
Scaffolding Students’ Learning

using Test My Code

Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, Martin Pärtel

University of Helsinki
Department of Computer Science

P.O. Box 68 (Gustaf Hällströmin katu 2b)
Fi-00014 University of Helsinki

{ avihavai, tvikberg, mluukkai, partel }@cs.helsinki.fi

Final draft
Originally appeared as:

Vihavainen, A., Vikberg, T., Luukkainen, M., and Pärtel, M. (2013). Scaffolding

students’ learning using Test My Code. In Proceedings of the 18th ACM conference

on Innovation and technology in computer science education, ITiCSE 13, pages

117–122 , New York, NY, USA. ACM.

Abstract

As programming is the basis of many CS courses, meaningful activities
in supporting students on their journey towards being better programmers
is a matter of utmost importance. Programming is not only about learn-
ing simple syntax constructs and their applications, but about honing
practical problem-solving skills in meaningful contexts. In this article, we
describe our current work on an automated assessment system called Test
My Code (TMC), which is one of the feedback and support mechanisms
that we use in our programming courses. TMC is an assessment service
that (1) enables building of scaffolding into programming exercises; (2)
retrieves and updates tasks into the students’ programming environment
as students work on them, and (3) causes no additional overhead to stu-
dents’ programming process. Instructors benefit from TMC as it can be
used to perform code reviews, and collect and send feedback even on fully
on-line courses.

Category[K.3.2]: Computers and Education Computer and
Information Science Education
Terms: Experimentation, Human Factors, Measurement
Keywords: programming, testing, automatic assessment, verification,
extreme apprenticeship, situated learning

1

1 Introduction

We organize our programming courses using the Extreme Apprenticeship method
(XA) [16]. One of the success factors in XA is that all learning-oriented activ-
ities are as “genuine” as possible, e.g. programming is done using industry
strength tools while honing good programming practices. The work that stu-
dents are required to do must be well defined and achievable with students’
existing knowledge, especially in the early phases of a course. Early success
allows students to build both self-confidence and their programming routine,
which helps them to transition towards seeing more than simple syntax.

Success in the early parts of the courses relies heavily on small and relatively
easy exercises, which are designed to help understand course-specific learning
objectives. For example, during the first week of our CS1 course, the students
practice basic input and output, and build programs that use conditionals with
almost 30 different exercises 1. As students progress in the course, the small
exercises combine into bigger programs. This is to demonstrate and teach how
larger programs are solved in a step-wise manner.

The students work on the exercises in computer labs where their learning
is scaffolded by numerous teaching assistants (TAs) [17]. Scaffolding means
providing well-timed support to the learners’ learning process, so that they can
achieve such learning objectives that they could not reach on their own [18]. In
addition to scaffolding, the instructors assess exercises, and provide feedback on
student’s programming practices and program design.

Although scaffolding and bi-directional feedback is usually beneficial for both
the student and the instructor, parts of scaffolding tends to be repetitive. As
there are tens of students in the labs at the same time, it is hard to build a
larger picture of a students’ progress.

Test My Code (TMC) has been developed to reduce the amount of repetitive
tasks of the TAs, i.e. exercise checking and some parts of the scaffolding, and to
increase the amount of time instructors have for mentoring and supporting stu-
dents. TMC also supports gathering snapshots from the students’ programming
processes, as well as providing long-distance support via code reviews. It can
be useful for instructors and CS education researchers alike, as one can choose
how it is to be utilized in a class; it can be used as an assessment service and a
data gathering tool.

This paper is organized as follows. In section 2, we motivate the work on
a new assessment system, after which we give a description of programming
exercises in an XA context. Section 4 describes the structure of TMC, after
which we describe how it can be used to scaffold students’ learning. Finally,
we give an overview of the performed evaluations, the impact of TMC on our
courses, and lay down planned future work.

1See Object-Oriented Programming with Java at http://mooc.fi.

2

2 Motivation for a new System

Several of the programming courses at the University of Helsinki are organized
using the Extreme Apprenticeship (XA) method, which is a modern interpreta-
tion of apprenticeship-based learning [16]. XA emphasizes students’ individual
effort and communication between the learner and the advisor. Core values in
XA include:

• A craft can only be mastered by actually practicing it, for as long as
is necessary. To be able to practice the craft, students need meaningful
activities, i.e. exercises.

