
Design and Analysis of Algorithms, Fall 2014
Exercise V: Solutions

V-1 (CLRS 5.1-3?) Suppose that you want to output 0 with probability 1/2 and 1 with probability 1/2. At your
disposal is a procedure BIASED-RANDOM, that outputs either 0 or 1. It outputs 1 with some probability p
and 0 with probability 1− p, where 0 < p < 1, but you do not know what p is. Give an algorithm that uses
BIASED-RANDOM as a subroutine, and returns 0 with probability 1/2 and 1 with probability 1/2. What is
the expected running time of your algorithm as a function of p.

Our algorithm is as follows:

UNBIASED-RANDOM()
Output: 0 with probability 1/2 and 1 with probability 1/2

1 while true do
2 a← BIASED-RANDOM()
3 b← BIASED-RANDOM()
4 if a < b then return 0
5 if a > b then return 1

The algorithm calls BIASED-RANDOM twice to get two random numbers A and B. It repeats this until
A 6= B. Then, depending on whether A < B (that is, A = 0 and B = 1) or A > B (that is, A = 1 and B = 0) it
returns 0 or 1 respectively.

In any iteration, we have Pr(A < B) = p(1− p) = Pr(B < A), that is, the probability that the algorithm
returns 0 in that iteration equals to the probability that it returns 1 in that iteration. Since with probability 1
we return something at some point (and not repeat the loop endlessly) and the probabilities of returning 0
and 1 are equal in each iteration, the total probabilities of returning 0 and 1 must be 1/2 and 1/2 respectively.

The algorithms stops, if it either returns 0 or 1. In every iteration, the probability of this is Pr(A 6= B) =
Pr(A < B)+Pr(B < A) = 2p(1− p). Thus, we have a sequence of independent Bernoulli trials, each with
probability 2p(1− p) of success. Therefore, the number of iterations required before the algorithm stops is
geometrically distributed with parameter 2p(1− p), and the expected number of iterations is 1/(2p(1− p)).
As each iteration takes constant time (assuming that BIASED-RANDOM takes constant time), the expected
running time of the algorithm is Θ(1/(p(1− p))).

V-2 (CLRS 5.2-5) Let A[1..n] be an array of n distinct numbers. If i < j and A[i] > A[j], then the pair (i, j) is
called an inversion of A. Suppose that the elements of A form a uniform random permutation of (1,2, . . . ,n).
Use indicator random variables to compute the expected number of inversions.

For i, j such that 1≤ i < j≤ n, let Ii j be an indicator variable for the event that the pair (i, j) is an inversion.
The total number of inversions is then ∑i< j Ii j. For each pair i < j the probability of inversion is 1/2 and
thus we have E[Ii j] = 1/2. As there are n(n−1)/2 such pairs, the expected number of inversions is

E

[
∑
i< j

Ii j

]
= ∑

i< j
E [Ii j] = ∑

i< j
1/2 =

n(n−1)
4

.

1

V-3 (CLRS 5.3-3) Suppose that instead of swapping element A[i] with a random element from the subarray
A[i..n], we swapped it with a random element from anywhere in the array:

PERMUTE-WITH-ALL(A, n)
1 for i = 1 to n
2 swap A[i] with A[RANDOM(1,n)]

Does this code produce a uniform random permutation? Why or why not?

No. In each of n iterations the algorithm chooses the index i independently and uniformly at random from
set {1, . . . ,n}. This means that there are nn different possible sequences each has probability 1/nn. On
the other hand, there are n! distinct permutations, and to get a uniform distribution over permutations, the
probability of each should be 1/n!. Thus, we should have k/nn = 1/n!⇔ nn = kn!, where k is an integer.
But this is not possible in general, since in general nn is not divisible by n! (consider a prime n > 2 for
example).

(In fact, nn is not divisible by n! unless n = 1 or n = 2. To see this, assume that n > 2 and let p > 1 be any
prime that divides n−1. (If n−1 is a prime, then p = n−1, otherwise p < n−1.) Now, if p divides also n, it
should also divide the difference n−(n−1) = 1. However, this cannot be true, since we assumed that p > 1.
Therefore, n is not divisible by p. But this means, that nn is not divisible by p (as the prime decomposition
of nn contains only primes that appear in the decomposition of n). On the other hand, because p divides
n− 1 which divides n!, p also divides n!. Similarly, if n! divides nn, p would also divide nn. Since this is
not the case, nn cannot be divisible by n!.)

V-4 (CLRS 5.3-5?) Prove that in the array P in procedure PERMUTE-BY-SORTING, the probability that all
elements are unique is at least 1−1/n.

For i, j such that 1 ≤ i < j ≤ n, let Ei j denote the event that elements P[i] and P[j] are identical. Since the
elements in P are chosen independently and uniformly at random from values 1 to n3, we have Pr(Ei j) =
1/n3 for all pairs i, j. The event that not all elements are unique, that is, there is at least one pair of identical
elements, is

⋃
i< j Ei j. Therefore, the probability that all elements are unique is

Pr

((⋃
i< j

Ei j

)c)
= 1−Pr

(⋃
i< j

Ei j

)
≥ 1−∑

i< j
Pr(Ei j)

= 1− n(n−1)
2

· 1
n3

= 1− 1
2n

+
1

2n2

≥ 1−1/n.

The first inequality follows from direct usage of the union bound (also known as Boole’s inequality).

