a coach requires skills outside the
traditional CS degree that consists of e.g. mathematics, programming, databases
and architecture design. Agile coaches perform as agents of change and rely upon
teamwork-related skills as well as other social skills. These skills are typically
embedded only within the “hidden curriculum” within CS degrees which means
that their realization is often not assessed or developed.

A traditional approach for coping with the emerging need for coaches in
formal higher education would be to offer lecture-based courses titled along
the lines of “software engineering coaching”. Such courses or modules would
introduce the students to e.g. project management methods such as Scrum
[1] and Kanban [6] by covering their main principles and practises. Another
approach would be to place the students to coach e.g. capstone projects, possibly
under the instruction of faculty members of the institution. Such courses can
be completed only in the later part of a CS degree as students taking the course
should have hands-on experience in larger software engineering projects before
they can be put to coach and share the responsibility of capstone-projects (see
e.g. [7, 8]).

The approach to software coaching presented in this paper is a mix of hands-
on experience with clearly stated learning objectives with a twist: coaching
starts very early in the degree programme. The approach is a formal part of the
degree. However, it is not a course in the traditional sense: there is no lectur-
ing, and no summative assessment of the students; the only course structure is
the specific way that we organize our programming courses. The course design
includes heavy interaction between every participant and a hierarchy of people
which allows team-teaching and participation of junior coaches.

Noteworthy is that in our approach to teaching programming, a significant
part of our students (ca. 20%) act as coaches in introductory programming
courses (CS1) at a very early stage of their studies, as early as their second
semester. Working as a coach to novice programmers gives the student valu-
able experience on technical as well as inter- and intra-personal aspects in pro-
gramming, e.g. communicating with people with different CS knowledge levels,
experiencing and truly understanding the meaningfulness of best programming
practices [9]. The coaches are being exposed to thousands and thousands of
lines of code from different programmers and are taken into the community of
practice [10, 11] of a team of coaches. Students are given a chance and an ex-
plicit responsibility to see what it can be like to be on the other side of the
“teaching podium”; this is expected to both empower the students as well as
give insight into what it takes to facilitate learning.

Our approach for organizing coaching opportunities for the students inter-
twines with our apprenticeship-based method of organizing our programming
courses. In the rest of the paper we first briefly describe the apprenticeship-
based educational method. We continue by describing the coaching study path
offered within our degree, where students are being coached and act as coaches.

2

We then concentrate on the early coaching experiences of the students, and how
the coaching opportunity is organized within our educational setting. Results
are gathered and presented from 46 students, who have participated as junior
coaches at an early stage of their studies.

2 Extreme Apprenticeship Education

There is a long tradition of apprenticeship-based education in CS, especially in
learning to program (see e.g. [12, 13]). As an ongoing effort we have developed
a version of apprenticeship-based education called the Extreme Apprenticeship
method (XA) that is in use in programming courses at our institution [14, 15].
XA is based on contemporary interpretations of apprenticeship education in
which the emphasis is on teaching crafts that require abstract thinking [16, 17,
18].

As is typical for apprenticeship education, XA is based on modeling, scaf-
folding and fading. First, the student is provided with a conceptual model of
the programming process in the form of course material, screen casts and few
a lectures. Second, students are exposed to tasks, i.e. exercises, that are to be
completed under scaffolding. Here, scaffolding refers to temporary support given
to students, which allows them to reach the intended learning objectives. A sig-
nificant part of the process of scaffolding is given by instructors who perform
as coaches for the students. Scaffolding is also built into the learning material
and exercises which guide the students to discover the content knowledge that
is part of the learning objectives of the programming course.

Students complete programming tasks from day one. They are allowed to
experience feelings of satisfaction from completing the programming tasks by
themselves. Those giving the support must restrain themselves from giving full
answers to the exercises, rather, just enough hints so that the students are able
to discover the answers themselves. In XA, the aim is to get everyone to succeed
in getting started, and receive enough support to progress further in the course.
Many students are spending numerous hours practicing in our XA computer
labs. Scaffolding needs to be temporary, and the support given by instructors
fades away after it has served its purpose. In the exercise material, this fading
means progression to ever larger and more open-ended assignments.

In addition to the adaptations of the three phases described above, XA relies
on two key principles: (1) The craft can only be mastered by actually practicing
it, as long as it is necessary; and, (2) bi-directional continuous feedback between
the learner and the instructor is of utmost importance, in order to make progress
and show the progress to both parties [19].

