
Chapter 5:
Distributed Systems:
Fault Tolerance

Fall 2013
Jussi Kangasharju

2 Kangasharju: Distributed Systems

Chapter Outline

n Fault tolerance
n Process resilience
n Reliable group communication
n Distributed commit
n Recovery

3 Kangasharju: Distributed Systems

Basic Concepts

Dependability includes
n Availability
n Reliability
n Safety
n Maintainability

4 Kangasharju: Distributed Systems

Fault, error, failure

--
--
--

client

server

fault

error
failure

5 Kangasharju: Distributed Systems

Failure Model

n Challenge: independent failures
n Detection

n which component?

n what went wrong?

n Recovery
n  failure dependent

n  ignorance increases complexity

=> taxonomy of failures

6 Kangasharju: Distributed Systems

Fault Tolerance
n Detection
n Recovery

n mask the error OR
n  fail predictably

n Designer
n possible failure types?
n  recovery action (for the possible failure types)

n A fault classification:
n  transient (disappear)
n  intermittent (disappear and reappear)
n permanent

7 Kangasharju: Distributed Systems

Failure Models

Type of failure Description

Crash failure A server halts, but is working correctly until it halts

Omission failure

 Receive omission

 Send omission

A server fails to respond to incoming requests

A server fails to receive incoming messages

A server fails to send messages

Timing failure A server's response lies outside the specified time interval

Response failure

 Value failure

 State transition failure

The server's response is incorrect

The value of the response is wrong

The server deviates from the correct flow of control

Arbitrary failure A server may produce arbitrary responses at arbitrary times

Crash: fail-stop, fail-safe (detectable), fail-silent (seems to have crashed)

8 Kangasharju: Distributed Systems

Failure Masking (1)

Detection
n  redundant information

-  error detecting codes (parity, checksums)
-  replicas

n  redundant processing
-  groupwork and comparison

n  control functions
-  timers
-  acknowledgements

9 Kangasharju: Distributed Systems

Failure Masking (2)

Recovery

n  redundant information

-  error correcting codes

-  replicas

n  redundant processing

-  time redundancy

-  retrial

-  recomputation (checkpoint, log)

-  physical redundancy

-  groupwork and voting

-  tightly synchronized groups

10 Kangasharju: Distributed Systems

Example: Physical Redundancy

Triple modular redundancy.

11 Kangasharju: Distributed Systems

Failure Masking (3)

n  Failure models vs. implementation issues:

 the (sub-)system belongs to a class

 => certain failures do not occur

 => easier detection & recovery
n  A point of view: forward vs. backward recovery
n  Issues:

n  process resilience

n  reliable communication

12 Kangasharju: Distributed Systems

Process Resilience (1)
n  Redundant processing: groups

n  Tightly synchronized
-  flat group: voting

-  hierarchical group:

 a primary and a hot standby (execution-level synchrony)

n  Loosely synchronized

-  hierarchical group:

a primary and a cold standby (checkpoint, log)

n  Technical basis
n  “group” – a single abstraction

n  reliable message passing

13 Kangasharju: Distributed Systems

Flat and Hierarchical Groups (1)

Communication in a flat group. Communication in a simple
 hierarchical group

 Group management: a group server OR distributed management

14 Kangasharju: Distributed Systems

Flat and Hierarchical Groups (2)
n  Flat groups

n  symmetrical

n  no single point of failure

n  complicated decision making

n  Hierarchical groups
n  the opposite properties

n  Group management issues

n  join, leave;

n  crash (no notification)

15 Kangasharju: Distributed Systems

Process Groups

n  Communication vs management
n  application communication: message passing
n  group management: message passing
n  synchronization requirement:
 each group communication operation in a stable group

n  Failure masking

n  k fault tolerant: tolerates k faulty members

-  fail silent: k + 1 components needed
-  Byzantine: 2k + 1 components needed

n  a precondition: atomic multicast

n  in practice: the probability of a failure must be “small enough”

16 Kangasharju: Distributed Systems

Agreement in Faulty Systems (1)

Alice -> Bob Let’s meet at noon in front of La Tryste …
Alice <- Bob OK!!
Alice: If Bob doesn’t know that I received his message, he will not come …
Alice -> Bob I received your message, so it’s OK.
Bob: If Alice doesn’t know that I received her message, she will not come …
…

Alice Bob

La Tryste

“e-mail”

on a rainy day …

Requirement:
-  an agreement
-  within a bounded time

Faulty data communication: no
agreement possible

17 Kangasharju: Distributed Systems

Agreement in Faulty Systems (2)

The Byzantine generals problem for 3 loyal generals and 1 traitor.
a)  The generals announce their troop strengths (in units of 1 kilosoldiers).
b)  The vectors that each general assembles based on (a)
c)  The vectors that each general receives in step 3.

