
www.cs.helsinki.fi

MapReduce

2015
Professor Sasu Tarkoma

MapReduce Model
Google MapReduce introduced in 2004

Jeffrey Dean et al. MapReduce: Simplified Data Processing
on Large Clusters. OSDI 2004.

Apache Hadoop since 2005

 http://hadoop.apache.org/

Apache Hadoop 2.0 introduced in 2012

Vinod Kumar Vavilapalli et al. Apache Hadoop YARN: Yet
Another Resource Negotiator, SOCC 2013.

New cluster resource management layer (YARN)

The map function has implicit parallelism

This is because the order of the application of the

function f to elements in a list is commutative

We can parallelize or reorder the execution

MapReduce builds on this parallelism

Implicit Parallelism

Automatic distribution and parallelization

Fault-tolerance

Cluster management tools

Abstraction for programmers

MapReduce

Worker

Worker

Worker

Worker

split 0

split 1

split 2

split 3

split 4

(3)read

(1)fork

output
file 0(4)

local write

output
file 1

User
program

Master

(1)fork

(2)assign
map

(6)write

Worker

(5)Remote
read

(1)fork

(2)
assign
reduce

Input
files

Map
phase

Intermediate files
(on local disks)

Reduce
phase

Output
files

MapReduce

Example:
Map: word len as key
Reduce: number of
words per word len

Job is a full program that consists of a Mapper and
Reducer for a dataset

Task is an execution of a Mapper / Reducer on some

data
 Task-in-Progress (TIP)

Task Attempt is an instance of an attempt to run a

task on a node

MapReduce terminology

A given task is attempted at least once and possibly
many times if it crashes

If a task crashes consistently, it will be abandoned

eventually

Multiple attempts pertaining to a task may happen in

parallel with the speculative execution feature

Task Attempts

MapReduce example: counting words
per word length

1.
Input data

Word1
Word2
Word3
….

Word N

Map 1
3: word 1
3: word 2
4: word 3

Map …

Map k

2. MAP Phase
(len of word, word) lists

Interim data files

Reduce 1

Reduce …

Reduce j

3. REDUCE Phase
(len of word, num of word) lists

Interim data files

4- Final Phase
Combined reduce phase

output

Inspired by functional programming
Two key functions that need to be implemented:
•  map (in_key, in_value) à (out_key, intermediate_value)

list
•  Data source records are fed as key,value pairs
•  map() produces one or more intermediate values with an
output key

•  reduce (out_key, intermediate_value list) à out_value
list

•  Intermediate values for given key are combined into a list
•  Reduce() combines those values into one or more final values
for the same output key
•  Optional and not needed by all applications

MapReduce Programming Model

map (in_key, in_value) ->
 (out_key, intermediate_value) list

map

Source: https://courses.cs.washington.edu/courses/cse490h/08au/lectures/
mapred.pdf

Reduce
reduce (out_key, intermediate_value list) ->
 out_value list

returned

initial

Source: https://courses.cs.washington.edu/courses/cse490h/08au/lectures/
mapred.pdf

Data store 1 Data store n
map

(key 1,
values...)

(key 2,
values...)

(key 3,
values...)

map

(key 1,
values...)

(key 2,
values...)

(key 3,
values...)

Input key*value
pairs

Input key*value
pairs

== Barrier == : Aggregates intermediate values by output key

reduce reduce reduce

key 1,
intermediate

values

key 2,
intermediate

values

key 3,
intermediate

values

final key 1
values

final key 2
values

final key 3
values

...

Source: https://courses.cs.washington.edu/courses/cse490h/08au/lectures/
mapred.pdf

Shuffling = takes
map() data to
reducers
Local sorting
Secondary sorting
of values

•  Three key phases
1.  Reducer copies sorted output (based on key) from

each Mapper using HTTP
2.  The framework sorts Reducer inputs by keys,

because different Mappers have emitted the same
key. The shuffle and sort phases happen
simultaneously. SecondarySort can be used to sort
values.

3.  Reduce is applied for each key in the sorted inputs

Reducer output is not sorted.

Reduce Details

Example: Count word occurrences
map(String input_key, String input_value):

 // input_key: document name

 // input_value: document contents

 for each word w in input_value:

 EmitIntermediate(w, 1);

reduce(String output_key, Iterator<int>
intermediate_values):

 // output_key: a word

 // output_values: a list of counts

 int result = 0;

 for each v in intermediate_values:

 result += v;

 Emit(result);

Source: https://courses.cs.washington.edu/courses/cse490h/08au/lectures/
mapred.pdf

•  Both map() and reduce() operations are executed in
parallel

•  Map() creates intermediate values from input
•  Reduce() functions operate on different output keys
•  Values are independently processed

•  Note that reduce cannot start before map is finished
•  Secondary sort on values: the application can

extend key with a secondary key and define a
grouping comparator

MapReduce Parallelism

Locality

The map() task input data is divided into GFS/HDFS
blocks

Master program distributes tasks based on the location

of data

Map() tasks should be run on the same machine as the

physical data file (or the same rack)

Fault Tolerance

Fault tolerance is realized by periodic heartbeats

Master pings worker nodes to detect node failures

Master must re-execute tasks that have failed

Master can notices if particular input key/values cause

problems in map and can skip those

In the worst-case scenario the master compute node fails
causing the job to be restarted

