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P2P Index Revisited 

It is crucial to be able to find a data object in the network 
 An index maintains mappings between names and 
locations 

 
A P2P index can be 

 Centralized: single server/farm has the mappings 
 Distributed: mappings to a peer are discoverable at a 
number of other peers  
 Local: peer has only local files in the index (and a 
separate neighbours set) 

 
We already have examples of these 

 Centralized: Napster 
 Distributed: Skype supernodes, Freenet 
 Local: Gnutella V0.4 



P2P Indexes Revisited: To Forward?  

P2P indexes can also be forwarding or non-forwarding 
 
Forwarding indexes (most common) take the request toward 

the destination based on the indexes of peers that 
process the request 

 
Non-forwarding indexes take the request directly to the data 

(typically a single hop) 
 
Examples 

 Forwarding index: Gnutella V0.7, Freenet 
 Non-forwarding index: Skype default case with 
supernodes (relay case is forwarding)  



P2P Indexes and Semantics 

Most distributed indexes are human-readable and semantic 
 Keywords, domains, names, … 

 
Unstructured P2P systems support semantic indexes   

 Can implement various search algorithms (string 
matching, range queries, …) 
 Can support metadata 

 
Semantic-free indexes do not assume semantics but rather 

have a flat addressing space  
 Data centric operation: hash a file to a flat label 
 DHT algorithms: efficient routing on flat labels 
   Some node will be responsible for the address space 
    Constraint on where the data is stored 
 More difficult to implement string matching or range 
queries in routing  



Gnutella 

Gnutella addresses some of Napster’s limitations 
 
A decentralized P2P system based flooding the queries 

 Queries are flooded and responses are sent on the 
reverse path (with TCP) 
 Downloads directly between peers (HTTP) 

 
Open protocol specification, originally developed by Nullsoft 

(bought by AOL) 
 
Differs between versions  

 0.4 is the original version (simple flooding) 
 0.7 is more advanced (similar to KaZaa)  
  More structure (hierarchy is good for scalability!) 

 
 
 



Gnutella v0.4 protocol messages I 

 
•  A peer joining the network needs to discover the address 

of a peer who is already a member of the network 
•  New peer sends GNUTELLA CONNECT message 

•  A peer then uses PING messages to discover peers and 
receives PONG messages. 

•   PONGs include data regarding peers and follow the 
reverse path of PINGs. 



Gnutella v0.4 protocol messages II 

•  A peer uses the QUERY message to find files, and 
receives QUERYHIT messages as replies (again on 
reverse path) 
•   Peers forward QUERY messages (flooding) 

•  The QUERYHIT contains the IP address of the node that 
can then be used for the file transfer (HTTP) 

•  PUSH request message can be used to circumvent 
firewalls (servent sends file to the requesting node after 
receiving request) 

•  HTTP Push proxy: proxy sends the push request  (V0.7) 
•  Requester (HTTP)à PP (1 hop Gnutella)à FS 

(HTTP) à Requester 
•  Alleviates problems of reverse path routing 
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over existing TCP 
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Peers forward 
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limited scope 
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The Gnutella Protocol 



Gnutella messages 
Gnutella messages 
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Payload Descriptor:   

Ping :   does not contain any payload. 

Pong: Port IP Number of shared files Size of shared 

Query: Minimum Speed Search Criteria 

Query_hit: Number of hits IP Speed Node ID Port Result Set 
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n+1 B�

n+16 B�

23 B�

Source: www3.in.tum.de/teaching/ss09/DBSeminar/P2P.ppt 
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Traffic breakdown 

From “A Quantitative Analysis of the Gnutella Network Traffic” 
From “A Quantitative Analysis of the Gnutella Network Traffic” 

Can be more 
PONGs than 
PINGs (see 
previous 
diagram) 



Pings and Pongs Example 



Trees vs graphs 

Tree 
 N nodes, N-1 links 

 
Network with N hosts and M connections, M >= N-1 then 
(M – (N -1)) loop/redundant connections 
 
These make the network more robust, but increase 

communications overhead 
 
Loops result in infinite message loops (unless specific loop 

prevention measures are implemented) 



Looping and message processing 

Gnutella network is based on a cyclic graph 
 
Loops are problematic 
 
Two key solutions: 

  1. TTL (Time-To-Live): reduces flooding (7 by default) 
  2. Duplicate detection with unique request identifier 
  

Gnutella uses both (v0.7 is not using flooding anymore so 
the problem is alleviated) 

 
Even with duplicate detection cannot prevent receiving the 

same message many times (but can prevent 
propagation) 

 



Request messages 

Each peer keeps track of all messages it has seen  
 
Can forget about that after some time period  
 
Remember who first sent you a message  
 
If a second copy or subsequent copy of a message arrives, 

ignore it  
 



Response messages   

Use the same GUID as the message they are in response to  
 
Each peer routes a response msg to the peer from which it 

first received the original msg  
 
Drop message if did not see original  
 



Problems in original Gnutella reverse path 

Peer come and go à routes break 
 
Reverse path requires that the traversed route is used 

 This means that reverse path may not work 
 
The implementation requires state at the server 
 
 
Solutions 

 1. introduce more stable ultra nodes 
 2. send message toward known content sources à 
reduce overhead 
 3. Contact nodes directly! 



Review Questions 

Q: Does Gnutella guarantee that a file is located? 
A: No, the coverage of the network can be tuned with the TTL parameter.  
 
Q: What is the benefit of the local index?  
A: It is easy to perform keyword/fine-grained matching.  
 
Q: What is the drawback?  
A: Since there is no distributed index, flooding / selected flooding is used to 

find the files.  
 
Q: What can we do to improve? 
A: Add structure. This allows high-degree nodes to form (hubs) that also 

makes the system more friendly to the underlying Power Law 
distribution that has been observed. This results in a significant 
improvement, but the network is more dependable with the hubs. 