• Continuous feedback between the learner and the advisor. The learner
needs confirmation that she is progressing and in a desired direction.
Therefore, the advisor must be aware of the successes and challenges of
the learner throughout the course.

In order for XA to properly benefit from an automatic assessment system,
the system has to accommodate scaffolding as well as support the situative
perspective on learning in apprenticeship-based education [3]. The perspective
views the situations where knowledge is developed and later applied as highly
connected, as “methods of instruction are not only instruments for acquiring
skills; they also are practices in which students learn to participate” [9].

We want our students to become proficient in programming, not only to
know about programming. According to the situative perspective, abstracting
theory from practice does not yield transferability [5]. As a goal of our CS
education is to help students on their journey towards becoming experts in
their field, chosen tools and methods have to allow “participation in valued
social practices” [9] of the respective professional communities. For aspiring
programmers, the tools and practices of learning [9] in their training should
be similar to those used in the software engineering industry. Industry best
practices, such as code reviewing [8], has to implemented in a way that enable
instructors to perform the tasks in a non-intrusive manner.

Scaffolding of students’ learning has to be well-timed and not over excessive.
Due to the nature of XA, accumulated knowledge of the learning of students pro-
cess is continuously gathered through the bi-directional feedback of the courses.
The ability to transform this knowledge iteratively into the exercises and tests
of the courses has to be featured in the automated assessment system.

There exist lots of automatic systems that are designed to assess students’
programs [6, 1, 11]. However, as pointed out by Ihantola et al. [11], most of
them are created for a specific course or as a part of a research project, and
are not made available for distribution or modification. Two of the exceptions
are the Marmoset project [14], and the Web-Cat project [7], both of which are
available as open source projects.

Most of the currently available assessment systems are web-based, which
means that in order to solve an exercise, a student has to download a template
from a web-page, solve it, and then submit it using a web-GUI. If the tests in the

3

assessment system are built to provide feedback to the student, retrieving the
feedback from a web-page causes an extra step. In addition to poorly supporting
the learning of specific tools and practices, the use of a web-GUI for downloading
and submitting each would cause lots of unnecessary overhead. Constantly
zipping and unzipping of projects is also not something we wish to teach our
students as it does not belong to the workflow of a professional software engineer.

2.1 Requirements for Test My Code

Almost all CS and IT curricula contain courses on web-development and al-
gorithmics, both of which benefit from tools that can be utilized to support
students during their learning process.

In order to create a realistic web-development environment, the students
should be able to e.g. configure downloading of dependencies and deploy the
same application both locally and online. Local deployment is useful e.g. as
students practicing web development should also learn to debug web applications
using tools such as integrated developer consoles in web browsers. In order to
properly assess and scaffold good development practices, support for testing
both frontend and backend functionality is of great importance.

In algorithmics courses the learning objectives are usually a mix of analy-
sis of run-time complexity, and the creation of implementations. Many of the
current assessment systems handle algorithm run-time analysis using naive run-
time clocking. Although this is sufficient for most of the cases, our large-scale
courses have peaks e.g. during deadlines, which can cause false negatives in
the tests. Additional false negatives are caused due to the use of cloud-based
virtual machines that have fluctuations in the available processing power. One
approach for handling this is deterministic algorithm analysis using bytecode
counting, see e.g. [12].

As an ongoing effort, Test My Code (TMC) is currently designed to

• be as minimally intrusive as possible; the assessment service does
not introduce any additional overhead to the students’ working process.
TMC downloads the exercises directly to the working environment, and
supports both local and server-side tests

• support timely scaffolding within the exercises; new goals can be
made visible only after previous ones have been finished, and adding scaf-
folding messages to the tests is easy

• allow awarding points for completing smaller goals, not just for
completing full exercises

• support bidirectional feedback; TMC supports code reviews as well
as direct feedback regarding the exercises both from the students’ and the
instructors’ perspective

• make testing visible; the actual testing process is made visible, which
eases students into the thought of writing their own tests

4

• support web-application development courses; testing of both front-
end and backend functionalities, as well as ad-hoc downloading of depen-
dencies, is made possible using Maven2

• support algorithm testing in unstable environments

From the course instructor’s perspective, TMC

• causes no additional overhead from the management perspec-
tive; the system has a clean integration interface for reading in assessed
exercises

• allows mistakes in the exercise generation process; if an exercise
contains mistakes, updated versions can be easily published to students

• allows honing software engineering practices for exercise devel-
opers; generating exercises and tests does not substantially differ from
work done in a normal software engineering context

• gathers data from students’ programming process for future anal-
ysis and e.g. plagiarism detection

In addition, TMC is open source and is freely available3.