A sufficient amount of practice is ensured by the fact that there are liter-
ally hundreds of exercises to be completed. The instructors play a crucial role
when interacting with the students. They do not only help the students, but
also gather necessary information which is used for continuously assessing the
progress of learning in the course. XA relies on this information when the tasks
for the upcoming weeks are selected and crafted.

3

XA has been successfully employed in several courses [19, 20, 21], recently
also outside the XA’s “home university” [22]. XA has also been adapted to
teaching university mathematics [23].

3 Coaching as part of the degree

The software engineering (SE) track at the Department of Computer Science at
the University of Helsinki offers various courses that incorporate people skills:
SE; SE Project; Software Processes and Quality; Software Project Management
and Group Dynamics. Coaching and Engaging in Global Agile Software Teams
is a specific coaching course targeted for students at the end of their Mas-
ter’s studies. Topics of the course are agile software development as a concept,
agile methodology in distributed settings, and coaching of agile teams taught
through problem- and case-based learning techniques. Students also have the
opportunity to work under agile coaches in the Master’s degree capstone project
Software Factory [24]. Due to the technical prerequisites, all of these courses
are offered quite late in the studies, see Fig. 1 for placement of the SE courses
in the degree programme.

A purpose of the SE subtrack of the department is to educate experts on
the path towards software craftsmanship [25, 26, 27]. This involves getting
the students to focus on software quality, receive a broad understanding of the
field and pursue continuous improvement. The courses forming our CS1 are
purposefully designed and marketed to be the first steps on a road towards
true SE expertise1. The emphasis is not only on learning to program, but also
on how to program according to industry best practices with the intention to
write understandable, easily maintainable and correctly working code. As even
the first programming course emphasizes best practices in the industry, it is a
suitable setting for our early start in software coaching2.

In this way coaching is embedded in the curriculum early on. First, students
are themselves coached when they participate in CS1. Then they can act as
junior coaches in CS1. At this stage, coaching means facilitating the learning
of a single CS1 participant.

A broader view of coaching is experienced in the SE Project in which students
are coached by the faculty and graduate TAs. At the start of the SE project,
the coach of each project group acts in the roles of product owner and scrum
master, but during the project they gradually help project participants to take
the responsibilities of these roles [20]. After participating in the SE project,
many of the students showing interest and capability for coaching are hired as
TAs to coach future SE projects.

1The CS1 courses can be found as MOOCs at http://mooc.fi entitled Object-Oriented
Programming with Java [21].

2In apprenticeship education, the term “coaching” has been used to refer to the activities
of the course teacher (see e.g. [28, 29]). We want to emphasize that coaching in our context is
considered a different act from teaching, even if the coaches in CS1 perform as mentors and
teaching assistants (TAs) [30]. Coaching is something that the students do, in order to learn
coaching (in addition to helping fellow students to learn programming).

4

Introduction to
Programming

5 ECTS

Advanced
Programming

4 ECTS

Methods of
Software Development

4 ECTS

Introduction to
Databases

4 ECTS

Programming
Project
4 ECTS

Algorithms and Data
Structures (CS2)

8 ECTS

Database
Application Project

4 ECTS

Software
Engineering

4 ECTS

Software Engineering
Project
9 ECTS

Software
Factory

10-12 ECTS

1st year studies

3rd year studies

BACHELOR LEVEL

MASTER LEVEL

2nd year studies

CS1
Coaching
2-3 ECTS

Software Project
Management

and Group Dynamics
5 ECTS

Software Processes
and Quality

4 ECTS

Coaching and
Engaging in Global

Agile Software Teams
3 ECTS

CS1

Figure 1: SE-specific courses at the University of Helsinki. The courses with
dashed borders are elective courses relevant for coaching. The arrows indicate
prerequisites. The figure differs slightly from that in [20] due to minor curricu-
lum updates.

After starting their Master’s degree studies, many of the students specializing
in SE take part in the Software Factory where they are again coached, this time
by experienced agile coaches from our faculty. Besides experiences of coaching
and being coached, the Master’s degree studies contain many courses on topics
related to coaching that give students more opportunities for self-reflection and
deepening their theoretical knowledge on the topic. Of course not all CS stu-
dents follow through the entire coaching track, but those who specialize in SE
have the opportunity to experience coaching from multiple perspectives.

