o
HELSINGIN YLIOPISTO

| HELSINGFORS UNIVERSITET

UNIVERSITY OF HELSINKI
|

Overlay and P2P Networks

Unstructured networks

Prof. Sasu Tarkoma
20.1.2014

.

Contents

« P2P index revisited

« Unstructured networks
« Gnutella
« Bloom filters
« BitTorrent
* Freenet

« Summary of unstructured networks

P2P Index Revisited

It is crucial to be able to find a data object in the network
An index maintains mappings between names and
locations

A P2P index can be
Centralized: single server/farm has the mappings
Distributed: mappings to a peer are discoverable at a
number of other peers
Local: peer has only local files in the index (and a
separate neighbours set)

We already have examples of these
Centralized: Napster
Distributed: Skype supernodes, Freenet
Local: Gnutella V0.4

P2P Indexes Revisited: To Forward?

P2P indexes can also be forwarding or non-forwarding

Forwarding indexes (most common) take the request toward
the destination based on the indexes of peers that
process the request

Non-forwarding indexes take the request directly to the data
(typically a single hop)

Examples
Forwarding index: Gnutella V0.7, Freenet
Non-forwarding index: Skype default case with
supernodes (relay case is forwarding)

P2P Indexes and Semantics

Most distributed indexes are human-readable and semantic
Keywords, domains, names, ...

Unstructured P2P systems support semantic indexes
Can implement various search algorithms (string
matching, range queries, ...)

Can support metadata

Semantic-free indexes do not assume semantics but rather
have a flat addressing space
Data centric operation: hash a file to a flat label
DHT algorithms: efficient routing on flat labels
Some node will be responsible for the address space
Constraint on where the data is stored
More difficult to implement string matching or range
queries in routing

Gnutella

Gnutella addresses some of Napster’s limitations

A decentralized P2P system based flooding the queries
Queries are flooded and responses are sent on the
reverse path (with TCP)

Downloads directly between peers (HTTP)

Open protocol specification, originally developed by Nullsoft
(bought by AOL)

Differs between versions
0.4 is the original version (simple flooding)
0.7 is more advanced (similar to KaZaa)
More structure (hierarchy is good for scalability!)

Gnutella v0.4 protocol messages |

« A peer joining the network needs to discover the address
of a peer who is already a member of the network
* New peer sends GNUTELLA CONNECT message

« A peer then uses PING messages to discover peers and
receives PONG messages.

« PONGs include data regarding peers and follow the
reverse path of PINGs.

Gnutella v0.4 protocol messages I

A peer uses the QUERY message to find files, and
receives QUERYHIT messages as replies (again on
reverse path)

« Peers forward QUERY messages (flooding)

The QUERYHIT contains the |IP address of the node that
can then be used for the file transfer (HTTP)

PUSH request message can be used to circumvent
firewalls (servent sends file to the requesting node after
receiving request)

HTTP Push proxy: proxy sends the push request (V0.7)
* Requester (HTTP)-> PP (1 hop Gnutella)2> FS
(HTTP) - Requester

 Alleviates problems of reverse path routing

‘ The Gnutella Protocol

Query message sent _
File transfer:

HTTP

over existing TCP

connections

Query

Peers forward

Query message

QueryHit —

QueryHit sent over Q
l/@/}

reverse path

Scalability: Query @
limited scope D) - @ —

flooding QueryHit —

Gnutella messages

Payload Descriptor:

Ping : does not contain any payload.

Pong: | Port |IP | Number of shared files

Size of shared

Query: | Minimum Speed Search Criteria

Query_hit: | Number of hits | Port | IP | Speed

Result Set Node ID

Source: www3.in.tum.de/teaching/ss09/DBSeminar/P2P.ppt

23 B

14 B

n+1 B

n+16 B

Message propagation

P7 P3 P1 P5 P2 P4 P6 P8

Gnu-Con— —Gnu-Con

& >
OK—s> OK
S”—\Gnu-Con

OK —
ePing _ tl—*lng i
Ping —— —>—Ping_y

ing

T ———Ping

— ——————— Ping M

T—™—Pong

Source: www3.in.tum.de/teaching/ss09/DBSeminar/P2P.ppt

.