3 Test My Code

In its current state, TMC consists of several components that are organized
using client-server architecture, see Figure 1. The NetBeans plugin

• retrieves and updates course exercises from an assessment server

• displays built-in scaffolding messages during the working process

• submits exercises to the assessment server

• allows giving and receiving direct feedback regarding the exercises

• gathers data from students’ programming process

In addition, the plugin introduces a new menu option called TMC and three
new toolbar buttons. The TMC menu contains options for changing settings
(e.g. username, course, exercise directory), checking for new exercises, submit-
ting answers, and requesting and viewing code reviews. The toolbar buttons
are added for (1) running the currently modified application independently of
any accidentally selected main project, (2) running local tests, and (3) submit-
ting the solution TO the the assessment server. If the student presses the “run

2http://maven.apache.org
3http://github.com/testmycode

5

tests locally” button, locally available tests for the exercise are run and possible
scaffolding messages are shown immediately.

The web-interface allows students to register to a course, view their statistics,
and optionally submit exercises outside the IDE. Course instructors use the web
interface for administrative tasks such as the creation of new courses, refreshing
exercises, viewing submissions, responding to code review requests, and viewing
course-related statistics.

Requests to the TMC backend are routed using one or more web servers.
Each course has a git-repository that contains the course exercises. Students’
submissions and information are entered into a database. Once a student sub-
mits an exercise, the exercise is verified on one of the sandbox servers that
run transient user-mode Linux4 virtual machines. Each sandbox server has an
optional Maven cache for storing library dependencies for e.g. web development-
related exercises.

Figure 1: TMC architecture

3.1 Code Reviews

Code reviews are designed to identify defects and point out improvement oppor-
tunities in the reviewed software [8]. Depending on the programming language
used, some of the code reviewing can be automated. For Java typical tools are
e.g. Findbugs [10] and Checkstyle, and even they fail to point out improvement
opportunities in the program design and architecture. Hence, manual review is
still often useful.

TMC provides code review capability in the web interface, see Figure 2.
Once the students have submitted their projects, the instructors can browse the
submitted code online. If students request a review for their code, the requests

4http://user-mode-linux.sourceforge.net/

6

are visible on the TMC main page. Problems identified during a review process
are communicated to the developer, who then further works on the issues.

Reviews can either be requested manually in the IDE, or the instructors can
spontaneously review students’ code. Once a review has been performed, the
student is notified via email or directly within the IDE. As the student opens
the IDE (or if the IDE is running), she sees the review comments immediately.

In our programming courses, in addition to the scaffolding in XA labs, we
often perform manual code reviews at least for open exercises that do not impose
a specific structure for the program. A single code review usually takes between
5 and 10 minutes, and each student typically receives at least one weekly review
(assuming she has programmed during that week). Having manual code reviews
is possible due to the way we organize our instruction [13].

3.2 Creating Exercises and Tests

Creating a new exercise and its tests starts with creating a programming project
(e.g. a standard Maven project), and continues by working on the exercise using
the same steps that one would while using TDD [2]. For each part of the exercise,
one first creates the tests and error messages that indicate what went wrong,
and afterwards add the functionality that makes the tests pass.

Once the exercise is finished, further work is needed. The finished exercise
files are used as both the model solutions and the template that the students
receive from TMC. The content in the version that students receive needs to be
altered. Altering content is done based on comments within the project files.
For example, a source file that starts with a comment // SOLUTION FILE is
never sent to the student.

After altering the source code files is finished, the tests usually need mod-
ification. The modified version does not usually contain all the files that are
referenced by the original tests. Depending on the programming language used,

Figure 2: Reviewing students’ code (the input window is resizeable).

7

the tests need to be modified to tolerate conditions such as missing classes and
methods. TMC provides a Java DSL that allows convenient access to student
code via reflection, and provides user-friendly scaffolding messages in common
error situations.

Once the tests are finished, points that the students receive for the exercise
are added. Points for an exercise or a subtask are given based on annotations
on test methods and classes. For example, if a test class has an annotation
@Points("007"), the student is awarded points for the exercise ”007”, given
that all the tests in the class pass, and no other class or test with the same
annotation fails.

