
Overlay and P2P Networks

Applications

Prof. Sasu Tarkoma

10.2.2014

Contents

•  Geometry and discussion on DHTs

•  Applications
•  BitTorrent Mainline DHT
•  Scribe and PAST
•  P2PSIP
•  Continued..

Summary

•  Overlay networks have been proposed
–  Searching, storing, routing, notification,..
–  Lookup (Chord, Tapestry, Pastry),

coordination primitives (i3), middlebox
support (DOA)

–  Logarithmic scalability, decentralised,…

•  Many applications for overlays
–  Lookup, rendezvous, data distribution

and dissemination, coordination, service
composition, general indirection support

•  Deployment open. PlanetLab.

CAN Chord Kademlia Koorde Pastry Tapestry Viceroy

Foundation Multi-dimensional
space (d-
dimensional
torus)

Circular
space

XOR metric de Bruijn
graph

Plaxton-style
mesh

Plaxton-style
mesh

Butterfly
network

Routing
function

Maps (key,value)
pairs to
coordinate space

Matching
key and
nodeID

Matching
key and
nodeID

Matching key
and nodeID

Matching key
and prefix in
nodeID

Suffix
matching

Routing using
levels of tree,
vicinity
search

System
parameters

Number of peers
N, number of
dimensions d

Number of
peers N

Number of
peers N,
base of peer
identifier B

Number of
peers N

Number of
peers N,
base of peer
identifier B

Number of
peers N,
base of peer
identifier B

Number of
peers N

Routing
performance

O(dN1/d) O(log N) O(logB N) +
small
constant

Between
O(log log N)
and O(log N),
depending on
state

O(logB N)

O(logB N) O(log N)

Routing state 2d log N BlogB N + B

From
constant to
log N

2BlogB N

logB N Constant

Joins/leaves 2d (log N)2

logB N +
small
constant

log N

logB N

logB N

log N

DHT: A General Approach

What is an address?

Base b with n digits

How to route efficiently?

Fix at least one digit per hop or take to the numerically

closest destination based on routing table

How efficient is this?

Logb N steps gives O(log N) state and O(log N) hops!

DHT: A General Approach

How to populate routing table?

Iterative nearest neighbour search to fill the routing table.
Get enough information to be able to populate the routing

table.

Comparing geometries

Gummadi et al. compared the different geometries, including
the tree, hypercube, butterfly, ring, and XOR geometries.

Loguinov et al. complemented this list with de Bruijn graphs.

The conclusions of these comparisons include that the ring,

XOR, and de Bruijn geometries are more flexible than the
others and permit the choice of neighbours and
alternative routes

The ring and XOR geometries were also found to be the

most flexible in terms of choosing neighbours and routes

Only de Bruijn graphs allow alternate paths that are

independent of each other

Comparison

Can you choose neighbours?

Can you choose routes?

Are there alternative routes?

Are there alternative routes without overlap?

Comparison

Tree Hypercube Ring Butterfly XOR De
Bruijn

Neighbour
selection

Yes 1 Yes 1 Yes No

Route
selection

1 Yes Yes 1 Some Yes

Sequential
neighbours

No No Yes No No Yes

Independent
paths

No No No No No Yes

Discussion

Based on previous table the ring looks pretty good

But this is partly due to the sequential neighbours property

(predecessor and successor on the ring)

If sequential neighbours is added to other geometries, XOR

and de Bruijn are also good

Comparison: Geometries

We observe that the foundations differ across the
algorithms, but result in similar scalability properties

The conclusions of several comparisons of the geometries

are that the ring, XOR, and de Bruijn geometries are
more flexible than the others and permit the choice of
neighbours and alternative routes

Note: it is possible to combine these

 Example: Pastry that combines the tree and ring
geometries

Comparison: Routing

The routing tables of DHTs can vary from size O(1) to O(n).
The algorithms need to balance between maintenance
cost and lookup cost

 From the view point of routing state Chord, Pastry, and
Tapestry offer logarithmic routing table sizes, whereas
Koorde and Viceroy and support constant or near-
constant sizes

Churn and dynamic peers can also be supported with
logarithmic cost in some of the systems, such as Koorde,
Pastry, Tapestry, and Viceroy

Recent analysis indicates that large routing tables actually
lead to both low traffic and low lookup hops. These good
design points translate into one-hop routing for systems
of medium size and two-hop routing for large systems

Comparison: Churn

Li et al. provide a comparison of different DHTs under churn
They examine the fundamental design choices of systems

including Tapestry, Chord, and Kademlia. The insights
based on this work include the following:

•  Larger routing tables are more cost-effective than more
frequent periodic stabilization

•  Knowledge about new nodes during lookups may allow
to eliminate the need for stabilization

•  Parallel lookups result in reduced latency due to
timeouts, which provide information about the network
conditions

Comparison: Network Proximity

Support for network proximity is one key feature of overlay
algorithms. The three basic models for proximity
awareness in DHTs are:
–  Geographic Layout. Node identifiers are created in

such a way that nodes that are close in the network
topology are close in the nodeId space

–  Proximity Routing. The routing tables do not take
network proximity into account; however, the routing
algorithm can choose a node from the routing table
that is closest in terms of network proximity

–  Proximity Neighbour Selection. In this model, the
routing table construction takes network proximity into
account. Routing table entries are chosen in such a
way that at least some of them are close in the
network topology to the current node

Asymptotic Tradeoffs

We analyze the asymptotic tradeoff curve between the
routing table size and the network diameter

Analysis of the tradeoffs between the two metrics indicate
that the routing table size of Ω(log n) is a threshold
point that separates two distinct state-efficiency regions

One can observe that this point is in the middle of the
symbolic asymptotic curve. If the routing table size is
asymptotically smaller or equal, the requirement for
congestion-free operation prevents it from achieving the
smaller asymptotic diameter

 When the routing table size is larger, the requirement for
congestion-free operation does not limit the system
anymore

O(1) O(log n) O(n1/d) O(n) Worst-case
distance

Routing table
size

0

<= d

log n

n 1

2

3

4

Routing table size and network distance

Criticism

There have been two main criticisms of structured systems
The first pertains to peer transience, which is an important

factor in maintaining robustness. Transient peers result in
churn, which is a current concern with DHTs.

The second criticism of structured systems stems from their
foundation in consistent hashing, which makes it more
challenging to implement scalable query processing than
for unstructured systems. Given that the popular file-
sharing applications rely extensively on metadata based
queries, simple exact-match key searches are not
sufficient for them and additional solutions are needed on
top of the basic DHT API

It is also possible to combine structured and unstructured
algorithms in so called hybrid models

Applications

BitTorrent Mainline DHT

Decentralized tracker (trackerless torrent)

Based on Kademlia

Uses a custom RPC based on UDP

The key is the info-hash, the hash of the metadata. It

uniquely identifies a torrent.

The data is a peer list of the peers in the swarm

Torrents have bootstrap nodes in the overlay

BitTorrent Mainline DHT

Each peer announces itself with the distributed tracker
 Looking up the 8 nodes closest to the info-hash of the
torrent and sending an announce message to them

Those 8 nodes will then add the announcing peer to the

peer list stored at that info-hash

A peer joins a torrent by looking up the peer list at a specific

info-hash

Nodes return the peer list if they have it

Kademlia in Bittorrent Mainline DHT

The implementation extends the single bit model discussed
before

The single bit model can be seen to have a prefix first n-1

bits need to match for the nth list

The extension introduces prefix (group of bits)-based

operation with width w for digits, giving 2w – 1 k-buckets
with the missing one containing the node ID

An m-bit prefix reduces the maximum number of lookups

from log2 n to log2
w n

This results in a prefix-based routing table!

Kademlia Routing Table Revisited

Each node knows more about close nodes than distant nodes
Key space of each bucket grows with the power of 2 with the distance
Querying for an ID will on average halve the distance to the target in each step

Kademlia Routing Table Revisited

Each node knows more about close nodes than distant
nodes

Key space of each bucket grows with the power of 2 with
the distance

Querying for an ID will on average halve the distance to
the target in the each step

Node distance and subtrees

Buckets

Query Routing

Goal: Find k nodes closest to ID T
Initial Phase:
• Select α nodes closest to T from the routing table
• Send FIND_NODE(T) to each of the α nodes in parallel
Iteration:
• Select α nodes closest to T from the results of previous

RPC
• Send FIND_NODE(T) to each of the α nodes in parallel
• Terminate when a round of FIND_NODE(T) fails to return
any closer nodes
Final Phase:
• Send FIND_NODE(T) to all of k closest nodes not already

queried
• Return when have results from all the k-closest nodes.

Node Joining & Routing Table
Evolution

! Joining Node (u):
"  Borrow an alive node�s ID (w) off-

line
"  Initial routing table has a single k-

bucket containing u and w.