Ultra node 

Ultra node 

Ultra node 

Ultra node layer 

Flooding 
(Bloom filters) 

Leaf 
Leaf Leaf 

Leaf Data transfer 

The Gnutella v0.7 Architecture 

The newer Gnutella uses distributed indexes (at ultra nodes) 



Gnutella v0.7 routing 

Since version 0.6, Gnutella has been a composite network 
consisting of leaf nodes and ultra nodes. The leaf nodes have a 
small number of connections to ultra nodes, typically three 

 
The ultra nodes are hubs of connectivity, each being connected to 

more than 32 other ultra nodes. 
 
When a node with enough processing power joins the network, it 

becomes an ultra peer and establishes connections with other 
ultra nodes 

This network between the ultra nodes is flat and unstructured.  
These changes attempt to make the Gnutella network reflect the 

power-law distributions found in many natural systems. 



Query Routing Protocol I/III 

In Gnutella terminology, the leaf nodes and ultra nodes use 
the Query Routing Protocol to update routing tables, 
called Query Routing Table (QRT) 

 
The QRT consists of a table hashed keywords that is sent 

by a leaf node to its ultra nodes 
 
 Ultra nodes merge the available QRT structures that they 

have received from the leaf nodes, and exchange these 
merged tables with their neighbouring ultra nodes 



Query Routing Protocol II/III 

Query routing is performed by hashing the search words and 
then testing whether or not the resulting hash value is 
present in the QRT  

 
Ultrapeer forwards query to top-level connections and waits 

for responses  
 
Query is flooded outward until the TTL expires  
 



Query Routing Protocol III: Tuning the TTL 

The ultrapeer then waits for the results, and determines how 
rare matches are (the ratio between the number of 
results and the estimated number of visited peers)  

 
If matches are rare, the query is sent through more 

connections with a relatively high TTL  
 
If matches are more common but not sufficient, the query 

is sent down a few more connections with a low TTL  
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Ultra node 

Ultra node 

Ultra node 

Ultra node layer 

Flooding 
(Bloom filters) 

Leaf 
Leaf Leaf 

Leaf Data transfer 

The new Gnutella Architecture 

Ultra nodes > 32 
connections, flat 
unstructured network, 
32 leafs. Idea is to 
allow hubs to form. 

Leafs connect to 3 or 
more ultra nodes, 
inform hashed 
keywords to ultra node. 

Ultra nodes summarize 
keywords with Bloom 
filters (BF) and 
propagate them. 

Search is propagated by 
ultra nodes based on 
routing table (BF), TTL 
is used to adjust query 
results by ultra nodes.  
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Link D-E is traversed only once. 

Inefficient mapping that results in link D-E 
being traversed six times 
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Mapping the Gnutella Network  

Overlay networks can result in really bad application 
layer routing configurations unless the underlay is 
taken into account! 
Hubs help here if they are chosen wisely.  
Clustering can result in 3-5 orders of magnitude better 
performance than Gnutella v0.4 

Map the network by crawling or monitoring hubs 
Example: Gnutella v0.4 random topology has 
problems 



Improving Gnutella Search I/II 

Search has a tradeoff between network traffic, peer load, 
and probability of a query hit 

Three techniques: 
 Flooding: not scalable and results in a lot of traffic 
 Ring: Have a fixed TTL for the search. This was found to 
be problematic: how to set the TTL? 
 Expanding ring (iterative deepening): successively 
larger TTL counter until there is a match 
 These increase network load with duplicated query 
messages. 

Alternative technique: random walks 
 Query wanders about the network: reduces network load 
but increases search latency 
 Random k-walkers: replicate random-walks 

Also a number of policy-based and probabilistic techniques 



Improving Gnutella Search II 

•  Selective flooding can be combined with spanning trees, 
random walks, etc. Good for bootstrapping search. 

•  GIA by Y. Chawathe et al. (SIGCOMM 2003) outperforms 
Gnutella v0.4 by 3-5 orders of magnitude   

•  Design principles 
•  Explicitly account for node heterogeneity 
•  Query load proportional to node capacity 
 
•  Make high-capacity nodes easily reachable 

•  Dynamic topology adaptation converts them into high-
degree nodes 

•  Make high-capacity nodes have more answers 
•  Biased random walks and overload avoidance 

•  These results influenced the Gnutella V0.7 design 



Gnutella v0.4 Gnutella v0.7 

Decentralization Flat topology (random 
graph),  equal peers 

Random graph with two 
tiers. Two kinds of nodes, 
regular and ulta nodes. Ultra 
nodes are connectivity hubs 

Foundation  Flooding mechanism  Selective flooding using the 
super nodes 

Routing function  Flooding mechanism  Selective flooding 
mechanism 

Routing performance Search until Time-To-Live 
expires, no guarantee to 
locate data 

Search until Time-To-Live 
expires, second tier 
improves efficiency, no 
guarantee to locate data 
 

Routing state Constant (reverse path 
state, max rate and TTL 
determine max state) 

Constant (regular to ultra, 
ultra to ultra). Ultra nodes 
have to manage leaf node 
state. 

 
Reliability  

Performance degrades 
when the number of peer 
grows. No central point. 

Performance degrades when 
the number of peer grows. 
Hubs are central points that 
can be taken out. 
 



A Short Primer on Bloom Filters 



 Bloom filters in Gnutella v0.7 

Bloom filters are probabilistic structures used to store dictionaries 
A bit-vector that supports constant time querying of keywords 
Easy to merge two filters 
Many variants 
If space is at premium 

Decrease Increase 

Number of hash functions (k) Less computation 
Higher false positive rate 

More computation 
Lower false positive rate 

Size of filter (m) Smaller space requirements 
Higher false positive rate 

More space is needed 
Lower false positive rate 

Number of elements in the 
inserted set (n) 

Lower false positive rate Higher false positive rate 



Bloom Filters 

14

Fig. 9. Bloom filter variants grouped by usage scenarios.

