Big Data Frameworks: Internals

Mohammad A. Hoque
mohammad.a.hoque@helsinki.fi

Spark Framework Application

object WordCount {
def main (args: Array[String]){
val driver = "spark://192.168.0.3:7077"
val sc = new SparkContext(driver, "SparkWordCount")
val numPartitions = 10
val lines = sc.textFile("here"+"sometext.txt", numPartitions)
val words = lines.flatMap (_.split(" "))
val groupWords = words.groupBy { x => x}
val wordCount = groupWords.map(x => (x._1,x._2.size))
val result = wordCount.saveAsTextFile("there"+"wordcount")

Spark Application Framework

SparkContext initializes the application driver and gives the
application execution to the driver.

RDD is generated from the external data sources; such as
HDFS.

RDD goes through a number of Transformations; such a
Map, flatMap, sortByKey, etc.

Finally, the count/collect/save/take Action is performed,
which converts the final RDD into an output for storing to
an external source.

Spark Application Framework

== =
/.

-

Transformation Transformation with Shuffling

Machine C

Spark Application Framework

Action Result

apo)
}nsay uonoy

Shuffle

RDD is generated from the input file stored in HDFS

 Thisis where the data for a MapReduce
task is initially stored and the files typically
reside in HDFS.

 The format of these files; text and binary
e Text —Single Line (JSON)
e Multi-Line (XML)
* Binary file, with fixed size objects

* FileInputFormat is a class that
* Selects the files or other objects that
should be used for input.
* Defines the InputSplits that break a
file into tasks.
* Provides a factory for RecordReader
objects that read the file.

e Hadoop comes with a number of
FilelnputFormats:

Textinputformat: the byte offset of a
line is a key and the line is the value.
KeyValuelnputFormat: the text until
the first tab is the key and the
remaining is the value.
SequenceFilelnputFormat: Object
files. Key and values are defined by
the user.

A MapReduce program applied to a
data set, collectively referred to as a
Job, is made up of several (possibly
several hundred) tasks.

An InputSplit describes a unit of work
that comprises a single map task in a
MapReduce program.

A Map tasks may involve reading a
whole file; they often involve reading
only part of a file.

 Different File Input Formats break a file
up into 64 MB chunks.

* Splitting a file allow multiple map tasks
over a single file in parallel.

* If the file is very large, the performance
can be improved significantly through
such parallelism.

for (FileStatus file: files) {
Path path = file.getPath();
FileSystem fs = path.getFileSystem(job.getConfiguration());
long length = file.getLen();
BlockLocation[] blkLocations = fs.getFileBlockLocations(file, O, length);
if ((length 1= 0) && isSplitable(job, path)) {
long blockSize = file.getBlockSize();
long splitSize = computeSplitSize(blockSize, minSize, maxSize);
long bytesRemaining = length;
while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
int blkiIndex = getBlockindex(blkLocations, length-bytesRemaining);
splits.add(new FileSplit(path, length-bytesRemaining, splitSize,
blkLocations[blkindex].getHosts()));
bytesRemaining -= splitSize;
}
if (bytesRemaining !=0) {
splits.add(new FileSplit(path, length-bytesRemaining, bytesRemaining,
blkLocations[blkLocations.length-1].getHosts()));
}
} else if (length 1= 0) {
splits.add(new FileSplit(path, O, length, blkLocations[0].getHosts()));
}else {
splits.add(new FileSplit(path, O, length, new String[0]));

}
}

—

The InputSplit defines a task, but does
not describe how to access it.

The RecordReader class actually loads
the data from its source and converts it
into (key, value) pairs suitable for
reading by the Mapper.

—

 LineRecordReader treats each line of
the input file as a new value. The key
associated with each line is its byte
offset in the file.

* The RecordReader is invoke repeatedly
until the entire InputSplit has been
consumed.

e Each invocation of the RecordReader
leads to another call to the map()
method of the Mapper.