Traffic breakdown

Traffic Breakdown by Message Type

PING -23 0P
Can be more
PONGs than
PINGs (see QUERYHIT -
previous 4.0P%
diagram)
15 - T ping- 13241700 mms-23%
EANa B pong - 22870 000 m=gs - 407
; 0 queary - 19059700 megs - 33%
40.00% N queryhit- 2295 500 megs - 4%
[puzh- 3000 megs- o
QLERY -
23.0%%

From “A Quantitative Analysis of the Gnutella Network Traffic”

Pings and Pongs Example

Trees vs graphs

Tree
N nodes, N-1 links

Network with N hosts and M connections, M >= N-1 then
(M — (N -1)) loop/redundant connections

These make the network more robust, but increase
communications overhead

Loops result in infinite message loops (unless specific loop
prevention measures are implemented)

Looping and message processing

Gnutella network is based on a cyclic graph
Loops are problematic

Two key solutions:
1. TTL (Time-To-Live): reduces flooding (7 by default)
2. Duplicate detection with unique request identifier

Gnutella uses both (v0.7 is not using flooding anymore so
the problem is alleviated)

Even with duplicate detection cannot prevent receiving the
same message many times (but can prevent
propagation)

Request messages

Each peer keeps track of all messages it has seen
Can forget about that after some time period
Remember who first sent you a message

If a second copy or subsequent copy of a message arrives,
ignore it

Response messages

Use the same GUID as the message they are in response to

Each peer routes a response msg to the peer from which it
first received the original msg

Drop message if did not see original

Problems in original Gnutella reverse path

Peer come and go - routes break

Reverse path requires that the traversed route is used
This means that reverse path may not work

The implementation requires state at the server

Solutions
1. introduce more stable ultra nodes
2. send message toward known content sources 2>
reduce overhead
3. Contact nodes directly!

Review Questions

Q: Does Gnutella guarantee that a file is located?
A: No, the coverage of the network can be tuned with the TTL parameter.

Q: What is the benefit of the local index?
A: It is easy to perform keyword/fine-grained matching.

Q: What is the drawback?
A: Since there is no distributed index, flooding / selected flooding is used to
find the files.

Q: What can we do to improve?

A: Add structure. This allows high-degree nodes to form (hubs) that also
makes the system more friendly to the underlying Power Law
distribution that has been observed. This results in a significant
improvement, but the network is more dependable with the hubs.

- The Gnutella v0.7 Architecture

Ultra node layer

Flooding
(Bloom filters)
Ultra node |« » Ultra node
A
Leaf
Leaf
Leaf Pata transfef Leaf

The newer Gnutella uses distributed indexes (at ultra nodes)

Gnutella v0.7 routing

Since version 0.6, Gnutella has been a composite network
consisting of leaf nodes and ultra nodes. The leaf nodes have a
small number of connections to ultra nodes, typically three

The ultra nodes are hubs of connectivity, each being connected to
more than 32 other ultra nodes.

When a node with enough processing power joins the network, it
becomes an ultra peer and establishes connections with other
ultra nodes

This network between the ultra nodes is flat and unstructured.

These changes attempt to make the Gnutella network reflect the
power-law distributions found in many natural systems.

Query Routing Protocol I/l

In Gnutella terminology, the leaf nodes and ultra nodes use
the Query Routing Protocol to update routing tables,
called Query Routing Table (QRT)

The QRT consists of a table hashed keywords that is sent
by a leaf node to its ultra nodes

Ultra nodes merge the available QRT structures that they
have received from the leaf nodes, and exchange these
merged tables with their neighbouring ultra nodes

Query Routing Protocol I/l

Query routing is performed by hashing the search words and
then testing whether or not the resulting hash value is
present in the QRT

Ultrapeer forwards query to top-level connections and waits
for responses

Query is flooded outward until the TTL expires

Query Routing Protocol lll: Tuning the TTL

The ultrapeer then waits for the results, and determines how
rare matches are (the ratio between the number of
results and the estimated number of visited peers)

If matches are rare, the query is sent through more
connections with a relatively high TTL

If matches are more common but not sufficient, the query
is sent down a few more connections with a low TTL

Message Propagation

L2 L3 L1 S1 S3 S2 L7 L6 L5
~——Gnu-Con
OK ~—Ping

— N
~—Ping \ Pi ping
ékpong/
pong pong
gpong:/
pong
<—

Source: www3.in.tum.de/teaching/ss09/DBSeminar/P2P.ppt

L4

- The new Gnutella Architecture

Ultra nodes summarize
keywords with Bloom
filters (BF) and
propagate them. Ultra node layer

Ultra node

_,/ Ultra nodes > 32
/ _ \ connections, flat
Flooding ™\ ™~ unstructured network,
(Bloom filters) 32 leafs. Idea is to
Ultra node |« >(' JItra node allow hubs to form.

Vi o
RN

Leaf
Leaf Pata transfef Leaf

Leafs connect to 3 or
more ultra nodes,

inform hashed

keywords to ultra node.j

Search is propagated by
ultra nodes based on
routing table (BF), TTL
is used to adjust query
results by ultra nodes.