Since there is no Bloom filter that fits all, one key question
that application designers should ask is whether false negatives
are tolerable or not. Relaxing this constraint can help drasti-
cally in reducing the overall false positive rate (cf. retouched
Bloom filters [50]), but raises also the question whether
the Bloom filter is the right data structure choice despite
alternative designs specific to the application domain (cf. [61]),
approximate dictionary-inspired approaches [6], [35], cache-
efficient variants (blocked Bloom filter) and Golomb coding
implementations as proposed by Putze et al [62], space-
efficient versions of cuckoo hashing [63], and more complex
but space-optimal alternatives [5], [6].
Each variant or replacement introduces a specific trade-

off involving execution time, space efficiency, and so on.
Ultimately, which probabilistic data structure is best suited
depends a lot on the application specifics. Indeed, the varia-
tions of the standard Bloom filter discussed in this Section are
commonly the result of specific requirements of network and
distributed system applications, a variety of which we present
in the following survey section.

IV. BLOOM FILTERS IN DISTRIBUTED COMPUTING

We have surveyed techniques for probabilistic representa-
tion of sets and functions. The applications of these structures
are manyfold, and they are widely used in various networking

systems, such as Web proxies and caches, database servers,
and routers. We focus on the following key usage scenarios:

• Caching for Web servers and storage servers.
• Supporting processing in P2P networks, in which prob-
abilistic structures can be used for summarizing content
and caching [28], [64].

• Packet routing and forwarding, in which Bloom filters
and variants have important roles in flow detection and
classification.

• Monitoring and measurement. Probabilistic techniques
can be used to store and process measurement data
summaries in routers and other network entities.

• Supporting security operations, such as flow admission
and intrusion detection.

Figure 9 shows an overview of Bloom filter variants that
can be used in the usage scenarios that this section focuses
on. For more detail, see Figure 15 at the end of this article.

A. Caching
Bloom filters have been applied extensively to caching in

distributed environments. To take an early example, Fan, Cao,
Almeida, and Broder proposed the Summary Cache [27], [28]
system, which uses Bloom filters for the distribution of Web
cache information. The system consists of cooperative proxies
that store and exchange summary cache data structures, es-
sentially Bloom filters. When a local cache miss happens, the
proxy in question will try to find out if another proxy has a
copy of the Web resource using the summary cache. If another
proxy has a copy, then the request is forwarded there.
In order for distributed proxy-based caching to work well,

the proxies need to have a way to compactly summarize
available content. In the Summary Cache system, proxies
periodically transfer the Bloom filters that represent the cache
contents (URL lists). Figure 10 illustrates the use of a Bloom
filter-based summary cache at a proxy. The summary cache
is consulted and used to find nearest servers or other proxies
with the requested content.
Dynamic content poses a challenge for caching content and

keeping the summary indexes up to date. Within a single
proxy, a Bloom filter representing the local content cache
needs to be recreated when the content changes. This can be
seen to be inefficient and as a solution the Summary Cache
uses counting Bloom filters for the maintenance of their local
cache contents, and then based on the updates a regular Bloom
filter is broadcast to other proxies.
The summary cache-based technique is used in the popular

Squid Web Proxy Cache1. Squid uses Bloom filters for so-
called cache digests. The system uses a 128-bit MD5 hash of
the key, a combination of the URL and the HTTP method, and
splits the hash into four equal chunks. Each chunk modulo the
digest size is used as the value for one of the Bloom filter hash
functions. Squid does not support deletions from the digest and
thus the digest must be periodically rebuilt to remove stale
information.
Bloom filters have been applied extensively in distributed

storage to minimize disk lookups. As an example, we consider
1www.squid-cache.org

Source: Tarkoma et al. Theory and Practice of Bloom Filters for distributed Systems. 2013. 
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hash functions by Henke et al. [4]. Later in Section II-C we
discuss relevant hashing techniques further.
A Bloom filter constructed based on S requires space O(n)

and can answer membership queries in O(1) time. Given x ∈
S, the Bloom filter will always report that x belongs to S, but
given y ̸∈ S the Bloom filter may report that y ∈ S.
Table I examines the behaviour of three key parameters

when their value is either decreased or increased. Increasing
or decreasing the number of hash functions towards kopt can
lower false positive ratio while increasing computation in
insertions and lookups. The cost is directly proportional to the
number of hash functions. The size of the filter can be used to
tune the space requirements and the false positive rate (fpr).
A larger filter will result in fewer false positives. Finally, the
size of the set that is inserted into the filter determines the
false positive rate. We note that although no false negatives
(fn) occur with regular BFs, some variants will be presented
later in the article that may result in false negatives.

A. False Positive Probability

We now derive the false positive probability rate of a Bloom
filter and the optimal number of hash functions for a given
false positive probability rate. We start with the assumption
that a hash function selects each array position with equal
probability. Let m denote the number of bits in the Bloom
filter. When inserting an element into the filter, the probability
that a certain bit is not set to one by a hash function is

1− 1
m

. (1)

Now, there are k hash functions, and the probability of any
of them not having set a specific bit to one is given by

(
1− 1

m

)k

. (2)

After inserting n elements to the filter, the probability that
a given bit is still zero is

(
1− 1

m

)kn

. (3)

And consequently the probability that the bit is one is

1−
(

1− 1
m

)kn

. (4)

For an element membership test, if all of the k array
positions in the filter computed by the hash functions are set
to one, the Bloom filter claims that the element belongs to the
set. The probability of this happening when the element is not
part of the set is given by

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−kn/m

)k
. (5)

We note that e−kn/m is a very close approximation of (1−
1
m )kn [1]. The false positive probability decreases as the size
of the Bloom filter, m, increases. The probability increases
with n as more elements are added. Now, we want to minimize
the probability of false positives, by minimizing (1−e−kn/m)k
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with respect to k. This is accomplished by taking the derivative
and equaling to zero, which gives the optimal value of k

kopt =
m

n
ln 2 ≈ 9m

13n
. (6)

This results in the false positive probability of
(

1
2

)k

≈ 0.6185m/n. (7)

Using the optimal number of hashes kopt, the false positive
probability can be rewritten and bounded

m

n
≥ 1

ln 2
. (8)

This means that in order to maintain a fixed false positive
probability, the length of a Bloom filter must grow linearly
with the number of elements inserted in the filter. The number
of bits m for the desired number of elements n and false
positive rate p, is given by

m = − n ln p

(ln 2)2
. (9)

Figure 3 presents the false positive probability rate p as a
function of the number of elements n in the filter and the filter
size m. An optimal number of hash functions k = (m/n) ln 2
has been assumed.
There is a factor of log2 e ≈ 1.44 between the amount of

space used by a Bloom filter and the optimal amount of space
that can be used. There are other data structures that use space
closer to the lower bound, but they are more complicated (cf.
[5], [6], [7]).
Recently, Bose et al. [8] have shown that the false positive

analysis originally given by Bloom and repeated in many sub-
sequent articles is optimistic and only a good approximation
for large Bloom filters. The revisited analysis proves that the
commonly used estimate (Eq. 5) is actually a lower bound and
the real false positive rate is larger than expected by theory,
especially for small values of m.