Mahout XMLRecordReader

public XmIRecordReader(FileSplit split,
JobConf jobConf) throws IOException

{

startTag = jobConf.get(”<article>").
getBytes("utf-8");

endTag = jobConf.get(”<article>").
getBytes("utf-8");

start = split.getStart();

end = start + split.getLength();

Path file = split.getPath();

FileSystem fs =

file.getFileSystem(jobConf);

fsin = fs.open(split.getPath());

fsin.seek(start);

public boolean next(LongWritable key, Text
value) throws IOException {
if (fsin.getPos() < end) {
if (readUntilMatch(startTag, false)) {
try {
buffer.write(startTag);
if (readUntilMatch(endTag, true)) {
key.set(fsin.getPos());
value.set(buffer.getData(), O,
buffer.getLength());
return true;

}

} finally {buffer.reset();}

}
}

return false;

RDD goes through a number of Transformations

Spark Application

1. object WordCount {

2. def main (args: Array[String]){

3. val driver = "spark://192.168.0.3:7077"

4, val sc = new SparkContext(driver, "SparkWordCount")

5. val numPartitions = 10

6. val lines = sc.textFile("here"+"sometext.txt", numPartitions)
7. val words = lines.flatMap (_.split(" "))

8. val groupWords = words.groupBy { x => x}

9. val wordCount = groupWords.map(x => (x._1,x._2.size))

10. val result = wordCount.saveAsTextFile("there"+"wordcount")
11. '}

12. }

Spark Application Execution

— How does the spark submit the job to the worker?
e (1) Map, (2) flatMap, (2) groupBy, (3) Map, Or
* (1) Map ->flatMap, (2) groupBy, (3) Map

— How Many tasks per submission?

— Before submitting tasks of a job, how does the
driver know about the resource information of

the workers?

How does the spark submit the job to the
workers?

DAG Scheduler

Wide

DAG Scheduler

=
O
Pk
-
q¢)
Z

Transformation

Narrow : All partitions of an
RDD will be consumed by a
single child RDD, no
shuffling.

Wide

DAG Scheduler

Transformation
Wide: Shuffling takes place
according to their key value.

Stage O

Stage 1

Driver

DAG Scheduler

Narrow

Wide

DAG Scheduler Splits the
graph according to the
dependency and submits to
the lower layer Scheduler.

DAG Scheduler

DAG serves Fault tolerance
— |f a partition is lost while executing a stage consisting
of transformations with Narrow dependencies

* It traces back and re-computes only the lost partition of the
parent RDD, and

* The responsible machine will take care.
— In the case of Wide dependencies, the lost partition
can affect a lot of others

* Spark mitigates this my persisting the last computed
partitions before the shuffling takes place.

— There is also checkpoint APl which enables to persist
RDD on desired transformation.

DAG Scheduler

INFO [Executor task launch worker-1] (Logging.scala:59) - Input split: file:/data/mmbrain/2015/inputJson/group5/part-dp:939524096+33554432

INFO [task-result-getter-3] (Logging.scala:59) - Finished task 27.0 in (TID 27) in 2455 ms on localhost (28/43)

INFO [Executor task launch worker-1] (Logging.scala:59) - Finished task 28.0 in stage 0.0 (TID 28). 4565 bytes result sent to driver

INFO [sparkDriver-akka.actor.default-dispatcher-2] (Logging.scala:59) - Starting task 29.0 in stage 0.0 (TID 29, localhost, PROCESS LOCAL, 1650 byte
INFO [Executor task launch worker-1] (Logging.scala:59) - Running task 29.0 in stage 0.0 (TID 29)

INFO [Executor task launch worker-1] (Logging.scala:59) - Input split: file:/data/mmbrain/2015/input)Json/group5/part-dp:973078528+33554432
INFO [task-result-getter-0] (Logging.scala:59) - Finished task 28.0 in stage 0.0 (TID 28) in 2084 ms on localhost (29/43)

INFO [Executor task launch worker-1] (Logging.scala:59) - Finished task 29.0 in stage 0.0 (TID 29). 4728 bytes result sent to driver

INFO [sparkDriver-akka.actor.default-dispatcher-2] (Logging.scala:59) - Starting task 30.0 in stage 0.0 (TID 30, localhost, PROCESS_LOCAL, 1650 byte

INFO [Executor task launch worker-1] (Logging.scala:59) - Running task 9.0 in (TID 52)