11…11 00…00

1 0

! Inserting new entry (v)

Find bucket B with
longest common prefix as v

Is B
full?

insert

no

B has
u?

yes

Don�t insert

no

Split B, redistribute
contacts & insert v

yes

"  u performs FIND_NODE(u) to learn about
other nodes

1
1 0

0

1

1

1 0

0

0

1

1

1 0

0

0

8/13
Petar Maymounkov and David Mazières, Kademlia:
A Peer-to-peer Information System Based on the XOR Metric. Presentation at IPTPS 2002.

Comparisons

Kademlia and Chord
Chord has only one direction on the ring
 Incoming traffic cannot be used to improve routing table
But Chord has pred/succ (sequential neighbours)

Kademlia and Pastry

Pastry has more complex table
 Pastry has sequential neighbours

What about Mainline DHT in practice?

Implementation Details

Mainline DHT implements Kademlia with a width of 2, and k
= 8 nodes in each bucket

Keys are replicated on the three nodes with nodeID nearest

the key with a 30-minute timeout

If a node fails, the keys will be lost

Nodes learn implicitly

Iterative queries, incoming messages
 Lazy removal
Ping LRU node when bucket full

Reported Problems with Mainline DHT

An Analysis of BitTorrent’s Two Kademlia-Based DHTs
Scott A. Crosby and Dan S. Wallach, 2007
Do the DHTs work correctly? No. Mainline BitTorrent dead-ends

its lookups 20% of the time and Azureus nodes reject half of the
key store attempts.

What is the DHT lookup performance? Both implementations are
extremely slow, with median lookup times around a minute.
Why do lookups take over a minute? Lookups are slow because
the client must wait for RPCs to timeout while contacting dead nodes.

Dead nodes are commonly encountered in the area closest to the
destination key.

Why are the routing tables full of dead nodes? Kademlia’s use of
iterative routing limits the ability for a node to opportunistically
discover dead nodes in its routing table (refresh, explicit ping)

Design Problems

Iterative search can return dead nodes (no checking)
Recursive routing would implicitly define liveness

Dead nodes are pruned only with refresh or explicit ping

XOR metric

cannot enumerate nodes (as in Pastry or Chord)

Nodes can be ordered based on distance to given key

PAST

PAST: Cooperative, Archival File Storage and Distribution

Runs on top of Pastry, pastry routes to closest live nodeId

Strong persistence, high availability, scalability

API:

Insert: store replica of a file at k diverse storage nodes
Lookup: retrieve file from a nearby live storage node
Reclaim: free storage associated with a file

Files are immutable!

PAST File Storage
PAST File Storage

Storage Invariant:
File �replicas� are
stored on k nodes
with nodeIds
closest to fileId

(k is bounded by
the leaf set size)

fileId

Insert fileId

k=4

PAST File Retrieval PAST File Retrieval

fileId file located in log16 N
steps (expected)

usually locates
replica nearest client
C

Lookup

k replicas C

PAST Features

Caching
On nodes along the route of lookup and insert messages
(as in Freenet)
 Aim to balance load

Security

No read access control, encryption can be used
 File authenticity with certificates
 System integrity: ids non-forgeable, sign sensitive
messages
Randomized routing

SCRIBE SCRIBE

SCRIBE: Large-scale, decentralized multicast

Intrastructure to support topic-based publish/

subscribe applications

Reasonable performance
compared to IP multicast

topicId

Subscribe topicId

Publish topicId

Session Initiation Protocol (SIP)

An Application-layer control (signaling) protocol for creating,
modifying and terminating sessions with one or more
participants

Sessions include Internet multimedia conferences, Internet

telephone calls and multimedia distribution

Members in a session can communicate via multicast or via

a mesh of unicast relations, or a combination of these

Text based, model similar to HTTP

DNS
Server

Location
Service

Proxy Server Proxy Server

User Agent
Bob

User Agent
Alice

Internet
DNS

SIP (SDP)

 SIP
(SDP)

 SIP
(SDP)

Media (RTP)

Location lookup

P2P SIP

SIP is already ready for P2P Active standardization in IETF

Uses symmetric, direct client-to-client communication

Intelligence resides mostly on the network border in the user

agents
The proxies and the registrar only perform lookup and

routing

The lookup/routing functions of the proxies/registrar can be
replaced by a DHT overlay built in the user agents.

By adding join, leave and lookup capabilities, a SIP user

agent can be transformed into a peer capable of
operating in a P2P network

User Agent
Bob

User Agent
Alice

Internet

 SIP
(SDP)

 SIP
(SDP)

Media (RTP)

Proxy
(SIP/DHT)

Proxy
(SIP/DHT)

Proxy
(SIP/DHT) Proxy

(SIP/DHT)

Proxy
(SIP/DHT)

DHT

