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MapReduce Model 
Google MapReduce introduced in 2004 

Jeffrey Dean et al. MapReduce: Simplified Data Processing    
on Large Clusters. OSDI 2004. 

 
Apache Hadoop since 2005 

 http://hadoop.apache.org/ 
 
Apache Hadoop 2.0 introduced in 2012 

Vinod Kumar Vavilapalli et al. Apache Hadoop YARN: Yet  
Another Resource Negotiator, SOCC 2013. 
 
New cluster resource management layer (YARN) 
 

 



The map function has implicit parallelism 
 
This is because the order of the application of the 

function f to elements in a list is commutative 
 
We can parallelize or reorder the execution 
 
MapReduce builds on this parallelism 

Implicit Parallelism  



Automatic distribution and parallelization 
 
Fault-tolerance 
 
Cluster management tools 
 
Abstraction for programmers 

MapReduce 
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Example:  
Map: word len as key 
Reduce: number of 
words per word len 



Job is a full program that consists of a Mapper and 
Reducer for a dataset 

 
Task is an execution of a Mapper / Reducer on some 

data 
 Task-in-Progress (TIP) 

 
Task Attempt is an instance of an attempt to run a 

task on a node 
 

MapReduce terminology 



A given task is attempted at least once and possibly 
many times if it crashes 

 
If a task crashes consistently, it will be abandoned 

eventually 
 
Multiple attempts pertaining to a task may happen in 

parallel with the speculative execution feature 

Task Attempts 



MapReduce example: counting words 
per word length 

1. 
Input data 

 
Word1 
Word2 
Word3 
…. 

Word N 

Map 1 
3: word 1 
3: word 2 
4: word 3 

Map … 

Map k 

2. MAP Phase 
(len of word, word) lists 

Interim data files 

Reduce 1 

Reduce … 

Reduce j 

3. REDUCE Phase 
(len of word, num of word) lists 

Interim data files 

4- Final Phase 
Combined reduce phase 

output 



Inspired by functional programming 
Two key functions that need to be implemented: 
•  map (in_key, in_value) à (out_key, intermediate_value) 

list 
•  Data source records are fed as key,value pairs 
•  map() produces one or more intermediate values with an 
output key 

•  reduce (out_key, intermediate_value list) à out_value 
list 

•  Intermediate values for given key are combined into a list 
•  Reduce() combines those values into one or more final values 
for the same output key 
•  Optional and not needed by all applications 

 
 

MapReduce Programming Model 



map  (in_key, in_value) ->  
 (out_key, intermediate_value) list 

map 

Source: https://courses.cs.washington.edu/courses/cse490h/08au/lectures/
mapred.pdf 



Reduce 
reduce (out_key, intermediate_value list) -> 
  out_value list 

returned

initial

Source: https://courses.cs.washington.edu/courses/cse490h/08au/lectures/
mapred.pdf 
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Source: https://courses.cs.washington.edu/courses/cse490h/08au/lectures/
mapred.pdf 

Shuffling = takes 
map() data to 
reducers 
Local sorting 
Secondary sorting 
of values 



•  Three key phases 
1.  Reducer copies sorted output (based on key) from 

each Mapper using HTTP 
2.  The framework sorts Reducer inputs by keys, 

because different Mappers have emitted the same 
key.  The shuffle and sort phases happen 
simultaneously. SecondarySort can be used to sort 
values.  

3.  Reduce is applied for each key in the sorted inputs 

 
Reducer output is not sorted.  

Reduce Details  



Example: Count word occurrences 
map(String input_key, String input_value): 

  // input_key: document name  

  // input_value: document contents  

  for each word w in input_value:  

    EmitIntermediate(w, 1);  

 

reduce(String output_key, Iterator<int> 
intermediate_values):  

  // output_key: a word  

  // output_values: a list of counts  

  int result = 0;  

  for each v in intermediate_values:  

    result += v; 

 Emit(result);  

Source: https://courses.cs.washington.edu/courses/cse490h/08au/lectures/
mapred.pdf 



•  Both map() and reduce() operations are executed in 
parallel 

•  Map() creates intermediate values from input 
•  Reduce() functions operate on different output keys 
•  Values are independently processed 

•  Note that reduce cannot start before map is finished 
•  Secondary sort on values: the application can 

extend key with a secondary key and define a 
grouping comparator 

MapReduce Parallelism 



Locality 

The map() task input data is divided into GFS/HDFS 
blocks 

 
Master program distributes tasks based on the location 

of data 
 
Map() tasks should be run on the same machine as the 

physical data file (or the same rack) 
 



Fault Tolerance 

Fault tolerance is realized by periodic heartbeats 
 
Master pings worker nodes to detect node failures 
 
Master must re-execute tasks that have failed 
  
Master can notices if particular input key/values cause 

problems in map and can skip those 



In the worst-case scenario the master compute node fails 
causing the job to be restarted 

