VI-1 (CLRS 26.3-4 \star) A perfect matching is a matching in which every vertex is matched. Let $G=(V, E)$ be an undirected bipartite graph with vertex partition $V=L \cup R$, where $|L|=|R|$. For any $X \subseteq V$, define the neighborhood of X as $N(X)=\{y \in V:(x, y) \in E$ for some $x \in X\}$, that is, the set of vertices adjacent to some member of X. Prove Hall's theorem: there exists a perfect matching in G if and only if $|A| \leq|N(A)|$ for every subset $A \subseteq L$.

Let's first prove the direction: if there exists a perfect matching in G, then $|A| \leq|N(A)|$ for every subset $A \subseteq L$.
A perfect matching in G means that every vertex of L is connected to another vertex of $|R|$, exclusively. Besides, a vertex of L can have more incident edges. Therefore, $|A| \leq|N(A)|$.
Now let's look at the other direction of the proof: if $|A| \leq|N(A)|$ for every subset $A \subseteq L$, then there exists a perfect matching in G.
When $|L|=|R|=1$, the base case, it is easy to see that there is a perfect matching, i.e. the only edge in G. Suppose that the above claim is valid for $|L|=|R|=1,2, \ldots, n-1$.
When $|L|=|R|=n$, we consider two separate cases.
Case I: $|A|<|N(A)|$ for every subset $A \subset L$. Pick an arbitrary vertex u in L and one of its neighbors v in R, and remove them from the graph. In the remaining graph G^{\prime}, we must still have $|A| \leq|N(A)|$ for all A. Since $|L|=|R|=n-1$ in G^{\prime}, by the induction hypothesis, there is a perfect matching M^{\prime}. Consequently, adding the edge (u, v) to M^{\prime} results in a perfect matching in G.
Case II: there exits at least a subset $A \subset L$ such that $|A|=|N(A)|$. By the induction hypothesis, there is a perfect matching M_{A} between A and $N(A)$. Now, remove A and $N(A)$ from G. In the remaining graph G^{\prime}, we still have $|B| \leq|N(B)|$ for every subset $B \subseteq L \backslash A$. This can be proved by contradiction. Suppose that $|B|>|N(B)|$. Then, $|A \cup B|>|N(A \cup B)|$ in G. Thus, G^{\prime} has a perfect matching M^{\prime}. The union of M_{A} and M^{\prime} gives a perfect matching in G.

VI-2 (CLRS 35.1-3 \star) Professor Bündchen proposes the following heuristic to solve the vertex-cover problem. Repeatedly select a vertex of highest degree, and remove all of its incident edges. Give an example to show that the professor's heuristic does not have an approximation ratio of 2. (Hint: Try a bipartite graph with vertices of uniform degree on the left and vertices of varying degree on the right.)
Consider a bibartite graph with left part L and right part R such that L has 5 vertices of degrees $(5,5,5,5,5)$ and R has 11 vertices of degrees ($5,4,4,3,2,2,1,1,1,1,1$) (the graph is easy to draw and the figure is omitted here). Clearly there exists a vertex-cover of size 5 (the left vertices). The idea is to show that the proposed algorithm chooses all the vertices on the right part, resulting in the approximation ratio of $11 / 5>2$. After choosing the first vertex in R, the degrees on L decrease to (4,4,4,4,4). After choosing the second vertex in R, the degrees on L decrease to $(4,3,3,3,3)$. After choosing the third vertex in R, the degrees on L decrease to $(3,3,2,2,2)$. After choosing the fourth vertex in R, the degrees on L decrease to (2,2,2,2,1). After choosing the fifth vertex in R, the degrees on L decrease to $(2,2,1,1,1)$. After choosing the sixth vertex in R, the degrees on L decrease to $(1,1,1,1,1)$. Now the algorithm still has to choose 5 more vertices.

VI-3 (CLRS 35.2-2) Show how in polynomial time we can transform one instance of the traveling-salesman problem into another instance whose cost function satisfies the triangle inequality. The two instances must have the same set of optimal tours. Explain why such a polynomial-time transformation does not contradict Theorem 35.3, assuming that $P \neq$ NP.
An instance I of the traveling-salesman problem consists of n cities and n^{2} edges between pairs of cities. We transform I into another instance I^{\prime} that satisfies the triangle equality in the following way. Let m be the maximal edge cost among all pairs of cities. Add m to the edge cost of every pair of cities, which becomes I^{\prime}. The time for constructing I^{\prime} is $O\left(n^{2}\right)$, which is polynomial.

Now we prove that I^{\prime} satisfies the triangle inequality. Consider any three cities, with edge cost a, b, c between them. We have

$$
\begin{array}{rlrl}
a+m & \leq a+m+b+c & & \text { (edge cost is nonnegative) } \\
& \leq m+m+b+c & & (m \text { is the maximal edge cost }) \\
& =(b+m)+(c+m) . &
\end{array}
$$

Still, we have to prove that I and I^{\prime} have the same set of optimal tours. Suppose that the optimal tour T in I has cost c. Then, the cost of T in I^{\prime} is $c+m n$. Assume that there is a better tour T^{\prime} in I^{\prime}, with cost c^{\prime}, $c^{\prime}<c+m n$. Then, the cost of T^{\prime} in I is $c^{\prime}-m n$. We have

$$
\begin{aligned}
c^{\prime}-m n & <(c+m n)-m n \quad\left(\text { by } c^{\prime}<c+m n\right) \\
& =c
\end{aligned}
$$

This contradicts the assumption that T being the optimal tour in I. For the case that there is a worse tour T^{\prime} in I^{\prime}, similar proof can be derived. Together, we showed that the optimal tours are preserved in I^{\prime}.