B. Operations
Standard Bloom filters do not support the removal of

elements. Removal of an element can be implemented by

BF False positive probability is given by: 
 
 
 
 
 
Optimal number of hash functions k: 
 
 
 
Size of filter given optimal number of hash functions: 
 
 
 
Details in the survey paper available on course page. 

TARKOMA et al.: THEORY AND PRACTICE OF BLOOM FILTERS FOR DISTRIBUTED SYSTEMS 133

hash functions by Henke et al. [4]. Later in Section II-C we
discuss relevant hashing techniques further.
A Bloom filter constructed based on S requires space O(n)

and can answer membership queries in O(1) time. Given x ∈
S, the Bloom filter will always report that x belongs to S, but
given y ̸∈ S the Bloom filter may report that y ∈ S.
Table I examines the behaviour of three key parameters

when their value is either decreased or increased. Increasing
or decreasing the number of hash functions towards kopt can
lower false positive ratio while increasing computation in
insertions and lookups. The cost is directly proportional to the
number of hash functions. The size of the filter can be used to
tune the space requirements and the false positive rate (fpr).
A larger filter will result in fewer false positives. Finally, the
size of the set that is inserted into the filter determines the
false positive rate. We note that although no false negatives
(fn) occur with regular BFs, some variants will be presented
later in the article that may result in false negatives.

A. False Positive Probability

We now derive the false positive probability rate of a Bloom
filter and the optimal number of hash functions for a given
false positive probability rate. We start with the assumption
that a hash function selects each array position with equal
probability. Let m denote the number of bits in the Bloom
filter. When inserting an element into the filter, the probability
that a certain bit is not set to one by a hash function is

1− 1
m

. (1)

Now, there are k hash functions, and the probability of any
of them not having set a specific bit to one is given by

(
1− 1

m

)k

. (2)

After inserting n elements to the filter, the probability that
a given bit is still zero is

(
1− 1

m

)kn

. (3)

And consequently the probability that the bit is one is

1−
(

1− 1
m

)kn

. (4)

For an element membership test, if all of the k array
positions in the filter computed by the hash functions are set
to one, the Bloom filter claims that the element belongs to the
set. The probability of this happening when the element is not
part of the set is given by

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−kn/m

)k
. (5)

We note that e−kn/m is a very close approximation of (1−
1
m )kn [1]. The false positive probability decreases as the size
of the Bloom filter, m, increases. The probability increases
with n as more elements are added. Now, we want to minimize
the probability of false positives, by minimizing (1−e−kn/m)k
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with respect to k. This is accomplished by taking the derivative
and equaling to zero, which gives the optimal value of k

kopt =
m

n
ln 2 ≈ 9m

13n
. (6)

This results in the false positive probability of
(

1
2

)k

≈ 0.6185m/n. (7)

Using the optimal number of hashes kopt, the false positive
probability can be rewritten and bounded

m

n
≥ 1

ln 2
. (8)

This means that in order to maintain a fixed false positive
probability, the length of a Bloom filter must grow linearly
with the number of elements inserted in the filter. The number
of bits m for the desired number of elements n and false
positive rate p, is given by

m = − n ln p

(ln 2)2
. (9)

Figure 3 presents the false positive probability rate p as a
function of the number of elements n in the filter and the filter
size m. An optimal number of hash functions k = (m/n) ln 2
has been assumed.
There is a factor of log2 e ≈ 1.44 between the amount of

space used by a Bloom filter and the optimal amount of space
that can be used. There are other data structures that use space
closer to the lower bound, but they are more complicated (cf.
[5], [6], [7]).
Recently, Bose et al. [8] have shown that the false positive

analysis originally given by Bloom and repeated in many sub-
sequent articles is optimistic and only a good approximation
for large Bloom filters. The revisited analysis proves that the
commonly used estimate (Eq. 5) is actually a lower bound and
the real false positive rate is larger than expected by theory,
especially for small values of m.

B. Operations
Standard Bloom filters do not support the removal of

elements. Removal of an element can be implemented by
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hash functions by Henke et al. [4]. Later in Section II-C we
discuss relevant hashing techniques further.
A Bloom filter constructed based on S requires space O(n)

and can answer membership queries in O(1) time. Given x ∈
S, the Bloom filter will always report that x belongs to S, but
given y ̸∈ S the Bloom filter may report that y ∈ S.
Table I examines the behaviour of three key parameters

when their value is either decreased or increased. Increasing
or decreasing the number of hash functions towards kopt can
lower false positive ratio while increasing computation in
insertions and lookups. The cost is directly proportional to the
number of hash functions. The size of the filter can be used to
tune the space requirements and the false positive rate (fpr).
A larger filter will result in fewer false positives. Finally, the
size of the set that is inserted into the filter determines the
false positive rate. We note that although no false negatives
(fn) occur with regular BFs, some variants will be presented
later in the article that may result in false negatives.

