
www.cs.helsinki.fi

MapReduce and Spark:
Overview

2015

Professor Sasu Tarkoma

Computing Environment
History of Cluster Frameworks
Hadoop Ecosystem
Overview of State of the Art
MapReduce Explained

Overview

Scaling up
 More powerful servers

Scaling out
 More servers

Clusters provide computing resources
 Space requirements, power, cooling
 Most power converted into heat

Datacenters
 Massive computing units
 Warehouse-sized computer with hundreds or
thousands of racks

Networks of datacenters

Computing Environment

Big Data compute and storage nodes are stored on
racks based on common off the shelf components

Typically many racks in a cluster or datacenter
The compute nodes are connected by a high speed

network (typically 10 Gbit/s Ethernet)
 Different datacenter network topologies

Intra-rack and inter-rack communication have differing
latencies

Nodes can fail
 Redundancy for stored file (replication)
 Computation is task based

Software ensures fault-tolerance and availability

Cluster Computing Environment

CSC Pouta Cluster running on the Taito supercluster in
Kajaani

The nodes are HP ProLiant SL230s servers with two

Intel Xeon 2.6 GHz E5-2670 CPUs
 16 cores per server
 Most with 64 GB of RAM per server

Taito extension in 2014: 17 000 cores
The nodes are connected using a fast FDR InfiniBand

fabric

Typical Hardware

Big Data Tools for HPC and
Supercomputing

MPI (Message Passing Interface, 1992)
Communication between parallel processes

Collective communication operations

Broadcast, Scatter, Gather, Reduce, Allgather, Allreduce, Reduce-
scatter

Operations defined for certain data types and primitives (such as
multiplication etc)

For example OpenMPI (2004)

 http://www.open-mpi.org/

Definition by NIST:
Cloud computing is a model for enabling convenient,
on-demand network access to a shared pool of
configurable computing resources (e.g., networks,
servers, storage, applications, and services) that
can be rapidly provisioned and released with
minimal management effort or service provider
interaction.

IaaS, PaaS, SaaS, XaaS

Big Data Frameworks are typically run in the cloud

Cloud Computing

Typically common-of-the-shelf servers
 Compute nodes, storage nodes, …

Virtualized resources running on a cloud platform

Heterogeneous hardware, choice of OS

Contrasts traditional High Performance Computing (HPC)

Big Data Environment

2003: Google GFS
2004: Google Map-Reduce
2005: Hadoop development starts
2008: Apache Hadoop (in production)
2008: Yahoo! Pig language
2009: Facebook Hive for data warehouses
2010: Cloudera Flume (message interceptor/filtering model)
2010: Cloudera S4 (continuous stream processing)
2011: LinkedIn Kafka (topic-based commit log service)
2011: Storm (Nathan Marz)
2011: Apache Mesos cluster management framework
2012: Lambda Architecture (Nathan Marz)
2012: Spark for iterative cluster programming
2013: Shark for SQL data warehouses

History of Cluster Frameworks

Worker

Worker

Worker

Worker

split 0

split 1

split 2

split 3

split 4

(3)read

(1)fork

output
file 0(4)

local write

output
file 1

User
program

Master

(1)fork

(2)assign
map

(6)write

Worker

(5)Remote
read

(1)fork

(2)
assign
reduce

Input
files

Map
phase

Intermediate files
(on local disks)

Reduce
phase

Output
files

MapReduce

Apache Hadoop
 Hive, R, and others

Berkeley Data Analytics Stack (BDAS)

 Mesos, Spark, Mlib, GraphX, Shark, …

Apache Spark is part of Apache Hadoop

Major trends

Apache Hadoop Ecosystem

HDFS

HBase

MapReduce and YARN (also Spark)

Pig (data flow) Hive (SQL) Sqoop

BI reporting RDBMS Analysis

Zoo-
keeper

Avro
Seria-
lization

National Science Foundation
Expeditions in Computing

LoginLogin

 Supported Release In Development Related External Project

SoftwareSoftware
BDAS, the Berkeley Data Analytics Stack, is an open source software stack that integrates software components being
built by the AMPLab to make sense of Big Data.

Released ComponentsReleased Components

The following BDAS components are available (click on a project title to go to the project homepage):

RoadmapRoadmap

BDAS will continue to grow over the life of the AMPLab project, as existing components evolve and mature and new ones
are added.

CommunityCommunity

Software project Meetups – Help organize monthly developer meetups around BDAS components to demonstrate
new and upcoming features. Check out the Spark/Shark meetup group, the Mesos meetup group, and the Tachyon
meetup group

AMP Camp “Big Data Bootcamp” – Two days packed full of software system intros, demos and hands-on exercises.
Aims to bring practitioners with no prior experience up to speed and writing real code with real advanced
algorithms.

Support – Unlike many research software prototypes that never see production use, we support BDAS software
components by actively monitoring and responding on developer and user mailing lists.