Finally, we prove that the above transformation does not contradict Theorem 35.3. In general, a constantfactor approximation to the transformed instance does not guarantee any constant-factor approximation to the original (non-metric) instances. It is because the term $m n$ may dominate the optimal cost of the transformed instance, as we will show below. Assume that there is a ρ^{\prime}-approximation algorithm A^{\prime} for I^{\prime}, $\rho^{\prime} \geq 1$. We run A^{\prime} on I^{\prime} and A^{\prime} outputs a tour T^{\prime} which has cost c^{\prime}, where $c^{\prime} \leq \rho^{\prime} c^{\prime *}$ and $c^{\prime *}$ is the cost of the optimal tour in I^{\prime}. Since the optimal tours in both I and I^{\prime} are the same, as just proved, the cost of the optimal tour in I is c^{*} and $c^{*}=c^{*}+m n$. The cost of a tour output by A^{\prime} in I is c and $c^{\prime}=c+m n$. We want to show that it may happen $\frac{c}{c^{*}}>\rho$, even though $\frac{c+m n}{c^{*}+m n} \leq \rho^{\prime}$ for any constant $\rho \geq 1$ and $\rho^{\prime} \geq 1$. The key idea is to consider an instance where c^{*} is very small compared to m. For instance, let

$$
\begin{array}{ll}
c^{*}=n \\
c=(\rho+1) n & \text { (hence, } \left.\frac{c}{c^{*}}>\rho\right), \\
m=c^{*} X=n X & \text { (where } X \text { will be chosen to be large enough) } .
\end{array}
$$

Now, $\frac{c+m n}{c^{*}+m n}=1+\frac{\rho}{1+n X}$ and thus less than ρ^{\prime} as soon as we choose an X large enough.

VI-4 (CLRS 35.2-5) Suppose that the vertices for an instance of the traveling-salesman problem are points in the plane and that the cost $c(u, v)$ is the euclidean distance between points u and v. Show that an optimal tour never crosses itself.

We show that eliminating a crossing always results in a tour with smaller cost. In the figure below, we eliminate the crossing by replacing the edge $A D$ with $A B$ and the edge $B C$ with $C D$. According to the triangle inequality of euclidian distance, we have

$$
\begin{align*}
& c(A B)<c(A O)+c(O B) \tag{1}\\
& \text { and } \\
& c(C D)<c(C O)+c(O D) \tag{2}
\end{align*}
$$

By (1) + (2), we obtain $c(A B)+c(C D)<c(A D)+c(B C)$.
Therefore, the cost of the newly constructed tour is smaller than the cost of the tour with crossing.

VI-5 (CLRS 35.4-3) In the MAX-CUT problem, we are given an unweighted undirected graph $G=(V, E)$. We define a cut $(S, V-S)$ as in Chapter 23 and the weight of a cut as the number of edges crossing the cut. The goal is to find a cut of maximum weight. Suppose that for each vertex v, we randomly and independently place v in S with probability $1 / 2$ and in $V-S$ with probability $1 / 2$. Show that this algorithm is a randomized 2 -approximation algorithm.

Figure 1: A tour crossing itself.

Suppose that for each vertex v, we randomly and independently place v in S with probability $1 / 2$ and in $V-S$ with probability $1 / 2$. For an edge e_{i}, we define the indicator random variable $Y_{i}=I\left\{e_{i}\right.$ crossing a cut $\}$. For an edge e_{i} being crossing a cut, its two vertices u, v have to be in S and $V-S$ separately. The probability of such an event is $\operatorname{Pr}\left\{e_{i}\right.$ crossing a cut $\}=\operatorname{Pr}\{u$ in S and v in $V-S\} \cup\{u$ in $V-S$ and v in $S\}=$ $1 / 2 \times 1 / 2+1 / 2 \times 1 / 2=1 / 2$, and by Lemma 5.1, we have $E\left[Y_{i}\right]=1 / 2$. Let Y be the number of edges crossing a cut, so that $Y=Y_{1}+Y_{2}+\ldots+Y_{n}, n=|E|$. We have

$$
\begin{aligned}
E[Y] & =E\left[\sum_{i=1}^{n} Y_{i}\right] \\
& =\sum_{i=1}^{n} E\left[Y_{i}\right] \quad \text { (by linearity of expectation) } \\
& =\sum_{i=1}^{n} \frac{1}{2} \\
& =\frac{1}{2} n .
\end{aligned}
$$

On the other hand, let c^{*} be the weight of the max-cut. The upper bound of c^{*} is the total number of edges, i.e. $c^{*} \leq n$. Then, we have

$$
\begin{aligned}
c^{*} & \leq n \\
& =2 \times \frac{1}{2} n \\
& =2 E[Y] .
\end{aligned}
$$

That is, $\frac{c^{*}}{E[Y]} \leq 2$ (note that this is a maximization problem).