A. False Positive Probability

We now derive the false positive probability rate of a Bloom
filter and the optimal number of hash functions for a given
false positive probability rate. We start with the assumption
that a hash function selects each array position with equal
probability. Let m denote the number of bits in the Bloom
filter. When inserting an element into the filter, the probability
that a certain bit is not set to one by a hash function is

1− 1
m

. (1)

Now, there are k hash functions, and the probability of any
of them not having set a specific bit to one is given by

(
1− 1

m

)k

. (2)

After inserting n elements to the filter, the probability that
a given bit is still zero is

(
1− 1

m

)kn

. (3)

And consequently the probability that the bit is one is

1−
(

1− 1
m

)kn

. (4)

For an element membership test, if all of the k array
positions in the filter computed by the hash functions are set
to one, the Bloom filter claims that the element belongs to the
set. The probability of this happening when the element is not
part of the set is given by

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−kn/m

)k
. (5)

We note that e−kn/m is a very close approximation of (1−
1
m )kn [1]. The false positive probability decreases as the size
of the Bloom filter, m, increases. The probability increases
with n as more elements are added. Now, we want to minimize
the probability of false positives, by minimizing (1−e−kn/m)k
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with respect to k. This is accomplished by taking the derivative
and equaling to zero, which gives the optimal value of k

kopt =
m

n
ln 2 ≈ 9m

13n
. (6)

This results in the false positive probability of
(

1
2

)k

≈ 0.6185m/n. (7)

Using the optimal number of hashes kopt, the false positive
probability can be rewritten and bounded

m

n
≥ 1

ln 2
. (8)

This means that in order to maintain a fixed false positive
probability, the length of a Bloom filter must grow linearly
with the number of elements inserted in the filter. The number
of bits m for the desired number of elements n and false
positive rate p, is given by

m = − n ln p

(ln 2)2
. (9)

Figure 3 presents the false positive probability rate p as a
function of the number of elements n in the filter and the filter
size m. An optimal number of hash functions k = (m/n) ln 2
has been assumed.
There is a factor of log2 e ≈ 1.44 between the amount of

space used by a Bloom filter and the optimal amount of space
that can be used. There are other data structures that use space
closer to the lower bound, but they are more complicated (cf.
[5], [6], [7]).
Recently, Bose et al. [8] have shown that the false positive

analysis originally given by Bloom and repeated in many sub-
sequent articles is optimistic and only a good approximation
for large Bloom filters. The revisited analysis proves that the
commonly used estimate (Eq. 5) is actually a lower bound and
the real false positive rate is larger than expected by theory,
especially for small values of m.

B. Operations
Standard Bloom filters do not support the removal of

elements. Removal of an element can be implemented by

Bit not set to one 
After inserting n elements 
with k hash functions the 
bit is still zero  

All bit positions are set to 
one for k hash functions  
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hash functions by Henke et al. [4]. Later in Section II-C we
discuss relevant hashing techniques further.
A Bloom filter constructed based on S requires space O(n)

and can answer membership queries in O(1) time. Given x ∈
S, the Bloom filter will always report that x belongs to S, but
given y ̸∈ S the Bloom filter may report that y ∈ S.
Table I examines the behaviour of three key parameters

when their value is either decreased or increased. Increasing
or decreasing the number of hash functions towards kopt can
lower false positive ratio while increasing computation in
insertions and lookups. The cost is directly proportional to the
number of hash functions. The size of the filter can be used to
tune the space requirements and the false positive rate (fpr).
A larger filter will result in fewer false positives. Finally, the
size of the set that is inserted into the filter determines the
false positive rate. We note that although no false negatives
(fn) occur with regular BFs, some variants will be presented
later in the article that may result in false negatives.

A. False Positive Probability

We now derive the false positive probability rate of a Bloom
filter and the optimal number of hash functions for a given
false positive probability rate. We start with the assumption
that a hash function selects each array position with equal
probability. Let m denote the number of bits in the Bloom
filter. When inserting an element into the filter, the probability
that a certain bit is not set to one by a hash function is

1− 1
m

. (1)

Now, there are k hash functions, and the probability of any
of them not having set a specific bit to one is given by

(
1− 1

m

)k

. (2)

After inserting n elements to the filter, the probability that
a given bit is still zero is

(
1− 1

m

)kn

. (3)

And consequently the probability that the bit is one is

1−
(

1− 1
m

)kn

. (4)

For an element membership test, if all of the k array
positions in the filter computed by the hash functions are set
to one, the Bloom filter claims that the element belongs to the
set. The probability of this happening when the element is not
part of the set is given by

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−kn/m

)k
. (5)

We note that e−kn/m is a very close approximation of (1−
1
m )kn [1]. The false positive probability decreases as the size
of the Bloom filter, m, increases. The probability increases
with n as more elements are added. Now, we want to minimize
the probability of false positives, by minimizing (1−e−kn/m)k
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with respect to k. This is accomplished by taking the derivative
and equaling to zero, which gives the optimal value of k

kopt =
m

n
ln 2 ≈ 9m

13n
. (6)

This results in the false positive probability of
(

1
2

)k

≈ 0.6185m/n. (7)

Using the optimal number of hashes kopt, the false positive
probability can be rewritten and bounded

m

n
≥ 1

ln 2
. (8)

This means that in order to maintain a fixed false positive
probability, the length of a Bloom filter must grow linearly
with the number of elements inserted in the filter. The number
of bits m for the desired number of elements n and false
positive rate p, is given by

m = − n ln p

(ln 2)2
. (9)

Figure 3 presents the false positive probability rate p as a
function of the number of elements n in the filter and the filter
size m. An optimal number of hash functions k = (m/n) ln 2
has been assumed.
There is a factor of log2 e ≈ 1.44 between the amount of

space used by a Bloom filter and the optimal amount of space
that can be used. There are other data structures that use space
closer to the lower bound, but they are more complicated (cf.
[5], [6], [7]).
Recently, Bose et al. [8] have shown that the false positive

analysis originally given by Bloom and repeated in many sub-
sequent articles is optimistic and only a good approximation
for large Bloom filters. The revisited analysis proves that the
commonly used estimate (Eq. 5) is actually a lower bound and
the real false positive rate is larger than expected by theory,
especially for small values of m.