Reliable data communication, unreliable nodes

18 Kangasharju: Distributed Systems

Agreement in Faulty Systems (3)

 The same as in previous slide, except now with 2 loyal generals
and one traitor.

19 Kangasharju: Distributed Systems

Reliable Group Communication

n  Lower-level data communication support
n  unreliable multicast (LAN)
n  reliable point-to-point channels
n  unreliable point-to-point channels

n  Group communication
n  individual point-to-point message passing
n  implemented in middleware or in application

n  Reliability
n  acks: lost messages, lost members
n  communication consistency ?

20 Kangasharju: Distributed Systems

Reliability of Group Communication?

n  A sent message is received by all members

 (acks from all => ok)

n  Problem: during a multicast operation
n  an old member disappears from the group

n  a new member joins the group
n  Solution

n  membership changes synchronize multicasting

=> during an MC operation no membership changes

 An additional problem: the sender disappears (remember: multicast ~ for (all

Pi in G) {send m to Pi })

21 Kangasharju: Distributed Systems

Basic Reliable-Multicasting Scheme

 A simple solution to reliable multicasting when all receivers are known and are

assumed not to fail

Reporting feedback

Message transmission

Scalability? Feedback implosion !

22 Kangasharju: Distributed Systems

Scalability: Feedback Suppression
1. Never acknowledge successful delivery.

2. Multicast negative acknowledgements – suppress redundant NACKs
 Problem: detection of lost messages and lost group members

23 Kangasharju: Distributed Systems

Hierarchical Feedback Control

The essence of hierarchical reliable multicasting.
a)  Each local coordinator forwards the message to its children.
b)  A local coordinator handles retransmission requests.

24 Kangasharju: Distributed Systems

Basic Multicast
Guarantee:

 the message will eventually be delivered to all
member of the group (during the multicast: a
fixed membership)

Group view: G = {pi}
 “delivery list”

Implementation of Basic_multicast(G, m) :
1.  for each pi in G: send(pi,m) (a reliable one-to-one send)
2.  on receive(m) at pi : deliver(m) at pi

25 Kangasharju: Distributed Systems

Message Delivery

Delivery of messages
-  new message => HBQ
-  decision making

-  delivery order
-  deliver or not to deliver?

-  the message is allowed to be
 delivered: HBQ => DQ
-  when at the head of DQ:
 message => application
 (application: receive …)

Application

hold-back queue

delivery queue

delivery

Message passing system

26 Kangasharju: Distributed Systems

Reliable Multicast and Group Changes

Assume
n  reliable point-to-point communication
n group G={pi}: each pi : groupview
Reliable_multicast (G, m):
 if a message is delivered to one in G,

then it is delivered to all in G

•  Group change (join, leave) => change of groupview
•  Change of group view: update as a multicast vc
•  Concurrent group_change and multicast

 => concurrent messages m and vc
Virtual synchrony:
all nonfaulty processes see m and vc in the same order

27 Kangasharju: Distributed Systems

Virtually Synchronous Reliable MC (1)

Virtual synchrony: “all” processes see m and vc in the
same order

n m, vc => m is delivered to all nonfaulty processes in
Gi (alternative: this order is not allowed!)

n vc, m => m is delivered to all processes in Gi+1
 (what is the difference?)
Problem: the sender fails (during the multicast – why is it a

problem?)
Alternative solutions:
n m is delivered to all other members of Gi (=> ordering m, vc)
n m is ignored by all other members of Gi (=> ordering vc, m)

Group change: Gi =Gi+1

X

28 Kangasharju: Distributed Systems

Virtually Synchronous Reliable MC (2)

The principle of virtual synchronous multicast:

-  a reliable multicast, and if the sender crashes

-  the message may be delivered to all or ignored by each

29 Kangasharju: Distributed Systems

Implementing Virtual Synchrony

n  Communication: reliable, order-preserving, point-to-point
n  Requirement: all messages are delivered to all nonfaulty processes in

G
n  Solution

n each pj in G keeps a message in the hold-back queue until it

knows that all pj in G have received it

n a message received by all is called stable
n only stable messages are allowed to be delivered

n view change Gi => Gi+1 :