BlinkDB

SQL w/ bounded errors/response times

Spark
Streaming

Stream processing

GraphX
Graph computation

MLlib
User-friendly machine

learning

SparkSQL
SQL API Hive Storm MPI

Spark
Fast memory-optimized execution engine (Python/Java/Scala APIs)

Hadoop MR

Tachyon Distributed Memory-Centric Storage System

HDFS, S3, GlusterFS

Mesos Cluster resource manager, multi-tenancy

BDAS

https://amplab.cs.berkeley.edu/software/

Resilient distributed datasets (RDDs)
Immutable collections of objects across a cluster
Built with parallel transformations (map, filter, …)
Automatically rebuilt when failure is detected
Allow persistence to be controlled (in-memory operation)

Transformations on RDDs
 Lazy operations to build RDDs from other RDDs
 Always creates a new RDD

Actions on RDDs

 Count, collect, save

Key idea in Spark

Massive Parallel Processing Databases (MPP)
 Vertica, SAP HANA, Teradata, Google Dremel,
Google PowerDrill, Cloudera Impala…

 Fast but typically not fault-tolerant
 Scaling up can be challenging
 Lack of rich analytics (machine learning and graphs)

MPP Databases

Traditional SQL Approach

Data
acquisition Data storage Results Data analysis

SQL + RDBMS + application
Insert and update DB entries

Example: counting twitter hashtags
1. INSERT VALUES of new tweets
2. Create a new table every 5 minutes with counts: CREATE .. SELECT … COUNT(*)
GROUP BY time, tag.
3. Combine new table with old count table (UNION), this is the new table

Inspiration: http://www.slideshare.net/Dataiku/dataiku-devoxx-lambda-architecture-choose-your-tools

Functional programming

Data
acquisition Data storage Results Data analysis

Append only new data
Intrinsically parallel operations
MapReduce
Iterative computing

Example: counting twitter hashtags
1.  Map (#tag, time) -> list (#tag, intermediate count)
2.  Reduce (#tag, hashmap) -> list (#tag, count)

Inspiration: http://www.slideshare.net/Dataiku/dataiku-devoxx-lambda-architecture-choose-your-tools

•  Data storage

•  Data storage for real-time

•  Data analysis

•  Real-time data analysis

•  Statistics and machine learning

Overview of State of the Art

State of the Art: Data Storage
GFS (Google File System) and HDFS (Hadoop Distributed File

System)
 Data replicated across nodes
 HDFS: rack-aware placement (replicas in different racks)
 Take data locality into account when assigning tasks
 Do not support job locality (distance between map and reduce
workers)

Hbase
 Modeled after Google’s BigTable for sparse data
 Non-relational distributed column-oriented database
 Rows stored in sorted order

Sqoop
 Tool for transferring data between HDFS/Hbase and structural
datastores
 Connectors for MySQL, Oracle, … and Java API

HDFS has a master/slave
architecture

NameNode is the master
server for metadata

DataNodes manage storage
A file is stored as a

sequence of blocks
The blocks are replicated for

fault-tolerance
Common replication

scheme: factor of 3, one
replica local, two in a
remote rack

Rack-aware replica
placement

Example: HDFS Architecture

http://hadoop.apache.org/docs/r1.2.1/images/hdfsarchitecture.gif

Namenode provides information for retrieving blocks
Nearest replica is used to retrieve a block

State of the Art: Data Storage for
Real-time

Kafka
 Distributed, partitioned, replicated commit log service
 Keeps messages in categories
 Topic based system
 Coordination through Zookeeper (through distributed consensus)

Kestrel

 Distributed message queue (server has a set of queues)
 A server maintains queues (FIFO)
 Does not support ordered consumption
 Simpler than Kafka

State of the Art: Data Analysis I/II
MapReduce

 Map and reduce tasks for processing large datasets in parallel
Hive

 A data warehouse system for Hadoop
 Data summarization, ad-hoc queries, analysis for large sets
 SQL-like language called HiveQL

Pig
 Data analysis platform
 High-level language for defining data analysis programs, Pig Latin,
procedural language

Cascading
 Data processing API and query planner for workflows
 Supports complex Hadoop Map-Reduce workflows

Apache Drill
 SQL query engine for Hadoop and noSQL

State of the Art: Data Analysis II
Spark

 Cluster computing for data analytics
 In-memory storage for iterative processing

Shark

 Data warehouse system (SQL) for Spark
 Up to 100x faster than Hive

Spark/Shark is a distinct ecosystem from Hadoop

 Faster than Hadoop
 Support for Scala, Java, Python
 Can be problematic if reducer data does not fit into memory

Summary of batch systems

Data
acquisition Data storage Results Data analysis

HDFS import
Flume
Sqoop
…

HDFS
Hbase
…

MapReduce
Hive
Pig
Spark
Shark
…

State of the Art: Real-time Data Analysis I/II
Flume

 Interceptor model that modifies/drops messages based on filters
 Chaining of interceptors
 Combine with Kafka

Storm
 Distributed realtime computation framework
 “Hadoop for realtime”
 Based on processing graph, links between nodes are streams

Trident
 Abstraction on top of Storm
 Operations: joins, filters, projections, aggregations, ..
 Exactly once-semantics (replay tuples for fault tolerance, stores
additional state information)
 https://storm.apache.org/documentation/Trident-state

Flume example

Source Sink

Channel

HDFS Channel stores data until it
is consumed by the sink.