Mapping the Gnutella Network

Map the network by crawling or monitoring hubs

Example: Gnutella v0.4 random topology has
problems

A F A .. F
A A AR T
G’ §| ’ G I- Ty
B — D r—— E o G B — D E — G
AT TN
\\‘; ; \\\ /,//
C H C <« H
Perfect mapping for message from A. Inefficient mapping that results in link D-E
Link D-E is traversed only once. being traversed six times

Overla networks can result in really bad application
er routlng configurations unless the underlay is
ta en into account!

Hubs help here if they are chosen wisely.

Clustering can result in 3-5 orders of magnitude better
performance than Gnutella v0.4

Improving Gnutella Search I/l

Search has a tradeoff between network traffic, peer load,
and probability of a query hit

Three techniques:
Flooding: not scalable and results in a lot of traffic
Ring: Have a fixed TTL for the search. This was found to
be problematic: how to set the TTL?
Expanding ring (iterative deepening): successively
larger TTL counter until there is a match
These increase network load with duplicated query
messages.

Alternative technique: random walks
Query wanders about the network: reduces network load
but increases search latency
Random k-walkers: replicate random-walks

Also a number of policy-based and probabilistic techniques

Improving Gnutella Search Il

Selective flooding can be combined with spanning trees,
random walks, etc. Good for bootstrapping search.
GIA by Y. Chawathe et al. (SIGCOMM 2003) outperforms

Gnutella v0.4 by 3-5 orders of magnitude

Design principles
» Explicitly account for node heterogeneity
* Query load proportional to node capacity

« Make high-capacity nodes easily reachable
« Dynamic topology adaptation converts them into high-
degree nodes
« Make high-capacity nodes have more answers
« Biased random walks and overload avoidance
These results influenced the Gnutella V0.7 design

Flat topology (random
graph), equal peers

Random graph with two
tiers. Two kinds of nodes,
regular and ulta nodes. Ultra
nodes are connectivity hubs

Flooding mechanism

Selective flooding using the
super nodes

Flooding mechanism

Selective flooding
mechanism

Search until Time-To-Live
expires, no guarantee to
locate data

Search until Time-To-Live
expires, second tier
improves efficiency, no
guarantee to locate data

Constant (reverse path
state, max rate and TTL
determine max state)

Constant (regular to ultra,
ultra to ultra). Ultra nodes
have to manage leaf node
state.

Performance degrades
when the number of peer
grows. No central point.

Performance degrades when
the number of peer grows.
Hubs are central points that
can be taken out.

»

A Short Primer on Bloom Filters

Bloom filters in Gnutella v0.7

Bloom filters are probabilistic structures used to store dictionaries

A bit-vector that supports constant time querying of keywords
Easy to merge two filters

Many variants

If space is at premium

Decrease

Increase

Number of hash functions (k)

Less computation
Higher false positive rate

More computation
Lower false positive rate

Size of filter (m)

Smaller space requirements
Higher false positive rate

More space is needed
Lower false positive rate

Number of elements in the
inserted set (n)

Lower false positive rate

Higher false positive rate

Bloom Filters

Compressed BF

Data Popularity
Conscious BF

Retouched BF

Counting Bloom Filters

Regular Bloom Filters

Decaying BF

Source: Tarkoma et al. Theory and Practice of Bloom Filters for distributed Systems. 2013.

»

Example Bloom filter

4 %\

Data: = is the object key to insert into the Bloom filter.

Function: insert(x)

for j:1...k do

/* Loop all hash functions k

14— hj ('JI);

if B; == 0O then

/* Bloom filter had zero bit at
position ¢

Bz' «— 1;

end
end

* /

x /

Algorithm 1: Pseudocode for Bloom filter insertion

Data: = 1s the object key for which membership is tested.
Function: ismember(x) returns true or false to the
membership test

m < 1;
< 1
while m == 1 and j < k do
14+ hj(;l:);
if B; == 0O then
| m + 0;
end
J<J+ L
end
return m;

Algorithm 2: Pseudocode for Bloom member test

BF False positive probability is given by:

kn
1 k
1—(1—— %(l—e_k"/m) |

m

- All bit positions are set to
o| Bit nlf' one forpk hash functions

Wi
kopt 1 b1

Size of filter given optimal number of hash functions:

nilnp
(In2)2’
Details in the survey paper available on course page.

m — —

BF False positive probability is given by:

1 kn k L
1 (1--) ~ (1—e—k"/m) |
m

Optimal number of hash functions k:

m IMm
kopt = —In2 ~ —.
pt n " 13n

Size of filter given optimal number of hash functions:

nilnp
(In2)2’
Details in the survey paper available on course page.

m — —

False positive rate of Bloom filters

1 F— + r 1 T T R daa st L e
e L L L e o "— -
- . e
- P -
- . o
- .
- -’
- '
’ A
7

~
0.1 L - ALl -
’ e s 4

¢ S .‘-f' 4

0.01 f e
- r4 K (:’ !
i / I"’ -:‘ ,-": .II
0.001 | gt
- / f ': !.
- 4 4 i !
- : !
; f]

0.0001 | / =
1e-005 | S| S

1e-006 ¢ Z

1e-007 [e :

1e-008 /

False positive probability (p)

T

tegog L ti St 1L —
1 10 100 1000 10000 100000

Number of inserted elements (n)

If false positive rate is fixed, the filter size grows linearly with
inserted elements.