This interplay between observing a coach while being coached and acting

5

as coach and thus modeling coaching to others throughout the studies, is fully
embedded in the curriculum. It facilitates the progress to become an agile
coach as “becoming an agile coach entails education, experience, and practice
[...] ’being’ an agile coach in all you do sets a powerful example for everyone
you coach” [5].

4 Coaching “course”

The early coaching approach is structured through a format that emphasizes
active student engagement over everything else, selection of motivated coaching
candidates, and scaffolding of coaches by senior faculty members. The structure
is technically a course with study credit to formalize it as a genuine part of a
degree. (See Fig. 1 for the position of the course CS1 Coaching within the SE
track.) It is important that coaching is a formal activity of the department, as
it sets the message that the students are allowed and encouraged to participate,
and that they are expected to learn from the experience, even if they are not
taught in a traditional sense.

When XA-based CS1 courses began in 2010, the coaching course was not a
part of the teaching organization of the course. The students received coaching
by teaching assistants selected by the routine selection process of the depart-
ment. The initial idea of giving students the opportunity to act as coaches as
early as possible came from the students themselves. An eager student who
had just finished XA-based CS1 approached the faculty in charge of the course
and asked – even demanded – to be allowed to help in coaching the students
in the next semester CS1 course. After realizing the additional benefits for our
evolving CS curriculum SE track, in which agile software engineering principles
and practices play a major role [20], the faculty welcomed the voluntary coaches.
From the very beginning it was decided that the students’ coaching involvement
in the CS1 course was to be organized formally, i.e. students would earn study
credits depending on the amount of their involvement.

Initially, this “coaching course” was not marketed nor included in the official
study plan. Therefore, the first iterations had only a few participating junior
coaches, based on word-of-mouth recruiting. After the initial experiment, the
number of students has steadily increased: during the fall 2012 semester we had
26 students as junior coaches and 6 students as senior coaches, coaching our
185 new CS1 students. We aim to have roughly a 1:5 coach-to-student ratio in
order to make sure that there are enough CS1 students to be coached in the XA
computer labs.

4.1 Connecting coaching to XA

There are clear similarities and synergies between XA education and students
as future agile coaches. Fraser et al. state the most important purpose of agile
coaching as “facilitating learning” [31]. This same goal is shared by instructors
providing scaffolding for students in XA. A good agile coach tries to make herself

6

unnecessary as soon as possible, i.e. helps the team and the team members to
flourish [5] bridging directly to the idea of the scaffolding and fading phases in
the teaching framework of apprenticeship-based teaching [17, 29].

As XA is a form of apprenticeship education, the “pyramid” of the stake-
holders is essential in organizing the CS1 programming course: (1) there are
responsible teachers (tenured teachers also working as coaches) that are on the
top of the pyramid, crafting material and exercises, coordinating and controlling
the operation; (2) senior coaches (teaching assistants on a payroll) who work
as coaches and contribute to exercises in addition to helping the students; (3)
junior coaches (students taking the CS1 Coaching course), who learn to assist
novice programmers by helping students in the XA labs and by being a part of
the teaching team; and finally, (4) students of the CS1 course (potential junior
coaches of future courses).

XA emphasizes individual efforts of students with continuous interaction
between all parties, so using XA as a training ground for aspiring coaches is
only natural. Junior coaches are typically students in a very early stage of
their studies (the CS1 Coaching course can be taken after only one semester of
studies); advancing to the stage of a senior coach might take as little as two
semesters.

Apprenticeship-based learning stresses the importance of a situative view
of learning, which emphasizes that learning activities should take place in the
same context as they are practiced [16, 11, 18]. This is also considered in the
coaching activities, which take learning of coaching into a genuine environment.
All of the stakeholders in coaching, i.e. teachers in charge, senior and junior
coaches, form a community of practice [10, 11] of coaches for the duration of
the course [30]. The community negotiates its meaning by supporting students
and actually seeing the results of their participation in coaching.

4.2 Embedding Coaching Course into CS1

The ultimate goal of our SE curriculum is to educate proficient experts in the
field of SE. Following the practice of constructive alignment [32] the CS1 Coach-
ing course has its own formal learning objectives3 that are available for the
faculty and students alike. The learning objectives, arranged in a matrix (see
Tab. 1), state the principal themes, prerequisites and the evaluation criteria as
learning objectives.