B. Operations
Standard Bloom filters do not support the removal of

elements. Removal of an element can be implemented by

BF False positive probability is given by: 
 
 
 
 
 
Optimal number of hash functions k: 
 
 
 
Size of filter given optimal number of hash functions: 
 
 
 
Details in the survey paper available on course page. 
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hash functions by Henke et al. [4]. Later in Section II-C we
discuss relevant hashing techniques further.
A Bloom filter constructed based on S requires space O(n)

and can answer membership queries in O(1) time. Given x ∈
S, the Bloom filter will always report that x belongs to S, but
given y ̸∈ S the Bloom filter may report that y ∈ S.
Table I examines the behaviour of three key parameters

when their value is either decreased or increased. Increasing
or decreasing the number of hash functions towards kopt can
lower false positive ratio while increasing computation in
insertions and lookups. The cost is directly proportional to the
number of hash functions. The size of the filter can be used to
tune the space requirements and the false positive rate (fpr).
A larger filter will result in fewer false positives. Finally, the
size of the set that is inserted into the filter determines the
false positive rate. We note that although no false negatives
(fn) occur with regular BFs, some variants will be presented
later in the article that may result in false negatives.

A. False Positive Probability

We now derive the false positive probability rate of a Bloom
filter and the optimal number of hash functions for a given
false positive probability rate. We start with the assumption
that a hash function selects each array position with equal
probability. Let m denote the number of bits in the Bloom
filter. When inserting an element into the filter, the probability
that a certain bit is not set to one by a hash function is

1− 1
m

. (1)

Now, there are k hash functions, and the probability of any
of them not having set a specific bit to one is given by

(
1− 1

m

)k

. (2)

After inserting n elements to the filter, the probability that
a given bit is still zero is

(
1− 1

m

)kn

. (3)

And consequently the probability that the bit is one is

1−
(

1− 1
m

)kn

. (4)

For an element membership test, if all of the k array
positions in the filter computed by the hash functions are set
to one, the Bloom filter claims that the element belongs to the
set. The probability of this happening when the element is not
part of the set is given by

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−kn/m

)k
. (5)

We note that e−kn/m is a very close approximation of (1−
1
m )kn [1]. The false positive probability decreases as the size
of the Bloom filter, m, increases. The probability increases
with n as more elements are added. Now, we want to minimize
the probability of false positives, by minimizing (1−e−kn/m)k
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with respect to k. This is accomplished by taking the derivative
and equaling to zero, which gives the optimal value of k

kopt =
m

n
ln 2 ≈ 9m

13n
. (6)

This results in the false positive probability of
(

1
2

)k

≈ 0.6185m/n. (7)

Using the optimal number of hashes kopt, the false positive
probability can be rewritten and bounded

m

n
≥ 1

ln 2
. (8)

This means that in order to maintain a fixed false positive
probability, the length of a Bloom filter must grow linearly
with the number of elements inserted in the filter. The number
of bits m for the desired number of elements n and false
positive rate p, is given by

m = − n ln p

(ln 2)2
. (9)

Figure 3 presents the false positive probability rate p as a
function of the number of elements n in the filter and the filter
size m. An optimal number of hash functions k = (m/n) ln 2
has been assumed.
There is a factor of log2 e ≈ 1.44 between the amount of

space used by a Bloom filter and the optimal amount of space
that can be used. There are other data structures that use space
closer to the lower bound, but they are more complicated (cf.
[5], [6], [7]).
Recently, Bose et al. [8] have shown that the false positive

analysis originally given by Bloom and repeated in many sub-
sequent articles is optimistic and only a good approximation
for large Bloom filters. The revisited analysis proves that the
commonly used estimate (Eq. 5) is actually a lower bound and
the real false positive rate is larger than expected by theory,
especially for small values of m.

B. Operations
Standard Bloom filters do not support the removal of

elements. Removal of an element can be implemented by
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hash functions by Henke et al. [4]. Later in Section II-C we
discuss relevant hashing techniques further.
A Bloom filter constructed based on S requires space O(n)

and can answer membership queries in O(1) time. Given x ∈
S, the Bloom filter will always report that x belongs to S, but
given y ̸∈ S the Bloom filter may report that y ∈ S.
Table I examines the behaviour of three key parameters

when their value is either decreased or increased. Increasing
or decreasing the number of hash functions towards kopt can
lower false positive ratio while increasing computation in
insertions and lookups. The cost is directly proportional to the
number of hash functions. The size of the filter can be used to
tune the space requirements and the false positive rate (fpr).
A larger filter will result in fewer false positives. Finally, the
size of the set that is inserted into the filter determines the
false positive rate. We note that although no false negatives
(fn) occur with regular BFs, some variants will be presented
later in the article that may result in false negatives.

A. False Positive Probability

We now derive the false positive probability rate of a Bloom
filter and the optimal number of hash functions for a given
false positive probability rate. We start with the assumption
that a hash function selects each array position with equal
probability. Let m denote the number of bits in the Bloom
filter. When inserting an element into the filter, the probability
that a certain bit is not set to one by a hash function is

1− 1
m

. (1)

Now, there are k hash functions, and the probability of any
of them not having set a specific bit to one is given by

(
1− 1

m

)k

. (2)

After inserting n elements to the filter, the probability that
a given bit is still zero is

(
1− 1

m

)kn

. (3)

And consequently the probability that the bit is one is

1−
(

1− 1
m

)kn

. (4)

For an element membership test, if all of the k array
positions in the filter computed by the hash functions are set
to one, the Bloom filter claims that the element belongs to the
set. The probability of this happening when the element is not
part of the set is given by

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−kn/m

)k
. (5)

We note that e−kn/m is a very close approximation of (1−
1
m )kn [1]. The false positive probability decreases as the size
of the Bloom filter, m, increases. The probability increases
with n as more elements are added. Now, we want to minimize
the probability of false positives, by minimizing (1−e−kn/m)k
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with respect to k. This is accomplished by taking the derivative
and equaling to zero, which gives the optimal value of k

kopt =
m

n
ln 2 ≈ 9m

13n
. (6)

