
Design and Analysis of Algorithms, Fall 2014
Exercise III: Solutions

III-1 Show that the subset-sum problem is solvable in polynomial time if the target value t is expressed in unary.

Let Si, . . . ,Sn be the sequence of positive integers. We want to find out if there is a (multi-)subset of S that
sums up to t > 0. For all 0≤ i≤ n and 0≤ p≤ t, we define L[i, p] to be true if there is a subset of S1, . . . ,Si
that sums up p, and false otherwise. Then L[n, t] is the solution to the problem. Observe that L[i,0] is true
for all, i and L[0, p] is false for all p > 0. For i≥ 1 and p≥ 1, there is a subset of S1, . . . ,Si summing up to
p if and only if there is a subset of S1, . . . ,Si−1 summing to either p or p−Si. Thus, we get

L[i, p] =

 true if p = 0
false if p > 0 and i = 0
L[i−1, p]∨L[i−1, p−Si] otherwise.

The term L[n, t] is easily evaluated in O(nt) time using dynamic programming. Let b be the size of the
input in bits. If t is expressed in binary, as is common, then b = O(log2 t) and the running time is O(2bn).
However, if we express t in unary, then b = O(t) and the running time is O(nb), which is polynomial in the
input b.

III-2 (CLRS 34.1-5) Show that if an algorithm makes at most a constant number of calls to polynomial-time
subroutines and performs an additional amount of work that also takes polynomial time, then it runs in
polynomial time. Also show that a polynomial number of calls to polynomial-time subroutines may result
in an exponential-time algorithm.

Let k be the number of subroutines. The algorithm starts out with an input data of size n. Each subroutine
takes (some of) the available data as an input, performs some steps, then returns some amount of data as an
output. Every time a subroutine returns, the output accumulates the amount of data the algorithm has access
to. Any or all of this data may then be given as an input to the next subroutine. Since each subroutine runs
in polynomial time, the output must also have a size polynomial in the size of the input. Let d be an upper
bound on the degree of the polynomials. Then there is a function p(n) = nd + c, where c is a constant, such
that p(n) is an upper bound for the size of the output of any subroutine when given an input of size n.

Let n0 = n and ni = ni−1 + p(ni−1) for all 1 ≤ i ≤ k. We show by induction that ni is an upper bound for
the amount of data available to the algorithm after the ith subroutine call. The base case is trivial. Assume
the claim holds for i−1 and let n′ be the exact amount of data available before the ith call. Then we have
ni ≤ n′+ p(n′), since the ith call accumulates the amount of the data by at most p(n′). Since p is increasing,
by assumption we have n′ ≤ ni−1 and p(n′)≤ p(ni−1), from which the claim follows.

We use induction again to show that each ni is polynomial in n. The base case is again trivial. Assume ni−1
is polynomial in n. Since the composition of two polynomials is also polynomial, we have that p(ni−1) is
polynomial in n. Since also the sum of two polynomials is polynomial, we have that ni−1 + p(ni−1) = ni is
polynomial in n. Therefore nk, which is an upper bound for the amount of data after the final subroutine, is
also polynomial in n, and the time must also be polynomial.

For the second part, observe that if we have a subroutine whose output is always twice the size of its input,
and we call this subroutine n times, starting with input of size 1 and always feeding the previous output back
into the subroutine, the final output will have size 2n. This means that the algorithm will take exponential
time.

III-3 (CLRS 34.5-8) In the half 3-CNF satisfiability problem, we are given a 3-CNF formula φ with n variables
and m clauses, where m is even. We wish to determine whether there exists a truth assignment to the
variables of φ such that exactly half the clauses evaluate to 0 and exactly half the clauses evaluate to 1.
Prove that the half 3-CNF satisfiability problem is NP-complete. (You may assume that the 3-CNF formula
has at most 3 literals per clause, not necessarily exactly 3.)

First observe that given a 3-CNF formula and an assignment, it is easy to check in polynomial time if the
assignment satisfies exactly half of the clauses. Therefore the half 3-CNF satisfiability is in NP.

1

We show NP-completeness by reduction from 3-CNF satisfiability. Let ϕ be a 3-CNF-SAT formula with
n variables and m clauses. We construct a 3-CNF-SAT formula ψ such that exactly half of the clauses in
ψ can be satisfied if and only if ϕ can be satisfied. Suppose that yi and zi for i = 1, . . . ,m+ 1 as well as p
are variables that do not appear in ϕ. We add to ψ by all the clauses of ϕ, m(m+ 1)+ 1 distinct clauses
of form {q,¬q, p}, where q can be any variable (we call these type 1 clauses) and clause {yi,z j, p} for all
i, j ∈ {1, . . . ,m+1} (we call these type 2 clauses). Constructing ψ clearly takes polynomial time.