The objectives are presented in the form of (1) approaches the learning ob-
jective, which states the minimum requirements for the activity, (2) reaches the
learning objectives which mark the requirement of full completion of the course
and (3) deepens the learning objective which states possible additional objectives
and future directions that might be taken into consideration during the activity
but are not required.

3All mandatory and most of the steadily recurring courses have publicly available learning
objective matrices, so students are familiar with them and expect them for every new course.

7

Table 1: Learning objectives for CS1 Coaching
Principal
theme

Enhancing programming
skills of peer-students

Instruction skills Technical tools

Prerequisite
knowledge

Good performance in CS1 and
capability to produce quality
code

Is capable of
using VCS and
other necessary
tools

Approaches
the learning
objectives

Understands
programming code that others
have written

Notices mistakes in the
readability of code written by
others

Notices mistakes in the design
of programs made by others

Is capable of instructing
different kinds of people

Gives and receives oral
feedback

Attends scheduled meetings
and performs the instruction
duties

Deepens the
skills to use
VCS and other
tools

Solves CS1 tasks
and recognizes
different
kinds of mistakes
in them

Reaches the
learning
objectives

Recognizes correct solutions of
others, even if they differ from
own solutions

Can instruct mentored
students, so that they are
capable of correcting their
problems with their program-
ming code

Is encouraging

Understands that people
differ as learners

Does not obtrude own
solutions, but functions in
a learner centered fashion

Speaks less than the students

Can function as a member of a
team of instructors

Recognizes good
and bad auto-
mated tests

Deepens the
learning
objectives

Is capable of creating useful
tasks and automated tests for
CS1 course material

Recognizes factors which
help improvement as a
teacher

Makes students enthusiastic of
programming

8

4.3 Selection of Coaches

The main requirements for participation in the CS1 Coaching course are the
student’s willingness to act as an instructor and a decent-to-good grade from
CS1, ability to produce quality code and some technical skills (see Tab. 1).

Applications to register as a junior coach are sent well before the start of
the term using an online application form. When applying, one needs to type
in an open application as well as basic background information such as related
grades. If the applicant passes initial filtering (good progress of studies so far),
and not known to the course staff beforehand, the applicant is invited for an
interview. The interview serves as a guarantee of the necessary people skills
needed to be allowed to instruct novice programmers. So far, all applicants
have been accepted. As CS1 is organized three times each academic year, it has
been possible to allocate most of the junior coach applicants; if not right away,
then in the next cycle. It must be stressed that the selected junior coaches
become a part of a teaching team and are not expected to perform coaching
alone in the XA lab.

Senior coaches are recruited among the more experienced students from the
department who have good grades and pace of studies and can show skills in
coaching either through performing well as a junior coach, performing well as
a teaching assistant in other duties at the department or through work- or
hobby-related experience. Unlike the junior coaches, the senior coaches are
employees of the department and are therefore subject to standard employement
regulations.

4.4 What the Coaches Do

The junior coaches have enrolled voluntarily in an elective SE course. They are
motivated and have shown willingness to improve as coaches of novice program-
mers. This deliberate practice [33, 34] of coaching skills is the main tool used to
pursue the learning objective of the CS1 Coaching course.

The main task of the coaches is to be a vital part of the scaffolding that makes
XA-based programming education possible [29, 19, 30]. The coaches support the
students to learn programming by providing individual and interactive feedback
to the students. This means that coaches help novice programmers make work-
ing software, review their code and point them towards necessary information.
An important aspect is that the coaches are expected to embrace the ideas of
the students and not obtrude their own solutions on the students, but function
in a learner-centered fashion (see Tab. 1). In addition to the soft- and hard-skill
related benefits, e.g. communication, experiencing the meaningfulness of best
programming practices, we engage our new students in our department’s com-
munity: the presence of young junior coaches is expected to make the transition
from secondary school to the university easier for freshmen students [35].

In addition to the actual coaching, the coaches are encouraged to complete
all the CS1 programming exercises before they are released to students. This
strengthens their programming routine as well as helps them to direct more

9

time to actual scaffolding instead of wasting time trying to remember what the
exercises were about. To increase the formation of the community of coaches,
the coaches are encouraged to discuss the exercises with each other, for example
in IRC chat. This medium also serves as the main support mechanism for the
coaches outside the XA computer lab and the weekly meetings.