Filter‘

Counting Bloom filter
Decaying Bloom filter
Deletable Bloom filter
Distance-sensitive Bloom filters
Dynamic Bloom filter

Filter Bank

Generalized Bloom filter
Hierarchical Bloom filter
Memory-optimized Bloom filter
Popularity conscious Bloom filter
Retouched Bloom filter
Scalable Bloom filter

Secure Bloom filters

Space Code Bloom filter
Spectral Bloom filter

Split Bloom filter

Stable Bloom filter
Variable-length Signature filter
Weighted Bloom filter

Element frequency queries and deletion
Time-window
Probabilistic element removal
Is x close to an item in S?
Dynamic growth of the filter
Mapping to elements and sets
Two set of hash functions to code = with 1s and Os
String matching
Multiple-choice single hash function
Popularity-awareness with off-line tuning
Allow some false negatives for better false positive rate
Dynamic growth of the filter
Privacy-preserving cryptographic filters
Frequency queries
Element frequency queries
Set cardinality optimized multi-BF construct
Has element x been seen before?
Popularity-aware with on-line tuning

Assign more bits to popular elements

Z K22 ~<KZZZZ2Z27Z2Z<KKZZ<KKZ<KK|Z|I|IO

Z KK Z2<KZZ2Z2Z2Z2Z2ZZAKAKZA<KKKZZZ|Z||O

X < ZZ2ZZ2ZZL 222K 2Z22Z2Z2Z2Z22Z22Z2ZZZ2ZZ|™

Z <K< ZZ 22 2Z~<2Z22Z22~<2Z22Z~<2Z22ZZ2ZZZ|\Z

Key feature FN Output
Standarc.l Bloom filter Is element = in set S? Boolean
Adaptive Bloom filter Frequency by increasing number of hash functions Boolean
Bloomier filter Frequency and function value Freq., f(x)
Compressed Bloom filter Compress filter for transmission Boolean

Boolean or freq.
Boolean
Boolean
Boolean
Boolean

x, set, freq.
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean

Frequency

Frequency
Boolean
Boolean
Boolean
Boolean

Source: Tarkoma et al. Theory and Practice of Bloom Filters for distributed Systems. 2013.

[Approximate Count and Deletion Support\
~ (Distributed Search, Informed Search, Caching, . . ()
. O Shortest Path Distance Calculation [! FllterJ L Sl B)

\ [Dynamic BF J Scalable BF
\ & J
(" Search with Known Popularit) (y
Fth/ (Weighted BF J Retouched BF
O (\] (Data Popularity)
ici ___Conscious BE
g \ Memory Efficiency A E J
P2P File Sharing, Resource location { e)
o
L (Memory-Optimized BF} — : ~N
Partial Matchin
N \ ’) J

4 Networking, Database
P‘artial Match Search

C

[Hierarchical BF

[High Variability

(& A\~

/" High-speed per-Flow Variable-Length
'Ilaffic Monitoring Signature BF

L

~N (Distance-sensitive BF)
=/
\

J(Space Code BF

Adaptive BF J
/ Unbounded Duplica@ (>)]

& .
Detection

(" Duplicate Detection : : Generic _ ;
Hint-Based Routing [Time Decaying BF] Add-ons [Dynamic BF J[Generahzed BF

(Decaying BF J
& N\ 7%

Source: Tarkoma et al. Theory and Practice of Bloom Filters for distributed Systems. 2013.

\;J;J) _

[Scalable BF)[Bloomier Filterj[Secure BF

Worked Example

Gnutella uses Bloom filters to store and disseminate keyword indexes
1-hop replication in the flat ultranode layer, much improved design over
flooding

An ultrapeer maintains about 30 leafs and thus 30 Bloom filters, one for

each leaf

One leaf has about 1000 keywords in our example

Linear
Assuming false positive rate of 0.1, for 1000 keywords we need 4793 growth if P

bits. For 30 000 keywords we need 143 776 bits. IS fixed!

There is overlap (some keywords are popular)!
ninp

Gnutella uses 2**16 (65536) bits that is sufficient even when m = — ()2 .
In 2

aggregating leaf BFs
Experiments report ultrapeer BF 65% full and leaf BF 3% full
Today having hundreds of KBs in the BF is not a problem, Gnutella

design is old and today’s networks are much faster

