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A solution to Bitonic euclidean traveling-salesman problem

We are given an array of n points p1, …, pn. We can assume that this array is sorted by the 
x-coordinate in increasing order, otherwise we could just sort it  O(n*log(n)) time and the time 
complexity of this algorithm wouldn't change. For each index i=1..n-1 we will calculate what is the 
minimum cost when we assign all the points  p1, …, pi to exactly one of the two paths (except the 
leftmost point p0, which is in both of the paths). The cases would look like this:

From the picture we can see that there are two paths that both start from the leftmost point and each 
of the points on the left side of pi are in at least one of the two paths. The minimum weight of such a
graph will be denoted by c(i) and it is the sum of all used edges. We will also keep track for each 
index i what is the rightmost point before pi that is in the different path (this might be p1 even though
p1 is always on the same path with pi). We will denote this point by f(i). The point f(i) is colored red
in the picture.  

The base case is quite easy. c(1)=0 as there can be no edges if we use only one point. f(1)=p1 as p1 

belongs to both of the paths.

Now let 1<i<n. There must always be a point that precedes pi in the same path with it. There are two
different cases: either pi-1 precedes pi or the point that precedes pi is on the left side of pi-1. This will 
make a difference as then there will be at least one point between pi-1 and pi. 

Lets denote the index of the point that precedes pi by e. The optimal cost for the situation that pe 

precedes pi is denoted by ce(i), and the rightmost point that is in the different path from pi in that 
case is denoted by fe(i). They can be calculated as follows:

Case 1, e=i-1: 
c i−1(i)=c (i−1)+d ( p i−1 , p i) , f i−1(i)= f (i−1)



Case 2, e<i-1:

ce (i)=c (e )+d ( pe , p i)+d ( f (e) , pe+1)+ ∑
a=e+1

i−2

d ( pa , pa+1)

f e (i )=p i−1

In case 2 we have to take the points between pe and pi into account and so we have two new terms in
our formula. As all points between pe and pi are on the same path with each other we must add the 
weight by edges between them. This is the fourth term. 

If we have calculated a prefix sum array for weights of edges of form (pa, pa+1) we can calculate the 
4th term in constant time, so for each pair (i,e) the calculation of  ce(i) and fe(i) takes only constant 
time. Let m be the index that minimizes ce(i). Then c(i)=cm(i) and f(i)=fm(i). 

After we have c(i) and f(i) we can discard all ce(i) and fe(i) as we wont need them anymore.

When we have calculated the c(i) for all i<n (which clearly takes O(n²) time) we can calculate the 
minimum weight of a Bitonic Hamiltonian cycle, this is denoted by M. It is quite similar to the 
previous calculations but there is one extra term in both of the cases. The extra term follows from 
the fact that both of the paths must connect with the point pn,. In every other way calculating M is 
identical to calculating c(i) for some i<n. 

Case 1,  e=n-1:
M n−1=c (n−1)+d ( pn−1 , pn)+d ( f (n−1) , pn)

Case 2, e<n-1

M e=c (e )+d ( pe , pn)+d ( pn−1 , pn)+d ( f (e ) , pe+1)+ ∑
a=e+1

n−2

d ( pa , pa+1)

M is just the minimum of Mi for i<n. The actual path could be computed quite easily if we just kept 
track of the point that precedes pi in the same path with it, for every i. 

The time complexity of this algorithm is O(n²) and the space complexity is O(n). 