The exercise is published by adding it to the course git repository and re-
freshing the course in TMC. This causes a HTTP push event, which can be
identified by the NetBeans plugin. Alternatively, the exercise (or an update to
the exercise) is available the next time the student opens up the IDE.

Instructors may choose to have a separate branch for exercises that need to
be tested internally before publishing. One can e.g. create a separate course
for more eager students, who are willing to work as exercise testers. Once a set
of exercises is tested well enough, and deemed ready for publishing, the branch
is merged to the branch that is visible to the whole course. This is especially
useful when performing team teaching and collaborative crafting of material.

3.3 Deterministic Profiling

Algorithm-related tests are usually assessed simply by investigating the algo-
rithm run-time with different sized inputs. This is problematic as operating
system-related tasks and e.g. JVM garbage collection tasks launch arbitrarily,
causing additional load on the assessment system. This may lead to false neg-
atives, even if the assessed algorithm is implemented perfectly. One common
approach is to average the running time over a specific number of iterations.
However, this simply tries to avoid the actual problem: assessing a program
based on execution time.

TMC has a bytecode counting component that is inspired by ByCounter [12].
Counting bytecode instructions makes it possible to conduct repeatable bench-
marks of students’ algorithms. One can demand e.g. that an algorithm must
run in a linear time or faster based on the size of an input.

Setting up a deterministic test needs an input for the algorithm and a
method to invoke. In the following example, students need to create an al-
gorithm for calculating the Fibonacci numbers that is linear to its input size or
faster. The method must be created to a method called fibonacci in a class
called Fibonacci. The method takes an integer as a parameter, and returns an
Integer as output. The IntegerImpl is a wrapper that expects an integer as a
return value from the method.

8

@Test

public void linearFibonacci() {

IntegerImpl impl = new IntegerImpl();

impl.setClassName("Fibonacci");

impl.setMethodName("fibonacci");

List<Integer> input = Arrays.asList(2, 10, 100);

Output<Integer> output = impl.runMethod(input);

ComplexityAnalysis.assertLinear(output);

}

The complexity analysis component also provides a graph view which allows
easy visualization of the algorithm running times.

4 Scaffolding Students with TMC

The driving learning method in XA is individual effort through practical work by
students. This means that the exercises are the most important part of a course,
and designing them is the most important task for the teacher in charge. Every
instructional goal in a course is learned via working through a set of exercises
designed to help building understanding on the topic at hand. Being able to
solve an exercise is not enough: one must focus on both the process and quality
while crafting the solution. Course instructors monitor and help students as
they work on the exercises, which helps students in achieving their goals as well
as provides feedback for the instructors on upcoming exercises that should be
created [17].

Exercises that the students start with are usually composed of small incre-
mental tasks, which combine into bigger programs. Incremental tasks are used
to imitate a typical problem-solving process: as the students work through the
tasks, they explicitly practice building software from smaller components.

The written-out thought process that was used to form the exercises con-
stantly influence the students’ programming. This provides scaffolding for learn-
ing of good programming practices, as students’ work is constantly guided by
the pre-performed subtask division. Exercises are intentionally written out to
be as informative as possible, and often contain sample input/output descrip-
tions or code snippets with expected outputs, which provide further support for
verifying the correctness of a crafted program.

As an example of a scaffolding assignment, let us examine a sequence of
exercises that demonstrates the use of methods. Just before the assignment,
the course material presents the use of void methods and how a method can call
another user-defined method. Before this set students solve one simple warm-up
assignment involving only parameterless methods. The assignment belongs to
the 2nd week of our 14-week CS1 course, and the students have practiced with
loops and variables starting from week 1.

9

Assignment: Printing a Christmas tree

Task 1: Printing stars Modify the method printStars so that it prints the given
amount of stars and a line break. Use the following body:

private static void printStars(int amount) {

// you can print one star with System.out.print("*");

// call it ’amount’ times

}

public static void main(String[] args) {

printStars(2);

printStars(9);

}

The program should output:

**

Task 2: Printing a rectangle Create a printRectangle(int

width, int height)-method that prints a rectangle using the printStars method.
Calling printRectangle(17,2) should produce the following output:

Task 3: Printing a left-aligned triangle Create a method
printLeftAlignedTriangle(int size) that prints a triangle using the method printStars.
Calling the new method with 3 as a parameter should produce the following output:

*

**

Task 4: Printing stars and whitespaces omitted

Task 5: Printing a right-aligned triangle omitted

Task 6: The tree Create a method called xmasTree(int

height) that prints a Christmas tree using at least some of the previously defined
methods. A Christmas tree consists of a triangle of given height and a stand. The
stand is a single star located at the middle of the triangle bottom. The method call
xmasTree(3), for example, has the following output:

*

*

While performing the steps in the above exercise, students practice creating
and using methods with parameters, work constantly using a divide-and-conquer
approach, and see how a simple algorithmic challenge, e.g. printing a tree, is
solved.

10

Scaffolding within the exercises can also be used to direct the students away
from bad habits such as the use of unnecessary instance variables or unclear
method names. As the students work on the exercises, their workflow resembles
the workflow of TDD [2] that the instructor that created the exercise previously
had followed. However, in most of the cases, the tests are now pre-defined. A
clear metalevel motivation for the incremental style is to guide students to follow
a working process similar to that of good professional programmers: proceed in
small steps and validate your code after each step [2].

The scaffolding is implemented in the tests of the exercises. The tests are
written so that they help students to focus on progressing in small steps even
within a single exercise: it is important to concentrate on making tests pass one
by one in a meaningful order. A typical sequence might be:

1. implement class MainProgram

2. define a static method printStars(int amount)

3. ensure that the method prints the correct amount of stars

4. ensure that a newline is printed after the stars

5. define a static method printRectangle(int width, int height)

6. ensure that the method prints the correct amount of stars when called as print-
Rectangle(1, 1)

7. ensure that printRectangle(1,1) calls printStars(1)

8. . . .

4.1 Open Exercises

As any instruction should aim towards the student being able to do the problem
solving themselves, it is important that scaffolding is eventually faded [4]. In
our programming courses, fading is realized by using open exercises that do not
enforce any specific program structure or approach.

Open assignments in early programming classes are intentionally complex e-
nough so that programming a solution to a single file (e.g. class) causes chaotic
design, but simple enough so that using an “implement a single requirement,
refactor if needed” approach will eventually create a nice object design. The
exercises often utilize a well-known domain (e.g. airport, airplanes or student,
courses, registrations), which makes it easier to design required domain objects.

The following exercise is an example of an open exercise from week 6. In
addition to the problem description, the students receive a sample input/output
description, which has been left out due to space considerations.

Assignment: Bird Observations

Design and implement an observation database for a bird observer. The
database contains birds, each of which have name and latin name. The database
also tracks how many times a bird has been observed. The program should have
a text UI and should respond to the following commands

11

add - adds a bird

observation - adds an observation

statistics - prints all birds and observations

show - prints one bird

quit - terminates the program

The database should store the observations into a text file for future use.

The open exercises only define how the application is supposed to work for a
given user input. In early programming courses the input may be given e.g. via
command line, or as system input, while in web-development courses the tests
for open exercises typically monitor e.g. a given database while inputting data
to input fields with specified names or ids, or require that a given REST API
exists and works as desired.

5 Conclusions and Further Work

The automated assessment system, TMC, has been successfully used in our CS1,
CS2 and Web-development courses, as well as in various other courses, including
MOOCs [15] in programming. We have also utilized TMC and NetBeans for
younger students in a “game programming for youth” outreach course that
has been created as an attempt to raise awareness towards programming. The
youngest students so far have been 11, and given the challenges of learning Java
at a young age, TMC itself has worked well.

As TMC can provide some of the scaffolding for the students to learn pro-
gramming, it has allowed better allocation and use of resources in our courses.
Instructors now spend more time on more demanding scaffolding and have time
to reflect in the labs when compared to the past, where the exercises were
checked manually. This has contributed to improvements in the learning results
in our CS1 courses, and made the task of working as a TA a valuable learning
experience [17].

The blended learning environment that TMC and XA creates resembles the
genuine working environment of a software developer. Our students are im-
mersed in this environment from day one of their studies, working with industry
strength tools and pushed towards programming best practices. As TMC is not
a course or topic specific tool, it can be used in a similar fashion throughout
our curriculum. The following spontaneous testimonial is from a web backend
development course held during fall 2012.