We observe that all type 1 clauses are always satisfied. Since there are total of 2(m+1)2 clauses, we have
to satisfy precisely m other clauses to satisfy half of the clauses of ψ. If we tried to satisfy any type 2 clause
{yi,z j, p}, we would also satisfy all type 2 clauses with variable yi or all type 2 clauses with variable z j. This
means that we would satisfy at least m+1 additional clauses, that is, total of at least (m+1)2 +1 clauses.
Thus the only way to satisfy exactly (m+1)2 clauses in ψ is to satisfy all the clauses of ϕ. This implies that
exactly half of the clauses in ψ can be satisfied if and only if ϕ can be satisfied.

Thus, given a polynomial-time algorithm for the half 3-CNF-SAT problem, we could solve 3-CNF-SAT in
polynomial time. Since we know 3-CNF-SAT to be NP-complete, it follows that the half 3-CNF-SAT is
NP-complete as well.

III-4 (CLRS 34.4-6) Suppose someone gives you a polynomial-time algorithm to decide formula satisfiability.
Describe how to use this algorithm to find satisfying assignments in polynomial time.

Let ϕ be the input SAT formula that is satisfiable and contains n variables. Let ϕ|xi=0 and ϕ|xi=1 be the
simplified SAT formulas obtained by replacing variable xi by values 0 and 1 respectively and eliminating
constants 0 and 1 by partially evaluating the formula. These can be computed in polynomial time. The
results are SAT formulas containing n− 1 variables. For example, if ϕ = ((x1 → x2)∨¬((¬x1 ↔ x3)∨
x4))∧¬x2 then

ϕ|x2=0 = ((x1→ 0)∨¬((¬x1↔ x3)∨ x4))∧¬0 = (¬x1∨¬((¬x1↔ x3)∨ x4)) and
ϕ|x2=1 = ((x1→ 1)∨¬((¬x1↔ x3)∨ x4))∧¬1 = 0.

Clearly ϕ is satisfiable by assignment containing xi = c if and only if ϕ|xi=c is satisfiable. The algorithm
now takes any variable xi and asks the oracle whether ϕ|xi=0 is satisfiable. If the answer is yes, then the
algorithm sets xi = 0 and recursively repeats the procedure with ϕ|xi=0. Otherwise ϕ|xi=1 must be satisfiable,
so the algorithm sets xi = 1 and recursively repeats the procedure with ϕ|xi=1. Once all variables have been
assigned a value, this assignment satisfies the original SAT formula. The algorithm takes n polynomial time
steps and thus works in polynomial time.

Instead of reducing the formula, one may alternatively augment it with conjunctions, producing formulas of
form ϕ∧ xi and ϕ∧¬xi. Again, one consults the oracle and recurses on a satisfiable formula until for each
variable either the variable or its negation has been added, yielding a satisfying assignment.

III-5 (CLRS 34.5-6) Show that the hamiltonian-path problem is NP-complete. (You may assume that you know
that HAM-CYCLE is NP-complete.)

Again, observe that given a sequence of vertices it is easy to check in polynomial time if the sequence is a
hamiltonian path, and thus the problem is in NP.

We reduce from the hamiltonian cycle problem. Let G = (V,E) be a graph. The reduction transforms graph
G into G′ as follows. We pick an arbitrary vertex v ∈V and add a new vertex v′ that is connected to all the
neighbors of v. We also add new vertices u and u′ so that u is adjacent to v and u′ is adjacent to v′. This
reduction clearly takes a polynomial time.

To complete the proof, we have to show that G has a hamiltonian cycle if and only if G′ has a hamiltonian
path. Now if there is a hamiltonian cycle (v,v2, . . . ,vn,v) in G, then (u,v,v2, . . . ,vn,v′,u′) is a hamiltonian
path in G′. On the other hand, if there is a hamiltonian path in G′, its endpoints have to be u and u′,
because these have only on neighbor and thus cannot be in a middle of the path. Thus, the path has form
(u,v,v2, . . . ,vn,v′,u′) and we have that (v,v2, . . . ,vn,v) is a hamiltonian cycle in G.

2

