
www.cs.helsinki.fi

Spark Overview

2015

Professor Sasu Tarkoma

•  Spark is a general-purpose computing framework for iterative
tasks

•  API is provided for Java, Scala and Python

•  The model is based on MapReduce enhanced with new
operations and an engine that supports execution graphs

•  Tools include Spark SQL, MLLlib for machine learning, GraphX
for graph processing and Spark Streaming

Apache Spark

Unifies batch, streaming, interactive computing

Making it easy to build sophisticated applications

Spark Aim

Resilient distributed datasets (RDDs)
Immutable collections of objects across a cluster
Built with parallel transformations (map, filter, …)
Automatically rebuilt when failure is detected
Allow persistence to be controlled (in-memory operation)

Transformations on RDDs
 Lazy operations to build RDDs from other RDDs
 Always creates a new RDD

Actions on RDDs

 Count, collect, save

Key idea in Spark

Application is a user program built on Spark that
consists of a driver program and executors on the
cluster.

Driver program is the process running the main()
function of the application and creating the
SparkContext

Cluster manager is an external service for acquiring
resources on the cluster

Worker node is any node that can run application code
in the cluster

Executor is a process launched for an application on a
worker node, that runs tasks and keeps data in
memory or disk storage across them. Each
application has its own executors

Spark terminology I/II

Task is a unit of work that will be sent to one executor

Job is a parallel computation consisting of multiple
tasks that gets spawned in response to a Spark
action (e.g. save, collect)

Stage is about each job being divided into smaller sets
of tasks called stages that depend on each other
(similar to the map and reduce stages in
MapReduce)

Spark terminology II

Spark overview

Driver Program

SparkContext
Cluster Manager

Worker Node

Executor

Tasks
Cache

Worker Node

Executor

Tasks
Cache

 SparkContext connects to a cluster manager
Obtains executors on cluster nodes
Sends app code to them
Sends task to the executors

The SparkContext object in the main program controls
the Spark applications

They are executed as independent sets of processes

on a cluster

SparkContext can connect to several types of cluster

managers (Spark native or Mesos/YARN) that are
responsible for allocating resources across the
cluster

Spark cluster components

1.  Applications are isolated from each other: tasks
from different apps run in different JVMs. As a
consequence data cannot be shared across Spark
applications without using external storage.

2.  Spark is flexible regarding the cluster manager. It
must be able to acquire executor processes that
communicate with each other.

3.  The driver schedules tasks on the cluster it should
reside near the worker nodes.

Three observations on the cluster
architecture

Standalone
 Simple cluster manager

Apache Mesos

 A general cluster manager

Hadoop YARN

 the resource manager of Hadoop 2

Cluster manager types

How Spark works

Transformations RDD

RDD

Action

Value

RDDs document the sequence of transformations that
were used to create them (the lineage)

This can be used to recompute lost data

Resilient Distributed Datasets
(RDD)

HadoopRDD FilteredRDD MappedRDD

Partitions support the management of parallel collections

One task is run for each partition of the cluster

Typically 2-4 partitions are used for each CPU

Spark sets this automatically, but it can be also manually tuned

(e.g. sc.parallelize(data, 10)).

Also the term slices is used for partitions

RDD Partitions

RDD is the primary abstraction

Fault-tolerant collection of elements

Intrinsic support for parallel operations

Two different types of RDD:

 Parallelized collections based on Scala collections
 Hadoop datasets that allow the execution of
functions on each record of a file in HDFS or some
other storage system supported by Hadoop

RDD I/II

Two types of operations are supported by Spark

Transformations

 Lazy
Actions

 Operate on RDDs
 Transformed RDD is recomputed when action is
applied

RDD can be stored into memory or disk

RDD II

Spark can cache (persist) RDD in memory

Each node stores in memory any parts of an RDD that

it computes

A node can reuse these cached results when

implementing new actions on the RDD, this can
result in 10x performance compared to Hadoop

The node cache has fault tolerance so that if any

partition of an RDD is lost, the lost part can be
recomputed using the history of transformations

Persistence in Spark

Spark monitors cache usage of each node and old
data partitions are removed using an LRU (Least-
Recently-Used) scheme

It is also possible to manually remove an RDD with the

RDD.unpersist() method

Persistence in Spark II

Spark Persistence
Transformation Description
MEMORY_ONLY RDD is stored as deserialized Java objects in the JVM.

If the RDD does not fit into the memory, it will be only
partially cached and missing partitions will be
recomputed when they are required. This is the default
mode.

MEMORY_AND_DISK The RDD is stored as deserialized Java objects in the
JVM. If the RDD does not fit into memory, it will be
partially accessed from disk.

MEMORY_ONLY_SER The RDD is stored as serialized Java objects (one by
array for a partition). This approach is more byte-
efficient than the former methods; however, requires
more CPU to read. Recomputes missing partitions
when required.

MEMORY_AND_DISK_SE
R

Similar to the above case, but uses disk instead of
recomputing the missing partitions.

DISK_ONLY Store the RDD only to disk.
MEMORY_ONLY_2… Same as above, but with replication to two clusters.

A function given to a Spark operation is typically executed on
a remote cluster node (for example map and reduce)

The function works on separate copies of the data and
variables that are not shared by the remote cluster nodes

The necessary data and variables are copied to the remote
node and no updates are sent back to the driver program

Spark supports two methods for shared variables:
 broadcast variables
 accumulators

Shared Variables

join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

= cached partition = RDD

map

Task Scheduler
Supports general task graphs
Pipelines functions where

possible
Cache-aware data reuse &

locality
Partitioning-aware to avoid

shuffles

M.Zaharia. Parallel programming with Spark. O’Reilly Strata Conference. February 2013.