This results in the false positive probability of
(

1
2

)k

≈ 0.6185m/n. (7)

Using the optimal number of hashes kopt, the false positive
probability can be rewritten and bounded

m

n
≥ 1

ln 2
. (8)

This means that in order to maintain a fixed false positive
probability, the length of a Bloom filter must grow linearly
with the number of elements inserted in the filter. The number
of bits m for the desired number of elements n and false
positive rate p, is given by

m = − n ln p

(ln 2)2
. (9)

Figure 3 presents the false positive probability rate p as a
function of the number of elements n in the filter and the filter
size m. An optimal number of hash functions k = (m/n) ln 2
has been assumed.
There is a factor of log2 e ≈ 1.44 between the amount of

space used by a Bloom filter and the optimal amount of space
that can be used. There are other data structures that use space
closer to the lower bound, but they are more complicated (cf.
[5], [6], [7]).
Recently, Bose et al. [8] have shown that the false positive

analysis originally given by Bloom and repeated in many sub-
sequent articles is optimistic and only a good approximation
for large Bloom filters. The revisited analysis proves that the
commonly used estimate (Eq. 5) is actually a lower bound and
the real false positive rate is larger than expected by theory,
especially for small values of m.

B. Operations
Standard Bloom filters do not support the removal of

elements. Removal of an element can be implemented by



If false positive rate is fixed, the filter size grows linearly with 
inserted elements. 
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TABLE II
KEY FEATURES OF THE BLOOM FILTER VARIANTS, INCLUDING THE ADDITIONAL CAPABILITIES: COUNTING (C), DELETION (D),

POPULARITY-AWARENESS (P), FALSE-NEGATIVES (FN), AND THE OUTPUT TYPE.

Filter Key feature C D P FN Output

Standard Bloom filter Is element x in set S? N N N N Boolean
Adaptive Bloom filter Frequency by increasing number of hash functions Y N N N Boolean
Bloomier filter Frequency and function value Y N N N Freq., f(x)
Compressed Bloom filter Compress filter for transmission N N N N Boolean
Counting Bloom filter Element frequency queries and deletion Y Y N M Boolean or freq.
Decaying Bloom filter Time-window Y Y N N Boolean
Deletable Bloom filter Probabilistic element removal N Y N N Boolean
Distance-sensitive Bloom filters Is x close to an item in S? N N N Y Boolean
Dynamic Bloom filter Dynamic growth of the filter Y Y N N Boolean
Filter Bank Mapping to elements and sets Y Y M N x, set, freq.
Generalized Bloom filter Two set of hash functions to code x with 1s and 0s N N N Y Boolean
Hierarchical Bloom filter String matching N N N N Boolean
Memory-optimized Bloom filter Multiple-choice single hash function N N N N Boolean
Popularity conscious Bloom filter Popularity-awareness with off-line tuning N N Y N Boolean
Retouched Bloom filter Allow some false negatives for better false positive rate N N N Y Boolean
Scalable Bloom filter Dynamic growth of the filter N N N N Boolean
Secure Bloom filters Privacy-preserving cryptographic filters N N N N Boolean
Space Code Bloom filter Frequency queries Y N M N Frequency
Spectral Bloom filter Element frequency queries Y Y N M Frequency
Split Bloom filter Set cardinality optimized multi-BF construct N N N N Boolean
Stable Bloom filter Has element x been seen before? N Y N Y Boolean
Variable-length Signature filter Popularity-aware with on-line tuning Y Y Y Y Boolean
Weighted Bloom filter Assign more bits to popular elements N N Y N Boolean

The secure indexes [58] by Goh enhance the BF insert and
query operations by applying pseudo-random functions twice,
first to generate element codewords using a secret key, and
second to derive the k index bits after including a set-specific
identifier as input to the keyed hash functions.
Finally, Goh proposes a simple technique to further obscure

the BF by randomly setting additional bits increasing the bar
for attackers at the cost of a fpr increase.
Encrypted Bloom filters by Bellovin and Cheswick [59]

propose a privacy-preserving filter variant of Bloom filters
which introduces a semi-trusted third party to transform one
party’s queries to a form suitable for querying the other
party’s BF, in such a way that the original query privacy
is preserved. Instead of undisclosing the keys of all parties
and securing the BF operations with keyed hash functions as
per Goh [58], Bellovin and Cheswick propose a specialized
form of encryption function where operations can be done on
encrypted data. More specifically, their proposal is based on
the Pohlig-Hellman cipher, which forms an Abelian group over
its keys when encrypting any given element.
Yet another refinement on privacy-preserving variants of

Bloom filters is the cryptographically secure Bloom filter
protocol proposed by [60]. In addition to providing a rea-
sonable security definition, the proposed protocol suite avoids
employing third parties by using cryptographic primitives
known as blind signature schemes and oblivious pseudoran-

dom functions.

X. Summary and discussion

Table II summarizes the distinguishing features of the
Bloom filter variants discussed in this section. The different
Bloom filter designs aim at addressing specific concerns
regarding space and transmission efficiency, false positive rate,
dynamic operation in terms of increasing workload, dynamic
operation in terms of insertions and deletions, counting and
frequencies, popularity-aware operation, and mapping to ele-
ments and sets instead of simple set membership tests. For
each variant, table II indicates the output type (e.g., boolean,
frequency, value) and whether counting (C), deletion (D),
or popularity-awareness (P) are supported (Yes/No/Maybe),
or false negatives (FN) are introduced. Bloom filter variants
with counting capabilities can also be used to probabilistically
encode arbitrary functions by considering the cardinality of
each set element being functional value and each set element
being a variable.
Bloom filters come in many shapes and forms, and they

are widely used in distributed systems due to their compact
nature and configurable trade-off between size and accuracy.
Making this choice and optimizing the parameters for the
expected uses cases are fundamental factors to achieve the
desired performance in practice.

Source: Tarkoma et al. Theory and Practice of Bloom Filters for distributed Systems. 2013. 
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Fig. 15. Summary of Bloom filter variants

In [130], Bloom filters are used to represent and query
ranges of multi-dimensional data. Range queries are handled
by segmenting the attribute range into separate Bloom filters
that represent membership in that segment.

