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Same system for 
 Exploring data interactively using Spark 
 Spark standalone programs  
 Spark streaming for problems with live data 

 
Easy and productive data science 
 
More information 

 Spark Streaming. Large-scale near-real-time stream 
processing. Tathagata Das. Strata Conference. Feb. 
26-28.2013. http://tinyurl.com/dstreams 

 

MLBase and MLlib: Vision  



Spark RDDs support efficient data sharing 
 
In-memory caching increases performance 

 Reported to have performance of up to 100 times 
faster than Hadoop in memory or 10 times faster on 
disk  

 
High-level programming interface for complex 

algorithms 
 
 
 

Machine Learning and Spark 



MLlib 

MLI: An API for Distributed Machine Learning!
Evan Sparks, Ameet Talwalkar, et al.!
International Conference on Data Mining (2013)!
http://arxiv.org/abs/1310.5426

Data Workflows: MLlib

spark.apache.org/docs/latest/mllib-guide.html

val data = // RDD of Vector!
val model = KMeans.train(data, k=10)

Traditional tools 
+ Easy to use  

+ Good for prototyping 

- Non-scalable ad-hoc scripting 

- Porting/translating can be challenging 

 

Distributed tools 
+ Scalable 

+ Open-source libraries 

- Difficult to configure and extend 

val data = // RDD of Vector 
val model = KMeans.train(data, k=10)  
 
MLI: An API for Distributed Machine 

Learning  
Evan Sparks, Ameet Talwalkar, et al.  
International Conference on Data 

Mining (2013)  
http://arxiv.org/abs/1310.5426  
 



MLBase has been designed for simplifying the development of 
machine learning pipelines: 

•  MLlib is a machine learning library 
•  MLI (ML Developer API) is an API for machine learning 

development that aims to abstract low-level details from the 
developers 

•  MLOpt is a declarative layer that aims to automate the 
machine learning pipeline 

•  The idea is that the system searches feature extractors and 
models best fit for the ML task 

Source: Towards an Optimizer for MLbase, Ameet Talwalkar, 
Databricks, 2014. 

 
  

MLBase and MLlib 

Single machine 

Lapack fortran linear 
algebra library 

Matlab interface 

Spark 

MLLib 

MLI 

ML Optimizer 

Matlab 
stack 

MLBase 
stack 



ML Pipeline Revisited 

Data Feature 
Extraction 

Model 
Training Final Model 

Iterative process of continuous refinement 
 
MLBase aims to automate the construction of the pipeline 



MLI 
 Table computation: MLTable 
  Flexibility when loading data and feature extraction 
  Linear Algebra: MLSubMatrix 
 Optimization Primitives: MLSolve   

MLOpt 
 A declarative approach to ML 
 Users tell the system what they want to accomplish, the 
system will implement 
 System searches through the model space and chooses the 
best models 
  

MLI and MLOpt 



Typical Data Analysis Workflow 

Load Raw Data 

Data Exploration 

Feature Extraction 

Learning 

Evaluation 

Deployment Scala 

MLI 

MLI, MLLib 

MLI 

Spark, potentially MLI 

Spark, MLI 



Classification 
 logistic regression, linear support vector machines (SVM), naïve 
Bayes, least squares, decision trees 

Regression 
 linear regression, regression trees 

Collaborative filtering 
 alternating least squares (ALS), non-negative matrix factorization 
(NMF) 

Clustering 
 k-means 

Optimization 
 stochastic gradient descent (SGD), limited memory BFGS 

Dimensionality reduction 
 singular value decomposition (SVD), principal component analysis 
(PCA) 

Algorithms in MLlib v1.0 



Summary statistics 
Correlations 
Stratified sampling 
Hypothesis testing 
Random data generation 

MLLib Basic Statistics 



//	
  With	
  MLLib	
  

val	
  data	
  =	
  sc.textFile(“kmeans.txt”)	
  

val	
  parsedData	
  =	
  data.map(_.split(‘	
  
‘).map(_.toDouble()).cache()	
  

	
  

val	
  clusters	
  =	
  KMeans.train(parsedData,	
  
2,	
  numIterations=20)	
  

	
  

val	
  cost	
  =	
  
clusters.computeCost(parsedData)	
  

	
  

println(“Sum	
  of	
  squared	
  errors:	
  “	
  +	
  cost)	
  

Spark K-Means Example 

Source: MLlib and Distributing the Singular Value Decomposition, Reza Zadeh, ICME and Databricks, 2014. 