-  multicast all unstable messages to all pj in Gi+1

-  multicast a flush message to all pj in Gi+1
-  after having received a flush message from all:

install the new view Gi+1

30 Kangasharju: Distributed Systems

Implementing Virtual Synchrony

a)  Process 4 notices that process 7 has crashed, sends a view change
b)  Process 6 sends out all its unstable messages, followed by a flush

message
c)  Process 6 installs the new view when it has received a flush message

from everyone else

31 Kangasharju: Distributed Systems

Ordered Multicast
Need:
 all messages are delivered in the intended

order

 If p: multicast(G,m) and if (for any m’)

•  for FIFO multicast(G, m) < multicast(G, m’)
•  for causal multicast(G, m) -> multicast(G, m’)
•  for total if at any q: deliver(m) < deliver(m’)

 then for all q in G : deliver(m) < deliver(m’)

32 Kangasharju: Distributed Systems

Reliable FIFO-Ordered Multicast

 Four processes in the same group with two different senders, and a possible
delivery order of messages under FIFO-ordered multicasting

Process P1 Process P2 Process P3 Process P4

sends m1 receives m1 receives m3 sends m3

sends m2 receives m3 receives m1 sends m4

receives m2 receives m2

receives m4 receives m4

33 Kangasharju: Distributed Systems

Virtually synchronous multicast Basic Message Ordering Total-ordered Delivery?

Reliable multicast None No

FIFO multicast FIFO-ordered delivery No

Causal multicast Causal-ordered delivery No

Atomic multicast None Yes

FIFO atomic multicast FIFO-ordered delivery Yes

Causal atomic multicast Causal-ordered delivery Yes

Virtually Synchronous Multicasting

Six different versions of virtually synchronous reliable multicasting
-  virtually synchronous: everybody or nobody (members of the group) (sender

fails: either everybody else or nobody)
-  atomic multicasting: virtually synchronous reliable multicasting with totally-

ordered delivery.

34 Kangasharju: Distributed Systems

Recovery

n  Fault tolerance: recovery from an error (erroneous state => error-free

state)

n  Two approaches

n  backward recovery: back into a previous correct state

n  forward recovery:

-  detect that the new state is erroneous

-  bring the system in a correct new state

challenge: the possible errors must be known in advance

n  forward: continuous need for redundancy

n  backward:

-  expensive when needed

-  recovery after a failure is not always possible

35 Kangasharju: Distributed Systems

Recovery Stable Storage

Stable Storage Crash after drive 1 Bad spot
 is updated

36 Kangasharju: Distributed Systems

Implementing Stable Storage
n Careful block operations (fault tolerance: transient faults)

n careful_read: {get_block, check_parity, error=> N retries}

n careful_write: {write_block, get_block, compare, error=> N retries}

n  irrecoverable failure => report to the “client”

n Stable Storage operations (fault tolerance: data storage errors)
n stable_get:

 {careful_read(replica_1), if failure then careful_read(replica_2)}

n stable_put: {careful_write(replica_1), careful_write(replica_2)}

n error/failure recovery: read both replicas and compare

-  both good and the same => ok

-  both good and different => replace replica_2 with replica_1

-  one good, one bad => replace the bad block with the good

block

37 Kangasharju: Distributed Systems

Checkpointing

A recovery line: the most recent distributed snapshot

Needed: a consistent global state
to be used as a recovery line

38 Kangasharju: Distributed Systems

Independent Checkpointing

Each process records its local state from time to time
⇒ difficult to find a recovery line

If the most recently saved states do not form a recovery line
⇒  rollback to a previous saved state (threat: the domino effect).

A solution: coordinated checkpointing

39 Kangasharju: Distributed Systems

Coordinated Checkpointing (1)

n  Nonblocking checkpointing
n  see: distributed snapshot

n  Blocking checkpointing
n  coordinator: multicast CHECKPOINT_REQ
n  partner:

-  take a local checkpoint
-  acknowledge the coordinator
-  wait (and queue any subsequent messages)

n  coordinator:
-  wait for all acknowledgements
-  multicast CHECKPOINT_DONE

n  coordinator, partner: continue

40 Kangasharju: Distributed Systems

Coordinated Checkpointing (2)

P1

P2

P3

checkpoint request
ack
checkpoint done

local checkpoint

message

41 Kangasharju: Distributed Systems

Message Logging

 Problem: Incorrect replay of messages after recovery may lead to orphan
processes.

Improving efficiency: checkpointing and message logging

Recovery: most recent checkpoint + replay of messages

42 Kangasharju: Distributed Systems

Chapter Summary

n Fault tolerance
n Process resilience
n Reliable group communication
n Distributed commit
n Recovery