V. SUMMARY
Bloom filters are a general aid for network processing

and improving the performance and scalability of distributed
systems. In Figure 15, The Bloom filter variants introduced in
this paper are categorized by application domain and supported
features. The Figure aims to help domain experts select an
appropriate Bloom filter based on their application. An expert
need only find their domain on the left side and pick a Bloom
filter on its right. Each rectangular bubble represents a Bloom
filter variant. Variants that support a certain feature are found
inside a highlighted area labeled with the name of that feature.
Approximate count and deletion support refers to the ability
to support approximate multiplicity and deletion of elements.
The variants that support this are derived from the Counting
Bloom Filter and include an array of fixed or variable size
counters. Memory efficiency means that the variant optimizes
the memory use of a Bloom filter in some fashion. These
are recommended for applications in which memory is scarce.
Partial matching means the ability to answer the question
if x is near an element contained in the filter. These allow
for example in-word matches for text search. High variability
variants allow rapid changes in the set of items stored in the

filter, such as those required by per-flow traffic monitoring.
Finally, Unbounded duplicate detection is a class of Bloom
filter that aims to represent a continuous stream of incoming
elements and detect duplicate elements in the stream. The
Figure also includes five variants that have been grouped
into General add-ons. These Bloom filter techniques can be
employed alone, or combined with another variant in the
Figure. For example, many Bloom filters can be combined
with Scalable Bloom Filter by increasing their length with
a new block of space after the false positive ratio reaches a
certain value.
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Worked Example 

•  Gnutella uses Bloom filters to store and disseminate keyword indexes 

•  1-hop replication in the flat ultranode layer, much improved design over 

flooding 

•  An ultrapeer maintains about 30 leafs and thus 30 Bloom filters, one for 

each leaf 

•  One leaf has about 1000 keywords in our example 

•  Assuming false positive rate of 0.1, for 1000 keywords we need 4793 

bits.  For 30 000 keywords we need 143 776 bits. 

•  There is overlap (some keywords are popular)! 

•  Gnutella uses 2**16 (65536) bits that is sufficient even when 

aggregating leaf BFs 

•  Experiments report ultrapeer BF 65% full and leaf BF 3% full 

•  Today having hundreds of KBs in the BF is not a problem, Gnutella 

design is old and today’s networks are much faster 
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hash functions by Henke et al. [4]. Later in Section II-C we
discuss relevant hashing techniques further.
A Bloom filter constructed based on S requires space O(n)

and can answer membership queries in O(1) time. Given x ∈
S, the Bloom filter will always report that x belongs to S, but
given y ̸∈ S the Bloom filter may report that y ∈ S.
Table I examines the behaviour of three key parameters

when their value is either decreased or increased. Increasing
or decreasing the number of hash functions towards kopt can
lower false positive ratio while increasing computation in
insertions and lookups. The cost is directly proportional to the
number of hash functions. The size of the filter can be used to
tune the space requirements and the false positive rate (fpr).
A larger filter will result in fewer false positives. Finally, the
size of the set that is inserted into the filter determines the
false positive rate. We note that although no false negatives
(fn) occur with regular BFs, some variants will be presented
later in the article that may result in false negatives.

A. False Positive Probability

We now derive the false positive probability rate of a Bloom
filter and the optimal number of hash functions for a given
false positive probability rate. We start with the assumption
that a hash function selects each array position with equal
probability. Let m denote the number of bits in the Bloom
filter. When inserting an element into the filter, the probability
that a certain bit is not set to one by a hash function is

1− 1
m

. (1)

Now, there are k hash functions, and the probability of any
of them not having set a specific bit to one is given by

(
1− 1

m

)k

. (2)

After inserting n elements to the filter, the probability that
a given bit is still zero is

(
1− 1

m

)kn

. (3)

And consequently the probability that the bit is one is

1−
(

1− 1
m

)kn

. (4)

For an element membership test, if all of the k array
positions in the filter computed by the hash functions are set
to one, the Bloom filter claims that the element belongs to the
set. The probability of this happening when the element is not
part of the set is given by

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−kn/m

)k
. (5)

We note that e−kn/m is a very close approximation of (1−
1
m )kn [1]. The false positive probability decreases as the size
of the Bloom filter, m, increases. The probability increases
with n as more elements are added. Now, we want to minimize
the probability of false positives, by minimizing (1−e−kn/m)k
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with respect to k. This is accomplished by taking the derivative
and equaling to zero, which gives the optimal value of k

kopt =
m

n
ln 2 ≈ 9m

13n
. (6)

This results in the false positive probability of
(

1
2

)k

≈ 0.6185m/n. (7)

Using the optimal number of hashes kopt, the false positive
probability can be rewritten and bounded

m

n
≥ 1

ln 2
. (8)

This means that in order to maintain a fixed false positive
probability, the length of a Bloom filter must grow linearly
with the number of elements inserted in the filter. The number
of bits m for the desired number of elements n and false
positive rate p, is given by

m = − n ln p

(ln 2)2
. (9)

Figure 3 presents the false positive probability rate p as a
function of the number of elements n in the filter and the filter
size m. An optimal number of hash functions k = (m/n) ln 2
has been assumed.
There is a factor of log2 e ≈ 1.44 between the amount of

space used by a Bloom filter and the optimal amount of space
that can be used. There are other data structures that use space
closer to the lower bound, but they are more complicated (cf.
[5], [6], [7]).
Recently, Bose et al. [8] have shown that the false positive

analysis originally given by Bloom and repeated in many sub-
sequent articles is optimistic and only a good approximation
for large Bloom filters. The revisited analysis proves that the
commonly used estimate (Eq. 5) is actually a lower bound and
the real false positive rate is larger than expected by theory,
especially for small values of m.

B. Operations
Standard Bloom filters do not support the removal of

elements. Removal of an element can be implemented by

Linear 
growth if p 
is fixed! 