//	
  Without	
  MLLib	
  

//	
  Initialize	
  K	
  cluster	
  centers	
  

centers	
  =	
  data.takeSample(false,	
  K,	
  seed)	
  

While	
  (d	
  >	
  epsilon)	
  {	
  

	
  //	
  assign	
  each	
  data	
  point	
  to	
  the	
  closest	
  
cluster	
  

	
  closest	
  =	
  data.map(	
  p	
  =>	
  

	
   	
  (closestPoint(p,	
  centers),	
  p))	
  

	
  //	
  assign	
  each	
  center	
  to	
  be	
  the	
  mean	
  of	
  its	
  
data	
  points	
  

	
  pointsGroup	
  =	
  closest.groupByKey()	
  

	
  newCenters	
  =	
  pointsGroup.mapValues(	
  

	
   	
  ps	
  =>	
  average(ps))	
  

	
  d	
  =	
  distance(centers,	
  newCenters)	
  	
  	
  

}	
  

This addresses the MapReduce limitation of reading the whole point 
set at each iteration. The MLLib implementation caches the norms of 
the points and centers 



K-means Clustering Parallel Efficiency 

•  Shantenu Jha et al. A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and 
Architectures. IEEE BigData Congress. 2014. 

1000000 points
 50000 centroids

10000000 points
 5000 centroids

100000000 points
 500 centroids
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Fig. 2. Runtime of different K-Means Implementations (y axis in log scale): While MPI clearly outperforms the Hadoop-based implementations, the
performance of K-Means can significantly be improved by using hybrid approaches, such as Spark and HARP. By introducing efficient collective and iterative
operations known from HPC to Hadoop, the runtime can be improved while maintaining a high-level abstraction for the end-user.

the Hadoop-based implementation, it must be noted that the
second generation Hadoop frameworks, such as Spark, have
improved performance significantly by adopting techniques
previously only found in HPC, such as effective collective op-
erations. Nonetheless important distinctions remain: Hadoop-
based frameworks still maintain a very high and accessible
level of abstraction, such as data objects, collections etc.,
and are typically written without tight coupling to resource
specifics, e.g., the user can modify some parameters, such as
the HDFS or RDD chunk size, which also controls the par-
allelism. In general, frameworks and tools utilize application-
level scheduling to manage their workloads and provide pow-
erful abstractions for data processing, analytics and machine
learning to the end-user while hiding low-level issues, such re-
source management, data organization, parallelism, etc. HPC
applications operate on low-level, communication operations
and application-specific files that often lack a common runtime
system for efficiently processing these data objects.

Functionalities available in the ABDS ecosystem (more than
110 implementations) typically exceed those available in the
HPC ecosystem, thus reiterating the need for consilience be-
tween the two. Several approaches for convergence of the two
ecosystems have been proposed. Often, these focus on run-
ning Hadoop on top of HPC. However, a lot of the bene-
fits of Hadoop are lost in these approaches, such as data lo-
cality aware scheduling, higher cluster utilization etc. Thus,
we believe that this is not the right path to interoperabil-
ity and integration. Furthermore, YARN has been designed
to address the needs of data-intensive applications and sup-
port application-level scheduling for heterogeneous workloads,
there is some ways to go way before YARN can enable both
HPC applications and data-intensive applications on the range

of resource fabrics found in HPC ecosystem. A possible and
promising approach for interoperability that emerges and will
be investigated is the extension of HPC Pilot-Job abstraction
to YARN, and the usage of Pilot-Data [12] for data-locality
aware scheduling.

Our analysis shows that there are technical reasons that
drive the convergence between the HPC and ABDS paradigms,
e. g. rich and powerful abstractions like collective communi-
cations and direct-memory operations, long the staple of HPC
are steadily making their presence felt in the ABDS. We an-
ticipate the convergence of conceptual abstractions will soon
lead to an integration of tools and technology, e.g., integration
of specific capabilities, especially in the form of interoperable
libraries built upon a common set of abstractions. In fact, we
are working towards such an interoperable library – Scalable
Parallel Interoperable Data-Analytics Library (SPIDAL) – that
will provide many of the rich data-analytics capabilities of the
ABDS ecosystem for use by traditional HPC scientific appli-
cations. This will be an incremental but important step towards
promoting an integrated approach – the high-performance big-
data stack (HPBDS) – that brings the best of both together.
Author Contributions – The experiments were designed primarily by AL
and JQ, in consultation with and input from SJ and GCF. The experiments
were performed by AL, PM and JQ. Data was analyzed by all. SJ and GCF
determined the scope, structure and objective of the paper and wrote the
introduction, applications and conclusion. AL wrote the bulk of the remainder
of the paper.
Acknowledgement This work is primarily funded by NSF OCI-1253644. This
work has also been made possible thanks to computer resources provided by
XRAC award TG-MCB090174 and an Amazon Computing Award to SJ.
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A set of techniques for automatic recommendations 
The goal is to predict the interest of a user for an item and filter 

out uninteresting items 
The approach is collaborative since it collects preference 

information from many users 
The idea is that if person A has the same opinion as person B 

on a topic, A is more likely to share B’s opinion on a 
different issue than share an opinion with a person chosen 
randomly  

The technique requires a large number of user preferences 
 

Collaborative filtering 



Example 

Movie A Movie B Movie C 
Ann * *** ? 
Bob * ** *** 
Alice ? *** *** 
John * ? ** 



Involves the construction of an utility (preference) matrix 
 
Columns are items and rows are users 
 
Users are similar if their vectors are close according to a 

distance measure (Jaccard, cosine distance, …) 
 
Recommendation for a user is made by examining users that 

are most similar. The recommendations are based on the 
preferences of these users. 

