
www.cs.helsinki.fi

MapReduce Optimizations
and Algorithms

2015
Professor Sasu Tarkoma

Optimizations

Reduce tasks cannot start before the whole map phase is
complete

Thus single slow machine can slow down the whole process

Master can execute many redundant map tasks and then use the

results of the first task to complete

Optimizations: Combining Phase

Performance can be increased by running a mini reduce phase
on local map output

Executed on mapper nodes after map phase

Saves bandwidth before sending data to a full reducer

Reducer can be a combiner if it is commutative and associative

Combiner

Combiner
replaces with:

Map output

To reducer

On one mapper machine:

To reducer

Source: https://courses.cs.washington.edu/courses/cse490h/08au/lectures/
mapred.pdf

Partitioner divides the intermediate key space
Assigns intermediate key-value pairs to reducers
Thus n partitions results in n reducers

Between map and reduce phases:

 data is shuffled: parallel-sorted and exchanged
 data is moved to the correct shard for reducing
 partition function accepts the key and the number of
reducers and then returns the index of the reducer

Supports load balancing

Partitioner

Two key functions that need to be implemented:
•  map (in_key, in_value) à (out_key, intermediate_value)

list
•  reduce (out_key, intermediate_value list) à out_value

list
With two optimizations:
•  combine (key, intermediate_value list) à

intermediate_out_value list
•  partition (key, number of partitions) à partition for key

MapReduce Summary

Partition and Shuffle
Partition And Shuffle

!"##$%

&'()$%*$+'")$,-

!"##$%

&'()$%*$+'")$,-

!"##$%

&'()$%*$+'")$,-

!"##$%

&'()$%*$+'")$,-

.$+/0$% .$+/0$% .$+/0$%

&'()$%*$+'")$,- &'()$%*$+'")$,- &'()$%*$+'")$,-

1"%)')'2($% 1"%)')'2($% 1"%)')'2($% 1"%)')'2($%

,3
/

 5'
(!

 Intermediate key-value pairs must be grouped by key through a
distributed sort

Shuffle and sort

A job with m mappers and r reduces involves up to m * r different

copy operations

Each mapper may have intermediate output destined to every

reducer

Synchronization

Purlieus and CAM
 Data management as part of MapReduce

 Need to know task types (map/reduce intensive)

 Map intensive jobs benefit from locality awareness

 Up to 80% reduction in execution time

Data management as part of
MapReduce

Inverted Index
Statistics
Sorting
Searching
K-Means
Transitive closure
PageRank
Advanced algorithms

Key algorithms for MapReduce

Finding files or items with specific characteristics

Searching for patterns in web logs or files

Filtering is mostly done in the map phase
Reduce can be simply the identity

Filtering Algorithms

Mapper key is the file name + line number
Mapper value is the contents of the file
Search pattern is a special parameter

Mapper:

 Input: (filename, text) and pattern
 If text matches pattern output (filename, _)

Reducer:
 Identity function

Optimization:
 Mark file only once
 Use a combiner function to collapse (filename, _) pairs into one
 Alleviates I/O issues

Search

Computing the minimum, maximum, sum, average, ...
of the given values

Count the number of Tweets per day

Map is simple or the identity, reduce is doing most of

the work

Aggregation Algorithms

The Mapper output is automatically sorted by keys
Reducer plays a crucial role in sorting
Terasort Benchmark

http://sortbenchmark.org/YahooHadoop.pdf
 (key, value) pairs are handled in order by key and sent to a
specific reducer based on hash(key)
 Hash function must be chosen so that
 k1 < k2 => hash(k1) < hash(k2)
 If we have a single reducer, the output is sorted
 If we have multiple reducers, we get partially sorted
results: last-stage merge of the interim results

http://hadooptutorial.wikispaces.com/Sorting+feature+of+MapReduce

Sorting

TeraSort is a standard map/reduce sort
A custom partitioner that uses a sorted list of N − 1 sampled

keys that define the key range for each reduce.
 In particular, all keys such that sample[i − 1] <= key <

sample[i] are sent to reduce i.
This guarantees that the output of reduce i are all less than the

output of reduce i+1.
 To speed up the partitioning, the partitioner builds a two level

trie that quickly indexes into the list of sample keys based on
the first two bytes of the key.