2

V-5 (CLRS 8-4 Water jugs) Suppose that you are given n red and n blue water jugs, all of different shapes and
sizes. All red jugs hold different amounts of water, as do the blue ones. Moreover, for every red jug, there
is a blue jug that holds the same amount of water, and vice versa.
It is your task to find a grouping of the jugs into pairs of red and blue jugs that hold the same amount of
water. To do so, you may perform the following operation: pick a pair of jugs in which one is red and
one is blue, fill the red jug with water, and then pour the water into the blue jug. This operation will tell
you whether the red or the blue jug can hold more water, or if they are of the same volume. Assume that
such a comparison takes one time unit. Your goal is to find an algorithm that makes a minimum number of
comparisons to determine the grouping. Remember that you may not directly compare two red jugs or two
blue jugs.

a. Describe a deterministic algorithm that uses O(n2) comparisons to group the jugs into pairs.

Pick a red jug and compare it against all blue jugs until the matching jug is found, and then pair these two
jugs. Repeat this for all red jugs.

There are n red jugs and each needs at most n comparisons to find the matching blue jug. Thus, the algorithm
uses O(n2) comparisons.

c. Give a randomized algorithm whose expected number of comparisons is O(n logn), and prove that this
bound is correct. What is the worst-case number of comparisons for your algorithm?

This problem can be solved by emulating the quicksort algorithm with small modification. In particular, we
perform quicksort on both sets simultaneously, and since we cannot do comparisons between jugs of the
same color, we use a jug of the other color as the pivot element.

In the following, we will use the same notation to refer to a jug and its size. That is, if r is a jug then its size
is also denoted by r. The algorithm is as follows:

ORGANIZE(R, B)
Input: a set of red jugs R and a set of blue jugs B

1 if |R|= |B|= 1 then
2 pair the remaining two jugs
3 else
4 pick r ∈ R uniformly at random
5 compare r against all elements of B and set
6 b← blue jug with the same size as r
7 B<←{b ∈ B | b < r}
8 B>←{b ∈ B | b > r}
9 compare b against all elements of R and set

10 R<←{r ∈ R | r < b}
11 R>←{r ∈ R | r > b}
12 pair jugs r and b
13 ORGANIZE(R<, B<)
14 ORGANIZE(R>, B>)

It remains to analyze the expected number of comparisons done by this algorithm. As with the algorithm
itself, we mimic the analysis of randomized quicksort. For the purposes of our analysis, we assume that the
set of red jugs is

R = {r1,r2, . . . ,rn},
where ri < r j for all i < j, and similarly, the set of blue jugs is

B = {b1,b2, . . . ,bn},

where bi < b j for all i < j. Thus the algorithm will pair ri with bi for all i.

Let X be a random variable that counts the number of comparison done by our algorithm. Denote by Xi j the
indicator random variable for the event that ri and b j are compared, that is,

Xi j =

{
1 if ri and b j are compared
0 otherwise.

3

We have that X = ∑
n
i=1 ∑

n
j=1 Xi j. Note that this is slightly different from the quicksort analysis, as here we

have to consider all pairs i, j, not just pairs with i < j. By linearity of expectation, we get

E[X] = E

[
n

∑
i=1

n

∑
j=1

Xi j

]
=

n

∑
i=1

n

∑
j=1

E[Xi j].

Since Xi j is an indicator random variable, we have E[Xi j] = Pr(ri and r j are compared). Assume that i 6= j.
Due to symmetry we may assume i < j. Let Ri j = {ri,ri+1, . . . ,r j} and Bi j = {bi,bi+1, . . . ,b j}. It is easy
to verify that our algorithm compares ri and b j if and only if either ri or r j is the first element from Ri j
that is selected as pivot by the algorithm. To see this, observe that if ri is the first pivot from Ri j, it will
be compared against all jugs in Bi j, including b j. On the other hand, if r j is the first pivot, then b j will be
compared against all jugs in Ri j, including ri. In all other cases ri ends up in R< while b j ends up in B> and
thus they are never compared. Observing that each element of Ri j is equally likely to picked as the pivot
first, we get that

Pr(ri and r j are compared) = Pr(ri is picked first)+Pr(r j is picked first)

=
1

j− i+1
+

1
j− i+1

=
2

j− i+1
.

Thus, we have that E[Xi j] = E[X ji] =
2

| j−i|+1 for all i 6= j. For the case i = j, observe that ri is always
eventually compared with bi. Thus, E[Xii] = 1 for all i. Combining this with our earlier analysis, we get

E[X] =
n

∑
i=1

n

∑
j=1

E[Xi j]

=
n

∑
i=1

E[Xii]+
n−1

∑
i=1

n

∑
j=i+1

(E[Xi j]+E[X ji]) (regroup)

= n+
n−1

∑
i=1

n

∑
j=i+1

2E[Xi j] (symmetry)

= n+
n−1

∑
i=1

n

∑
j=i+1

4
j− i+1

= n+
n−1

∑
i=1

n−i

∑
k=1

4
k+1

(change of variables)

< n+4
n−1

∑
i=1

n−i

∑
k=1

1
k

(
1
k
>

1
k+1

for all k
)

< n+4
n−1

∑
i=1

ln(n− i+1)

(
m

∑
k=1

1
k
< ln(m+1)

)
= O(n)+O(n logn)

= O(n logn).

4