An important aspect of the programming exercises of the CS1 course is that
the solutions are automatically assessed by an assessment server through a plug-
in in the IDE the students use (see [36] for details). The server runs automated
tests in order to check for the correctness of the solutions and performs the
bookkeeping of the course. This ensures that the coaches can concentrate on
coaching, not on trivial correctness checks and error-prone human bookkeeping
of student progress.

The junior coaches reflect on the upcoming material and act as beta-testers
for the material and exercises by searching for weaknesses in automated tests
and inconsistencies in course material. This gives the faculty an opportunity to
do improvements before the exercises and course material are released to the
course participants. It gives the coaches an opportunity to learn to recognize
good and bad automated tests and also leads to a high-quality material as
coaches help to make sure that there are no mistakes left in the exercises.

Before the first contact with the students, a 2-hour meeting is organized
for the coaches. Faculty members together with the coaches (both junior and
senior) go through necessary administrative issues as well as the most important
pedagogical practices of coaching CS1. The most crucial information has been
gathered in a coaches’ set of guidelines and responsibilities that both the coaches
and faculty members sign personally.

The guidelines are formulated in an instructive and inclusive manner so that
the coaches should observe and proactively coach everyone in trouble. Feedback
to the students needs to be constructive and positive. Coaches are instructed
to be active even if the students do not ask any questions.

Coaches concentrate not only to the correctness but also to the style of
the code: indentation; naming of variables, methods and classes; and method
length. In addition, coaches push the students to refactor their code towards a
clearer and more maintainable solution so that “the person sitting in the next
seat should also understand the solution”.

While interviewing the applicants for junior coaches, we have noticed that
most, if not all, have a good sense of how an instructor is supposed to scaffold
students in the CS1 course. Most of the applicants can already determine what
type of coaching is beneficial to students and what is not, e.g. one should only
nudge the student towards a correct solution and never give the solution. This
is not surprising since all the students applying for the coaching course have so
far participated in the XA-based CS1 course themselves.

Despite good prerequisites, the learning objectives could not be obtained
without proper scaffolding of the juniors themselves. This scaffolding is con-
ducted by the faculty member(s) in the form of meetings and peer-support. The
faculty members as teachers in charge of the course are naturally also present
in the XA labs. Students as coaches also perform implicit self-reflection with

10

other coaches while instructing, as well as participate actively in discussions in
an online chat.

During the course the responsible teachers organize biweekly face-to-face
meetings where all participants of the coaching community are present. Meet-
ings are typically organized as retrospectives, further introducing agile software
development practices [3]. In the meetings, the teachers responsible for the
course inspect and reflect on what has been done during the past two weeks,
and bring up good and bad experiences and practices to the awareness of the
whole team. The team identifies top good practices and marks them as to-be-
kept, i.e. they should work also during the next weeks. Top bad practices are
marked as to-be-improved that deserve special focus during the next few weeks.
The goal is to have a few of the to-be-improved turned into good practices for
the future.

5 Results and evaluation

The results show that facilitating software coaching as an early part of a CS
curriculum is possible. We started XA-based education in 2010 and the first
junior coaches entered the stage in spring 2011. From the fall 2010 to fall 2012
semesters, we have had 101 persons working in our XA labs in different roles.
Out of the 101 persons, 78 have served as junior coaches, and 59 as senior
coaches (as some have served as both). During the two years, we have been able
to offer 5468 hours of targeted hands-on guidance to our CS1 students. This has
been done while improving the pass rate [37] and raising the demand level [20]
of CS1.

In order to gain some sense of the learning from the junior coaching ex-
periences, we posted a questionnaire to all the students that have been junior
coaches in XA-based CS1. We received 46 replies which results in a response
rate of 59%. Figure 2 shows the questions and the distribution of the coaches’
answers.

One of the main themes of coaching is how to improve the programming
skills of students in CS1. This puts some demand on the skills of the coaches
themselves. To give appropriate feedback to CS1 students, the coach needs
to learn to communicate not only verbally but through written code. This
is not only a valuable exercise for the coaches but also intended to make the
coaches realize the importance of best programming practices. In the end, if the
code is unreadable to others, the maintainability and the functionality of the
code diminishes. The learning objective is therefore not only to recognize these
problems but to be able to help other students overcome them. We can see in
Fig. 2 that “I have become more proficient in reading program code written by
others” scores uniformly high (µ=3.96), with low variance (σ2=.53).

