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Optimizations 

Reduce tasks cannot start before the whole map phase is 
complete 

 
Thus single slow machine can slow down the whole process 
 
Master can execute many redundant map tasks and then use the  

results of the first task to complete 



Optimizations: Combining Phase 

Performance can be increased by running a mini reduce phase 
on local map output 

 
Executed on mapper nodes after map phase 
 
Saves bandwidth before sending data to a full reducer 
 
Reducer can be a combiner if it is commutative and associative 



Combiner 

Combiner 
replaces with:

Map output

To reducer

On one mapper machine:

To reducer

Source: https://courses.cs.washington.edu/courses/cse490h/08au/lectures/
mapred.pdf 



Partitioner divides the intermediate key space 
Assigns intermediate key-value pairs to reducers 
Thus n partitions results in n reducers 
 
Between map and reduce phases: 

 data is shuffled: parallel-sorted and exchanged 
 data is moved to the correct shard for reducing 
 partition function accepts the key and the number of 
reducers and then returns the index of the reducer 
  

Supports load balancing 

Partitioner 



Two key functions that need to be implemented: 
•  map (in_key, in_value) à (out_key, intermediate_value) 

list 
•  reduce (out_key, intermediate_value list) à out_value 

list 
With two optimizations: 
•  combine (key, intermediate_value list) à 

intermediate_out_value list 
•  partition (key, number of partitions) à partition for key 
 

MapReduce Summary 



Partition and Shuffle 
Partition And Shuffle
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 Intermediate key-value pairs must be grouped by key through a 
distributed sort 

 
Shuffle and sort 

   
A job with m mappers and r reduces involves up to m * r different 

copy operations 
 
Each mapper may have intermediate output destined to every 

reducer 

Synchronization 



Purlieus and CAM 
 Data management as part of MapReduce 
  
 Need to know task types (map/reduce intensive) 

 
 Map intensive jobs benefit from locality awareness 

 
 Up to 80% reduction in execution time 

Data management as part of 
MapReduce 



Inverted Index 
Statistics 
Sorting 
Searching 
K-Means 
Transitive closure 
PageRank  
Advanced algorithms 

Key algorithms for MapReduce 



Finding files or items with specific characteristics 
 
Searching for patterns in web logs or files 
 
Filtering is mostly done in the map phase 
Reduce can be simply the identity 

Filtering Algorithms 



Mapper key is the file name + line number 
Mapper value is the contents of the file 
Search pattern is a special parameter 
 
Mapper: 

 Input: (filename, text) and pattern 
 If text matches pattern output (filename, _) 

Reducer: 
 Identity function 

Optimization: 
 Mark file only once 
 Use a combiner function to collapse (filename, _) pairs into one 
  Alleviates I/O issues 

Search 



Computing the minimum, maximum, sum, average, ... 
of the given values 

 
Count the number of Tweets per day 
 
Map is simple or the identity, reduce is doing most of 

the work 

Aggregation Algorithms 



The Mapper output is automatically sorted by keys 
Reducer plays a crucial role in sorting 
Terasort Benchmark

http://sortbenchmark.org/YahooHadoop.pdf 
 (key, value) pairs are handled in order by key and sent to a 
specific reducer based on hash(key) 
 Hash function must be chosen so that  
 k1 < k2 => hash(k1) < hash(k2) 
 If we have a single reducer, the output is sorted 
 If we have multiple reducers, we get partially sorted 
results: last-stage merge of the interim results 

 
http://hadooptutorial.wikispaces.com/Sorting+feature+of+MapReduce 

 
 

Sorting 



TeraSort is a standard map/reduce sort 
A custom partitioner that uses a sorted list of N − 1 sampled 

keys that define the key range for each reduce. 
 In particular, all keys such that sample[i − 1] <= key < 

sample[i] are sent to reduce i.  
This guarantees that the output of reduce i are all less than the 

output of reduce i+1. 
 To speed up the partitioning, the partitioner builds a two level 

trie that quickly indexes into the list of sample keys based on 
the first two bytes of the key.  

TeraSort generates the sample keys by sampling the input 
before the job is submitted and writing the list of keys into 
HDFS.  

 

TeraSort 



Iterative MapReduce Algorithms 



Iterative algorithm that is run until it converges 
1.  K initial points (centers) are chosen at random. 
2.  K clusters are formed by associating every data 

point (observation) with the nearest center. 
3.  For each cluster, recompute the centers (determine 

centroid) 
4.  Repeat from 2 until convergence. 

Source: Riccardo Torlone. Analytics on Big Data. 
Universita Roma Tre.  

K-Means Clustering Algorithm 



Map phase   
 Each map reads the K centroids and a block from 
the input dataset 
 Each point is assigned to the closest centroid 
 Output: <centroid, point> 

Reduce phase 
 Obtain all points for a given centroid 
 Recompute the new centroid 
 Output: <new centroid> 

Iteration: 
 Compare the old and new set of K centroids 
 If they are similar then Stop 

  Else Start another iteration unless maximum of 
iterations has been reached.  

 

K-Means for MapReduce 



MapReduce K-Means 
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P at each iteration 

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010 



Combiners can be used to optimize the distributed 
algorithm 
 Compute for each centroid the local sums of the 
points 
 Send to the reducer: <centroid, partial sums> 

Use of a single reducer   
 Data to reducers is very small 
 Single reducer can tell immediately if the 
computation has converged 
 Creation of a single output file 

Optimizing K-Means for 
MapReduce 



Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010 

Transitive Closure in MapReduce 
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Link analysis algorithm that assigns weights to each vertex in a 
graph by iteratively computing the weight of each vertex 
based on the weight of its inbound neighbours. 

In relational algebra, PageRank can be expressed as: a join 
followed by an update with two aggregations that are 
repeated until stopping condition 
  The first MapReduce job joins the rank and linkage 
tables;  Mappers emit the join column as the key and 
Reducers compute the join for each unqiue source URL and 
ran contribution of each outbound edge. 
  The second MapReduce job computes the aggregate 
rank of each unique destination URL. The Map is the 
identity and the reducers sum the rank contributions of each 
incoming edge. 

 
 

PageRank Algorithm 



PageRank Algorithm 
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R = Rank table 
L = Linkage table 

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010 



MapReduce tasks must be written as acyclic dataflow 
programs 
 Stateless mappers and reducers 
 Batch model 

 
Difficult to implement iterative processing of datasets 

 Machine learning typically requires iterative 
operation: the dataset is visited multiple times by the 
algorithm 

Limitation: iterative algorithms 



MapReduce cannot express 
iteration or recursion 

HaLooP modifies Hadoop for 
supporting fixpoint 
operations, loop-aware task 
scheduling, and cache 
management 

Map – Reduce – Fixpoint model 
for recursive languages 

 

HaLoop for iterative MapReduce 

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010 

For example: the vector of PageRank values of web pages is 
the fixed point of a linear transformation derived from the link 
structure 



HaLoop: Inter-iteration caching 

Mapper input cache (MI) for access to non-
local mapper input on later iterations

Mapper output cache (MO)

Reducer input cache (RI) for loop 
invariant data without map/shuffle

Reducer output cache (RO) 
for access to output of 
previous iterations, for 
fixpoint evaluation
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…

Loop body

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010 

Largest gain by caching 
loop invariant data 