Other failures can be managed by the master

Failure of a worker node requires that the task is assigned to

another worker

Master reschedules failed tasks when workers become

available

Node failures

Optimizations

Reduce tasks cannot start before the whole map phase is
complete

Thus single slow machine can slow down the whole process

Master can execute many redundant map tasks and then use the

results of the first task to complete

Optimizations: Combining Phase

Performance can be increased by running a mini reduce phase
on local map output

Executed on mapper nodes after map phase

Saves bandwidth before sending data to a full reducer

Reducer can be a combiner if it is commutative and associative

Combiner, graphically

Combiner
replaces with:

Map output

To reducer

On one mapper machine:

To reducer

Source: https://courses.cs.washington.edu/courses/cse490h/08au/lectures/
mapred.pdf

Partitioner divides the intermediate key space
Assigns intermediate key-value pairs to reducers
Thus n partitions results in n reducers

Between map and reduce phases:

 data is shuffled: parallel-sorted and exchanged
 data is moved to the correct shard for reducing
 partition function accepts the key and the number of
reducers and then returns the index of the reducer

Supports load balancing

Partitioner

Two key functions that need to be implemented:
•  map (in_key, in_value) à (out_key, intermediate_value)

list
•  reduce (out_key, intermediate_value list) à out_value

list
With two optimizations:
•  combine (key, intermediate_value list) à

intermediate_out_value list
•  partition (key, number of partitions) à partition for key

MapReduce Summary

Partition and Shuffle
Partition And Shuffle

!"##$%

&'()$%*$+'")$,-

!"##$%

&'()$%*$+'")$,-

!"##$%

&'()$%*$+'")$,-

!"##$%

&'()$%*$+'")$,-

.$+/0$% .$+/0$% .$+/0$%

&'()$%*$+'")$,- &'()$%*$+'")$,- &'()$%*$+'")$,-

1"%)')'2($% 1"%)')'2($% 1"%)')'2($% 1"%)')'2($%

,3
/

 5'
(!

 Intermediate key-value pairs must be grouped by key through a
distributed sort

Shuffle and sort

A job with m mappers and r reduces involves up to m * r different

copy operations

Each mapper may have intermediate output destined to every

reducer

Synchronization

Purlieus and CAM
 Data management as part of MapReduce

 Need to know task types (map/reduce intensive)

 Map intensive jobs benefit from locality awareness

 Up to 80% reduction in execution time

Data management as part of
MapReduce

Inverted Index
Sorting
PageRank
Sorting
Searching
Statistics

 Average, SD, count
Advanced algorithms

Key algorithms for MapReduce

Finding files or items with specific characteristics

Searching for patterns in web logs or files

Filtering is mostly done in the map phase
Reduce can be simply the identity

Filtering Algorithms

Computing the minimum, maximum, sum, average, ...
of the given values

Count the number of Tweets per day

Map is simple or the identity, reduce is doing most of

the work

Aggregation Algorithms

The Mapper output is automatically sorted by keys
Reducer plays a crucial role in sorting
Terasort Benchmark

http://sortbenchmark.org/YahooHadoop.pdf
 (key, value) pairs are handled in order by key and sent to a
specific reducer based on hash(key)
 Hash function must be chosen so that
 k1 < k2 => hash(k1) < hash(k2)
 If we have a single reducer, the output is sorted
 If we have multiple reducers, we get partially sorted
results: last-stage merge of the interim results

http://hadooptutorial.wikispaces.com/Sorting+feature+of+MapReduce

Sorting

TeraSort is a standard map/reduce sort
A custom partitioner that uses a sorted list of N − 1 sampled

keys that define the key range for each reduce.
 In particular, all keys such that sample[i − 1] <= key < sample[i]

are sent to reduce i.
This guarantees that the output of reduce i are all less than the

output of reduce i+1.
 To speed up the partitioning, the partitioner builds a two level

trie that quickly indexes into the list of sample keys based on
the first two bytes of the key.

TeraSort generates the sample keys by sampling the input
before the job is submitted and writing the list of keys into
HDFS.

TeraSort

Iterative algorithm that is run until it converges
1.  K initial points (centers) are chosen at random.
2.  K clusters are formed by associating every data

point (observation) with the nearest center.
3.  For each cluster, recompute the centers (determine

centroid)
4.  Repeat from 2 until convergence.

Source: Riccardo Torlone. Analytics on Big Data.
Universita Roma Tre.

K-Means Clustering Algorithm

Map phase
 Each map reads the K centroids and a block from
the input dataset
 Each point is assigned to the closest centroid
 Output: <centroid, point>

Reduce phase
 Obtain all points for a given centroid
 Recompute the new centroid
 Output: <new centroid>

Iteration:
 Compare the old and new set of K centroids
 If they are similar then Stop

 Else Start another iteration unless maximum of
iterations has been reached.

K-Means for MapReduce

Combiners can be used to optimize the distributed
algorithm
 Compute for each centroid the local sums of the
points
 Send to the reducer: <centroid, partial sums>

Use of a single reducer
 Data to reducers is very small
 Single reducer can tell immediately if the
computation has converged
 Creation of a single output file

Optimizing K-Means for
MapReduce

MapReduce tasks must be written as acyclic dataflow
programs
 Stateless mappers and reducers
 Batch model

Difficult to implement iterative processing of datasets

 Machine learning typically requires iterative
operation: the dataset is visited multiple times by the
algorithm

Limitation: iterative algorithms