The other main theme of the course is improving coaching and instruction
skills. Here, the learning objective is to encounter different kinds of learners
and recognize their ways of thinking. This skill should make the junior coaches
understand that their own ways of looking at things, e.g. tackling a programming

11

I have become more proficient ...

N/A

0 %

1

0 %

2

2 %
3

22 %

4

54 %

5

22 %

... in reading code

written by others

m = 3.96, x̃= 4, s 2 = 0.53 N/A

2 %
1

6 %

2

24 %

3

26 %

4

32 %

5

10 %

... in reading automated tests

m = 2.96, x̃= 3, s 2 = 2.15

N/A

0 %

1

0 %

2

6 %

3

27 %

4

49 %

5

18 %

... in understanding problems

posed by students

m = 3.72, x̃= 4, s 2 = 1.03
N/A

2 %

1

0 %

2

8 %

3

36 % 4

42 %

5

12 %

... as an instructor and mentor

m = 3.64, x̃= 4, s 2 = 0.66

N/A

14 %

1

2 %

2

16 %
3

42 %

4

22 %

5

4 %

... as a member of a

team of teachers

m = 3.00, x̃= 3, s 2 = 1.04
N/A

2 %
1

4 %

2

20 %

3

39 %

4

27 %

5

8 %

... at recognizing learning

styles of others

m = 3.11, x̃= 3, s 2 = 1.29

Figure 2: Post-course survey of junior coaches (N=46) with Likert scale (1=not
at all, 5=a lot). N/A stands for “cannot say” and is not considered in calculating
the mean µ and variance σ2. Median is denoted by x̃.

task, might differ from those of others. As modern software development is done
in teams, an understanding of different working habits and styles is crucial. This
is further emphasized by the fact that the apprentices perform team teaching,
i.e. coach together along with others, and have to agree with faculty about the
practices of coaching and instruction. As we can see in Fig. 2, all of these
interpersonal skills score relatively high (“member of a team”, “understanding
questions”, “as instructor and mentor”, “recognizing learning styles”).

The junior coaches should also deepen their knowledge about the use of
professional software development tools. The course material and exercises are

12

maintained using a version control system, and automated testing plays a key
role in how the course is formed [21, 36]. We can see in Fig. 2 that “in reading
automated tests” the score variance is very high (σ2=2.15). This is probably
due to the varying roles of the junior coaches as some take a more active role in
creating and debugging tests. We do not view this as a problem per se as it is
only natural for coaches to serve in different roles. Automated tests have been
used in CS1 material only for a relatively short period of time and are evolving
rapidly. It is expected that the role of automated tests will grow in future.

In addition to the Likert scale questions, coaches were able to tell if they
had any coaching-related background. As expected, eager coaches tend to have
some earlier experiences. Even though more than half reported something,
background experiences were mostly minuscule, such as a week as a substitute
teacher, or group leader in the boy scouts.

Open comments revealed that the coaching experience was highly valued.
Quotes such as “coaching is hard but awesome!” crystallize the feelings of many
coaches. Other, more targeted open comments included “learning to cope with
chaos” and “learning to be more patient”, as well as references to “learning to
switch fast between mental tasks”. Maybe the most insightful comment noted
enhanced metacognitive skills:

Coaching in the XA lab enhanced my view of programming. After-
wards I have noticed how beneficial it was to go through the whole
problem solving process from the beginning with another person.
That is, from reading the assignment given, all the way to complet-
ing the tests. Other people might start to tackle the problem from a
completely other angle. This, of course, opens up new paths in my
own way of programming.

6 Conclusions

We have been able to give our students an opportunity to act as coaches in a
realistic setting at an early stage of their studies. The most important benefit
for the students that are participating in coaching very early is the experience
that can be used for reflection on upcoming coaching-related courses, as well
as when being coached. The experience is also expected to help students to
understand the importance of coaching as it pertains to software maintainability,
development performance and sensed meaningfulness of software engineering.

In our earlier research, we have seen that the results of CS1 have been signif-
icantly improving when using the XA-based approach [19]. Deploying “rookie”
students as coaches has not deteriorated the course results. In fact, the number
of coaches has allowed us to significantly increase the amount of support and
lab times available for our students.