 
Other failures can be managed by the master  
 
Failure of a worker node requires that the task is assigned to 

another worker 
 
Master reschedules failed tasks when workers become 

available 
 

Node failures 



Optimizations 

Reduce tasks cannot start before the whole map phase is 
complete 

 
Thus single slow machine can slow down the whole process 
 
Master can execute many redundant map tasks and then use the  

results of the first task to complete 



Optimizations: Combining Phase 

Performance can be increased by running a mini reduce phase 
on local map output 

 
Executed on mapper nodes after map phase 
 
Saves bandwidth before sending data to a full reducer 
 
Reducer can be a combiner if it is commutative and associative 



Combiner, graphically 

Combiner 
replaces with:

Map output

To reducer

On one mapper machine:

To reducer

Source: https://courses.cs.washington.edu/courses/cse490h/08au/lectures/
mapred.pdf 



Partitioner divides the intermediate key space 
Assigns intermediate key-value pairs to reducers 
Thus n partitions results in n reducers 
 
Between map and reduce phases: 

 data is shuffled: parallel-sorted and exchanged 
 data is moved to the correct shard for reducing 
 partition function accepts the key and the number of 
reducers and then returns the index of the reducer 
  

Supports load balancing 

Partitioner 



Two key functions that need to be implemented: 
•  map (in_key, in_value) à (out_key, intermediate_value) 

list 
•  reduce (out_key, intermediate_value list) à out_value 

list 
With two optimizations: 
•  combine (key, intermediate_value list) à 

intermediate_out_value list 
•  partition (key, number of partitions) à partition for key 
 

MapReduce Summary 



Partition and Shuffle 
Partition And Shuffle
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 Intermediate key-value pairs must be grouped by key through a 
distributed sort 

 
Shuffle and sort 

   
A job with m mappers and r reduces involves up to m * r different 

copy operations 
 
Each mapper may have intermediate output destined to every 

reducer 

Synchronization 



Purlieus and CAM 
 Data management as part of MapReduce 
  
 Need to know task types (map/reduce intensive) 

 
 Map intensive jobs benefit from locality awareness 

 
 Up to 80% reduction in execution time 

Data management as part of 
MapReduce 



Inverted Index 
Sorting 
PageRank  
Sorting 
Searching 
Statistics 

 Average, SD, count 
Advanced algorithms 

Key algorithms for MapReduce 



Finding files or items with specific characteristics 
 
Searching for patterns in web logs or files 
 
Filtering is mostly done in the map phase 
Reduce can be simply the identity 

Filtering Algorithms 



Computing the minimum, maximum, sum, average, ... 
of the given values 

 
Count the number of Tweets per day 
 
Map is simple or the identity, reduce is doing most of 

the work 

Aggregation Algorithms 



The Mapper output is automatically sorted by keys 
Reducer plays a crucial role in sorting 
Terasort Benchmark

http://sortbenchmark.org/YahooHadoop.pdf 
 (key, value) pairs are handled in order by key and sent to a 
specific reducer based on hash(key) 
 Hash function must be chosen so that  
 k1 < k2 => hash(k1) < hash(k2) 
 If we have a single reducer, the output is sorted 
 If we have multiple reducers, we get partially sorted 
results: last-stage merge of the interim results 

 
http://hadooptutorial.wikispaces.com/Sorting+feature+of+MapReduce 

 
 

Sorting 



TeraSort is a standard map/reduce sort 
A custom partitioner that uses a sorted list of N − 1 sampled 

keys that define the key range for each reduce. 
 In particular, all keys such that sample[i − 1] <= key < sample[i] 

are sent to reduce i.  
This guarantees that the output of reduce i are all less than the 

output of reduce i+1. 
 To speed up the partitioning, the partitioner builds a two level 

trie that quickly indexes into the list of sample keys based on 
the first two bytes of the key.  

TeraSort generates the sample keys by sampling the input 
before the job is submitted and writing the list of keys into 
HDFS.  

 

TeraSort 



Iterative algorithm that is run until it converges 
1.  K initial points (centers) are chosen at random. 
2.  K clusters are formed by associating every data 

point (observation) with the nearest center. 
3.  For each cluster, recompute the centers (determine 

centroid) 
4.  Repeat from 2 until convergence. 

Source: Riccardo Torlone. Analytics on Big Data. 
Universita Roma Tre.  

K-Means Clustering Algorithm 



Map phase   
 Each map reads the K centroids and a block from 
the input dataset 
 Each point is assigned to the closest centroid 
 Output: <centroid, point> 

Reduce phase 
 Obtain all points for a given centroid 
 Recompute the new centroid 
 Output: <new centroid> 

Iteration: 
 Compare the old and new set of K centroids 
 If they are similar then Stop 

  Else Start another iteration unless maximum of 
iterations has been reached.  

 

K-Means for MapReduce 



Combiners can be used to optimize the distributed 
algorithm 
 Compute for each centroid the local sums of the 
points 
 Send to the reducer: <centroid, partial sums> 

Use of a single reducer   
 Data to reducers is very small 
 Single reducer can tell immediately if the 
computation has converged 
 Creation of a single output file 

Optimizing K-Means for 
MapReduce 



MapReduce tasks must be written as acyclic dataflow 
programs 
 Stateless mappers and reducers 
 Batch model 

 
Difficult to implement iterative processing of datasets 

 Machine learning typically requires iterative 
operation: the dataset is visited multiple times by the 
algorithm 

Limitation: iterative algorithms 