TeraSort generates the sample keys by sampling the input
before the job is submitted and writing the list of keys into
HDFS.

TeraSort

Iterative MapReduce Algorithms

Iterative algorithm that is run until it converges
1.  K initial points (centers) are chosen at random.
2.  K clusters are formed by associating every data

point (observation) with the nearest center.
3.  For each cluster, recompute the centers (determine

centroid)
4.  Repeat from 2 until convergence.

Source: Riccardo Torlone. Analytics on Big Data.
Universita Roma Tre.

K-Means Clustering Algorithm

Map phase
 Each map reads the K centroids and a block from
the input dataset
 Each point is assigned to the closest centroid
 Output: <centroid, point>

Reduce phase
 Obtain all points for a given centroid
 Recompute the new centroid
 Output: <new centroid>

Iteration:
 Compare the old and new set of K centroids
 If they are similar then Stop

 Else Start another iteration unless maximum of
iterations has been reached.

K-Means for MapReduce

MapReduce K-Means

M

M

M

P0

i=i+1

ki - ki+1 < threshold?

Client

done

r

r

P1

P2

= k centroids at iteration i ki

ki

ki

ki

ki+1

Limitation: reads
the whole point set
P at each iteration

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010

Combiners can be used to optimize the distributed
algorithm
 Compute for each centroid the local sums of the
points
 Send to the reducer: <centroid, partial sums>

Use of a single reducer
 Data to reducers is very small
 Single reducer can tell immediately if the
computation has converged
 Creation of a single output file

Optimizing K-Means for
MapReduce

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010

Transitive Closure in MapReduce

M

M

M

M

M

r

r

Si

Friend1

Friend0

i=i+1

Anything new?

Join Duplication
elimination

Client

done

r

r

Link analysis algorithm that assigns weights to each vertex in a
graph by iteratively computing the weight of each vertex
based on the weight of its inbound neighbours.

In relational algebra, PageRank can be expressed as: a join
followed by an update with two aggregations that are
repeated until stopping condition
 The first MapReduce job joins the rank and linkage
tables; Mappers emit the join column as the key and
Reducers compute the join for each unqiue source URL and
ran contribution of each outbound edge.
 The second MapReduce job computes the aggregate
rank of each unique destination URL. The Map is the
identity and the reducers sum the rank contributions of each
incoming edge.

PageRank Algorithm

PageRank Algorithm

M

M

M

M

M

r

r

Ri

L-split1

L-split0
M

M

r

r

i=i+1 Converged?

Join & compute rank
Aggregate fixpoint evaluation

Client

done

r

r

R = Rank table
L = Linkage table

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010

MapReduce tasks must be written as acyclic dataflow
programs
 Stateless mappers and reducers
 Batch model

Difficult to implement iterative processing of datasets

 Machine learning typically requires iterative
operation: the dataset is visited multiple times by the
algorithm

Limitation: iterative algorithms

MapReduce cannot express
iteration or recursion

HaLooP modifies Hadoop for
supporting fixpoint
operations, loop-aware task
scheduling, and cache
management

Map – Reduce – Fixpoint model
for recursive languages

HaLoop for iterative MapReduce

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010

For example: the vector of PageRank values of web pages is
the fixed point of a linear transformation derived from the link
structure

HaLoop: Inter-iteration caching

Mapper input cache (MI) for access to non-
local mapper input on later iterations

Mapper output cache (MO)

Reducer input cache (RI) for loop
invariant data without map/shuffle

Reducer output cache (RO)
for access to output of
previous iterations, for
fixpoint evaluation

M

M

M

r

r
…

Loop body

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010

Largest gain by caching
loop invariant data