Having a course where students are able to act as coaches during an early part
of their studies is only one step. In our curriculum, the students are first coached
in CS1, then become coaches, and later on are coached again. This interplay of

13

roles is available throughout the curriculum, and becomes more “real” as the
students proceed in their studies. After being a coach for individuals, students
are coached as a part of a team, and later on have the opportunity to coach a
team.

As coaching is about guiding individuals and teams towards better working
practises, it is important that all stakeholders are involved. In our approach,
course instructors participate in the coaching activities, and coach the coaches
as well as the students. All participants need to spend time in the changing
environment to understand the need for change; adaptation should only happen
after inspection and only if new practises can bring genuine additional value.

Coaching can be realized by e.g. leading by example, or by gently nudging
the participants into a direction, where they are able to realize their mistakes and
thus improve. In essense, it is about giving as much freedom as possible while
providing scaffolding when needed. The goal is that the coached individuals
and teams become self-directed entities that are able to respond to change, and
strive to reach their full potential.

Acknowledgements

We thank the anonymous reviewers for their valuable feedback. We also wish
to thank Mr. Matti Tahvanainen, who was the first eager student to demand
the start of this activity as a formal way to be a part of XA-based education.

This work has been partly funded by a grant from the Centennial Foundation
of Technology Industries in Finland.

References

[1] Schwaber, K., Beedle, M.: Agile Software Development with SCRUM.
Prentice Hall (2002)

[2] Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile
Toolkit. Addison-Wesley Professional (2003)

[3] Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change
(2nd Edition). The XP Series. Addison-Wesley Professional (2004)

[4] Davies, R., Sedley, L.: Agile Coaching. Pragmatic Bookshelf Series. Prag-
matic Bookshelf (2009)

[5] Adkins, L.: Coaching Agile Teams: A Companion for ScrumMasters, Agile
Coaches, and Project Managers in Transition. Addison-Wesley Professional
(2010)

[6] Anderson, D.J.: Kanban. Blue Hole (2010)

14

[7] Hedin, G., Bendix, L., Magnusson, B.: Coaching coaches. In: Proc. of the
4th International Conference on Extreme Programming and Agile Processes
in Software Engineering. XP’03, Springer-Verlag (2003) 154–160

[8] Hedin, G., Bendix, L., Magnusson, B.: Teaching extreme programming to
large groups of students. Journal of Systems and Software 74(2) (2005)
133–146

[9] Martin, R.C.: Clean Code: A Handbook of Agile Software Craftsmanship.
Robert C. Martin series. Prentice Hall (2009)

[10] Wenger, E.: Communities of Practice: Learning, Meaning, and Identity.
Learning in Doing Series. Cambridge University Press (1998)

[11] Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participa-
tion. Learning in Doing. Cambridge University Press (1991)

[12] Astrachan, O., Reed, D.: AAA and CS 1: The applied apprenticeship
approach to CS 1. SIGCSE Bulletin 27 (1995) 1–5

[13] Kölling, M., Barnes, D.J.: Enhancing apprentice-based learning of Java.
In: Proc. of the 35th SIGCSE Technical Symposium on Computer Science
Education. SIGCSE ’04, New York, NY, USA, ACM (2004) 286–290

[14] Vihavainen, A., Paksula, M., Luukkainen, M.: Extreme apprenticeship
method in teaching programming for beginners. In: Proc. of the 42nd
ACM Technical Symposium on Computer Science Education. SIGCSE ’11,
ACM (2011) 93–98

[15] Vihavainen, A., Paksula, M., Luukkainen, M., Kurhila, J.: Extreme ap-
prenticeship method: key practices and upward scalability. In: Proc. of the
16th Annual Joint Conference on Innovation and Technology in Computer
Science Education. ITiCSE ’11, ACM (2011) 273–277

[16] Brown, J., Collins, A., Duguid, P.: Situated cognition culture of learning.
Educational Researcher 18(1) (1989) 32

[17] Collins, A., Brown, J., Holum, A.: Cognitive apprenticeship: Making
thinking visible. American Educator 15(3) (1991) 6–46

[18] Collins, A., Greeno, J.G.: Situative view of learning. In Aukrust, V.G.,
ed.: Learning and Cognition. Elsevier Science (2010) 64–68