INFO [Executor task launch worker-1] (Logging.scala:59) - Input split: file:/data/mmbrain/2015/input)Json/group5/part-dp:301989888+33554432
INFO [Executor task launch worker-1] (Logging.scala:59) - ensureFreeSpace(16880) called with curMem=471734, maxMem=4123294433

INFO [Executor task launch worker-1] (Logging.scala:59) - Block rdd_9_9 stored as values in memory (estimated size 16.5 KB, free 3.8 GB)

INFO [sparkDriver-akka.actor.default-dispatcher-14] (Logging.scala:59) - Added rdd_9_9 in memory on localhost:43449 (size: 16.5 KB, free: 3.8 GB)
INFO [Executor task launch worker-1] (Logging.scala:59) - Updated info of block rdd_9_9

How Many tasks per Stage?

Number of Tasks

* Number of InputSplit defines the number of
tasks.

— Hadoop FilelInputFormat defines

— Immediate Narrow transformations will follow the
parent

* |f GroupBy is used

— The number of keys define the number of tasks

Control Number of Tasks

object WordCount {
def main (args: Array[String]){
val driver = "spark://192.168.0.3:7077"
val sc = new SparkContext(driver, "SparkWordCount")
val numPartitions = 10
val lines = sc.textFile("here"+"sometext.txt", numPartitions)
val words = lines.flatMap (_.split(" "))
val groupWords = words.groupBy { x => x}
val wordCount = groupWords.map(x => (x._1,x._2.size))
val result = wordCount.saveAsTextFile("there"+"wordcount")

Control Number of Tasks

1. object WordCount {

p def main (args: Array[String]){

3 val driver = "spark://192.168.0.3:7077"

4, val sc = new SparkContext(driver, "SparkWordCount")

5. val numPartitions = 10

6 val lines = sc.textFile("here"+"sometext.txt", numPartitions).coalesce(numPartitions)
7 val words = lines.flatMap (_.split(" "))

8 val groupWords = words.groupBy { x => x}

9 val wordCount = groupWords.map(x => (x._1,x._2.size))

10. val result = wordCount.saveAsTextFile("there"+"wordcount")

How does the driver know about the resource
information of the workers?

Spark Application Framework

MESQOS Architecture

Hadoop MPI ZooKeeper
scheduler scheduler quorum

Py s — A

Mesos | Standby |

1

master . __master 1 | _master
Mesos slave| | Mesos slave Mesos slave
Hadoop MPI Hadoop MPI

executor executor executor||executor

task -| task] task task

Resource Allocation Example

Slave 1 reports to the master that it has 4 CPUs and 4
GB of memory free.

The master then invokes the allocation policy module,
which tells it that framework 1 should be offered all

available resources.

The master sends a resource offer describing what is
available on slave 1 to framework 1.

The framework’s scheduler replies to the master with

information about two tasks to run on the slave, using
<2 CPUs, 1 GB RAM> for the first task, and <1 CPUs, 2

GB RAM> for the second task.

Resource Allocation Example

Framework 1 Framework
Job 1 Job 2 [Job1 | Job2
FW Scheduler FW S er

=taskil. s1, 2cpu, 1gb, ... =
<s1, 4cpu, 4gb, ... > (2 <task2, s1, 1cpu, 2gb, ... >

e
Allocation Mesos
module master
<s1, 4cpu, 4gb, ... > (1 <fw1, task1, 2cpu, 1gb, ... >
<fw1, task2, 1cpu, 2gb, ... >
____Slave1____ | Slave 2
| 1
, Executor |
| f Tocl | Iy Toacl | 1)
@ Task it Task | a

Resource Allocation Example

* Finally, the master sends the tasks to the slave,
which allocates appropriate resources to the
framework’s executor, which in turn launches the
two tasks (depicted with dotted-line borders in
the figure). Because 1 CPU and 1 GB of RAM are
still unallocated, the allocation module may now
offer them to framework 2.

* Again the steps are repeated when some tasks
are finished or resources become available.

Resource Allocation Example

* For example, how can a framework achieve
data locality without MESOS knowing which
nodes store the data required by the

framework?

— MESOS answers these questions by simply giving
frameworks the ability to reject offers. A
framework will reject the offers that do not satisfy
its constraints and accept the ones that do.