Source Channel Sink
Avro Memory HDFS
Thrift JDBC Logger
Exec File Avro
HTTP Null
JMS Thrift
Syslog TCP/IP File roll

Hbase
Custom Custom

Developed around 2008-2009 at BackType, open sourced in
2011

Spout: is a flow of tuples
Bolt: accepts tuples and operates on those
Topologies: spouts à bolts à spouts

Example:

 Tweet spout à parse Tweet bolt à count hashtags Bolt
 Tweet spout à store in a file

Storm

http://www.slideshare.net/Dataiku/dataiku-devoxx-lambda-architecture-choose-your-tools

State of the Art: Real-time Data
Analysis II

Simple Scalable Streaming System (S4)
 Platform for continuous processing of unbounded streams
 Based on processing elements (PE) that act on events (key,
attributes)

Spark streaming

 Spark for real-time streams
 Computation with a series of short batch jobs (windows)
 State is kept in memory
 API similar to Spark

Summary of real-time processing

Data
acquisition Data storage Results Data analysis

Flume
Kafka
Kestrel

Streaming Spark
Flume
Storm
Trident
S4

Lambda architecture combined batch and stream processing

Supports volume (batch) + velocity (streaming)

Hybrid models

 SummingBird (Hadoop + Storm)
 MapReduce like process with Scala syntax

 Lambdoop (abstraction over Hadoop, HBase, Sqoop, Flume,
Kafka, Storm, Trident)
 Common patterns provided by platform
 No MapReduce like process

State of the art: Hybrid models

Lambda Architecture

New data and
its acquisition

Real-time
data storage

and processing

Combined
results Data analysis

All data

Batch
processing

(analysis) and
storage

Batch results

Lambda Architecture: Twitter hashtags

New data and
its acquisition

Real-time
data storage

and processing

Combined
results Data analysis

All data

Batch
processing

(analysis) and
storage

Batch results

Inspiration: http://www.slideshare.net/Dataiku/dataiku-devoxx-lambda-architecture-choose-your-tools

Compute every hour the hashtag counts for the last
hour stored on disk

Compute every five minutes the hashtag counts for
the last five minutes stored in memory

Lambda Architecture: Recommendations

New data and
its acquisition

Real-time
data storage

and processing

Combined
results Data analysis

All data

Batch
processing

(analysis) and
storage

Batch results

Inspiration: http://www.slideshare.net/Dataiku/dataiku-devoxx-lambda-architecture-choose-your-tools

User item views
Compute/maintain item-item similarity matrix on disk
Fallback when online part is offline

User item views
Update the online version

Users and items

Exactly-once semantics
 Requires costly synchronization

High velocity: how to go to thousands of messages per

second

Changes to structures and schemas

 Data versioning in a production system

Challenges for the platform

Batch pipeline
 Flume à HDFS à MapReduce à HBase à combined view
à App

Realtime pipeline

 RabbitMQ à Storm à Memcache à MongoDB combined
viewà App

Solution pipelines in Lambda
architecture

State of the Art: Statistics and
Machine Learning

R for Hadoop
 Distributed R for the cluster environment

R for Spark
Mahout

 Currently Hadoop, next Spark
Weka

 State of the art machine learning library
 Does not focus on the distributed case
 Hadoop support, Spark wrappers

MLLib
 Machine learning for Spark

Summary of Big Data Tools for Data Mining
Apache Mahout

 Originally Hadoop, now Spark
 Scalable machine learning library
 Collaborative filtering, clustering, classification, frequent
pattern mining, dimensionality reduction, topic models, …

Weka
R: software environment for statistical computing

 Spark-R
 Rhadoop
 Revolution R: commercial

Spark
 MBase and MLlib

Division into efficient tools that do not scale to clusters and
emerging cluster solutions (Hadoop / Spark)

State of the Art Distributed Toolbox

Storage
GFS, HDFS, HBase

Hadoop, YARN Spark
Mesos

Real-time storage
Kafka, Kestrel

Hive R Shark Mlib R

Storm

Trident

Spark
Strea-
ming

Storage tier

Statistics and machine learning tier

Task distribution tier

High-level applications

Hybrid systems (Hadoop+Storm, Spark + Spark streaming), optimization tier