[19] Kurhila, J., Vihavainen, A.: Management, structures and tools to scale up
personal advising in large programming courses. In: Proc. of the 2011 Con-
ference on Information Technology Education. SIGITE ’11, ACM (2011)
3–8

15

[20] Luukkainen, M., Vihavainen, A., Vikberg, T.: Three years of design-based
research to reform a software engineering curriculum. In: Proc. of the
13th Annual Conference on Information Technology Education. SIGITE
’12, ACM (2012) 209–214

[21] Vihavainen, A., Luukkainen, M., Kurhila, J.: Multi-faceted support for
MOOC in programming. In: Proc. of the 13th Annual Conference on
Information Technology Education. SIGITE ’12, ACM (2012) 171–176

[22] Dodero, G., Di Cerbo, F.: Extreme apprenticeship goes blended: An
experience. In: 12th IEEE International Conference on Advanced Learning
Technologies. (2012) 324–326

[23] Hautala, T., Romu, T., Rämö, J., Vikberg, T.: Extreme apprenticeship
method in teaching university-level mathematics. In: Proc. of the 12th
International Congress on Mathematical Education, International Com-
mission on Mathematical Instruction (2012)

[24] Abrahamsson, P., Kettunen, P., Fagerholm, F.: The set-up of a valuable
software engineering research infrastructure of the 2010s. In: Workshop on
Valuable Software Products. (2010)

[25] McBreen, P.: Software Craftsmanship: The New Imperative. Addison-
Wesley Professional (2001)

[26] Martin, R.C.: The Clean Coder: A Code of Conduct for Professional
Programmers. Robert C. Martin Series. Prentice Hall (2011)

[27] Luukkainen, M., Vihavainen, A., Vikberg, T.: A software craftsman’s ap-
proach to data structures. In: Proc. of the 43rd ACM Technical Symposium
on Computer Science Education. SIGCSE ’12, ACM (2012) 439–444

[28] Bareiss, R., Radley, M.: Coaching via cognitive apprenticeship. In: Proc.
of the 41st ACM Technical Symposium on Computer Science Education.
SIGCSE ’10, ACM (2010) 162–166

[29] Caspersen, M.E., Bennedsen, J.: Instructional design of a programming
course: a learning theoretic approach. In: Proc. of the 3rd International
Workshop on Computing Education Research. ICER ’07, ACM (2007) 111–
122

[30] Vihavainen, A., Vikberg, T., Luukkainen, M., Kurhila, J.: Massive increase
in eager TAs: Experiences from extreme apprenticeship-based CS1. To
appear in: Proc. of the 18th Annual Joint Conference on Innovation and
Technology in Computer Science Education (July 2013)

[31] Fraser, S., Lundh, E., Davies, R., Eckstein, J., Larsen, D., Vilkki, K.:
Perspectives on agile coaching. In: Agile Processes in Software Engineer-
ing and Extreme Programming. Volume 31 of Lecture Notes in Business
Information Processing. Springer Berlin Heidelberg (2009) 271–276

16

[32] Biggs, J., Tang, C.: Teaching for quality learning at university: what the
student does. Society for Research into Highter Education. McGraw-Hill
(2007)

[33] Ericsson, K.A., Krampe, R.T., Tesch-Romer, C.: The role of deliberate
practice in the acquisition of expert performance. Psychological Review
100(3) (1993) 363–406

[34] Litzinger, T.A., Lattuca, L.R., Hadgraft, R.G., Newstetter, W.C.: Engi-
neering education and the development of expertise. Journal of Engineering
Education 100(1) (2011) 123–150

[35] Clark, M., Lovric, M.: Suggestion for a theoretical model for secondary-
tertiary transition in mathematics. Mathematics Education Research Jour-
nal 20 (2008) 25–37

[36] Vihavainen, A., Vikberg, T., Luukkainen, M., Pärtel, M.: Scaffolding stu-
dents’ learning using Test My Code. To appear in: Proc. of the 17th Annual
Joint Conference on Innovation and Technology in Computer Science Ed-
ucation (July 2013)

[37] Vihavainen, A., Luukkainen, M.: Results from a three-year transition to
the extreme apprenticeship method. To appear in: Proc. of the 13th IEEE
International Conference on Advanced Learning Technologies (July 2013)

17