TMC was great! It was great to be able to work on so many web
applications. Receiving many of the configuration files with tests
that said what to do aided a lot during learning. In addition, it
was good that I didn’t have to waste the time of TAs for showing
exercises that I was confident about. TMC was very easy to install,
and incredibly easy to use.

12

Currently TMC supports Java (and other JVM-based languages), and we are
in the process of developing a more modular, language-independent, assessment
backend, as well as integration to other IDEs. We are considering integrating
static analysis tools such as PMD and Checkstyle with TMC, which would
enable us to better address code conventions (eg. indentation, variable naming,
method length and complexity) that are currently evaluated in the labs in an ad-
hoc fashion. In addition, a component that flags submissions that are potentially
copied from other students or model answers is under development.

We continuously wish to improve our CS education. Analyzing snapshot data
from the programming process of our students, gathered by TMC, will help to
improve both the exercises and the accompanied tests in our courses. This will
benefit our students and teams of teachers as the learning of the students is
better understood and can therefore be more effectively scaffolded.

6 Acknowledgements

We thank all the students who have worked on building TMC so far: S. Hiltunen,
J. Isotalo, K. Kaltiainen, V. Knuuttila, T. Koivisto, T. Kovanen, A. Majander,
P. Marjanen, J. Mynttinen, K. Nordman, M. Rannanjärvi, K. Rantanen, O.
Rissanen, T. Simsiö, J. Turpeinen and K. Viiri.

References

[1] K. Ala-Mutka. A survey of automated assessment approaches for program-
ming assignments. Computer Science Education, 15(2):83–102, 2005.

[2] K. Beck. Test Driven Development: By Example. Addison-Wesley, 2002.

[3] J. Brown, A. Collins, and P. Duguid. Situated cognition culture of learning.
Educational Researcher, 18(1):32, 1989.

[4] A. Collins, J. S. Brown, and A. Holum. Cognitive apprenticeship: making
thinking visible. American Educator, 6, 1991.

[5] A. Collins and J. G. Greeno. Situative view of learning. In V. G. Aukrust,
editor, Learning and Cognition, pages 64–68. Elsevier Science, 2010.

[6] C. Douce, D. Livingstone, and J. Orwell. Automatic test-based assessment
of programming: A review. Journal of Educational Resources in Computut-
ing, 5(3), Sept. 2005.

[7] S. Edwards. Using test-driven development in the classroom: Providing
students with automatic, concrete feedback on performance. In Proceedings
of the EISTA’03, volume 3. Citeseer, 2003.

[8] M. E. Fagan. Design and code inspections to reduce errors in program
development. IBM Systems Journal, 15(3):182 –211, 1976.

13

[9] J. G. Greeno. Response: On claims that answer the wrong questions. Educ.
Researcher, 26(1):5–17, 1997.

[10] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN Not.,
39(12):92–106, Dec. 2004.

[11] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä. Review of re-
cent systems for automatic assessment of programming assignments. In
Proceedings of the 10th Koli Calling. ACM, 2010.

[12] M. Kuperberg, M. Krogmann, and R. Reussner. ByCounter: portable run-
time counting of bytecode instructions and method invocations. In Pro-
ceedings of the ETAPS’08, 2008.

[13] J. Kurhila and A. Vihavainen. Management, structures and tools to scale
up personal advising in large programming courses. In Proceedings of the
SIGITE ’11. ACM, 2011.

[14] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K. Hollingsworth, and
N. Padua-Perez. Experiences with Marmoset: designing and using an ad-
vanced submission and testing system for programming courses. In Pro-
ceedings of the ITICSE ’06. ACM, 2006.

[15] A. Vihavainen, J. Kurhila, and M. Luukkainen. Multi-faceted support for
MOOC in programming. In Proceedings of the SIGITE ’12. ACM, 2012.

[16] A. Vihavainen, M. Paksula, and M. Luukkainen. Extreme apprentice-
ship method in teaching programming for beginners. In Proceedings of
the SIGCSE’11. ACM, 2011.

[17] A. Vihavainen, T. Vikberg, M. Luukkainen, and J. Kurhila. Massive in-
crease in eager TAs: Experiences from extreme apprenticeship-based CS1.
To appear in Proceedings of the ITiCSE’13, July 2013.

[18] D. Wood, J. S. Bruner, and G. Ross. The role of tutoring in problem solving.
The Journal of Child Psychology and Psychiatry and Allied Disciplines,
17(2):89–100, 1976.

14