 

Collaborative filtering 



MLlib supports model-based collaborative filtering 
 
Latent factors describe users and products 
 
Predict missing entries 
 
Alternative Least Squares (ALS) algorithm to learn latent 

factors 

Collaborative Filtering in MLlib 



Important parameters 
 Rank, lambda (regularization constant) and number 
of iterations 

Create training examples 
 Training, validation, test sets 

Train multiple models and select the best one based on 
validation set with the Root Mean Squared Error 
(RMSE) 

Evaluate the best model with the test set 
 
 

Collaborative Filtering 



Broadcast everything   
 Master broadcasts data and initial models 

 At each iteration updated models are broadcast by master 
 Does not scale well due to communication overhead   

Data parallel 
 Worker loads data 
 Master broadcasts initial models 

 At each iteration updated models are broadcast by master 
 Works for large datasets, because data is available to workers 

Fully parallel 
 Workers load data and they instantiate the models 
 At each iteration, models are shared via join between workers 

 Much better scalability 
 

 

Implementation of ALS: Design 
Strategies 



MLLib ALS uses block-wise parallel scheme 
 Users/products are partitioned into blocks  
 A join is based on blocks instead of individual entries 

 
An order of magnitude performance improvement is reported 

when compared to Mahout (with 9x scaled Netflix data on a 
cluster of 9 nodes). GraphLab is reported to be the fastest 
(MLLib within a factor of 2 of GraphLab). 

 
Source: MLlib: Scalable Machine Learning on Spark. Xiangrui 
Meng. Databricks.  

 
 

Implementation of ALS 



//	
  parse	
  data	
  

val	
  data	
  =	
  sc.textFile(“test.data”)	
  

val	
  ratings	
  =	
  data.map(_.split(‘,’)	
  match	
  {	
  

case	
  Array(user,item,rate)	
  =>	
  	
  

Rating(user.toInt,	
  item.toInt,	
  rate.toDouble)	
  

})	
  

//	
  recommendation	
  model	
  

val	
  model	
  =	
  ALS.train(ratings,	
  1,	
  20,	
  0.01)	
  

//	
  Can	
  be	
  extended	
  to	
  test	
  parameter	
  combinations	
  and	
  choose	
  

//	
  the	
  best	
  model	
  with	
  the	
  lowest	
  RMSE	
  (computeRmse)	
  

//	
  evaluate	
  model	
  

val	
  usersProducts	
  =	
  ratings.map	
  {	
  case	
  Rating(user,	
  product,	
  
rate)	
  =>	
  (user,	
  product)}	
  

val	
  predictions	
  =	
  model.predict(usersProducts)	
  

Example: Alternative Least Squares (ALS) 

Source: MLlib and Distributing the Singular Value Decomposition, Reza Zadeh, ICME and Databricks, 2014. 



This technique builds a statistical model, the classifier, based 
on the given training data 

The training data is of the form 
 <label, feature1, feature2, …, featureN> 

The trained classifier decides on the following 
 <?, feature1, feature2, …, featureN> 

Classifying a new sample 
 Computer posterior value for each label 
 The label with the largest posterior value is the suggested 
label 

 

Naïve Bayes Classifier 



Computes the conditional probability distribution of each feature 
given label in a single pass of the data 

 
Applies Bayes’ theorem to compute the conditional probability 

distribution of label given an observation and use it for 
prediction 

 
MLlib supports multinomial naive Bayes that is typically used for 

document classification 
 Each observation is a document and each feature represents a 
term whose value is the frequency of the term 
 Feature values must be nonnegative to represent term 
frequencies 

MLLib and Naïve Bayes 



import	
  org.apache.spark.mllib.classification.NaiveBayes	
  
import	
  org.apache.spark.mllib.linalg.Vectors	
  
import	
  org.apache.spark.mllib.regression.LabeledPoint	
  
	
  
val	
  data	
  =	
  sc.textFile("data/mllib/sample_naive_bayes_data.txt")	
  
val	
  parsedData	
  =	
  data.map	
  {	
  line	
  =>	
  
	
  	
  val	
  parts	
  =	
  line.split(',')	
  
	
  	
  LabeledPoint(parts(0).toDouble,	
  Vectors.dense(parts(1).split('	
  
').map(_.toDouble)))	
  
}	
  
//	
  Split	
  data	
  into	
  training	
  (60%)	
  and	
  test	
  (40%).	
  
val	
  splits	
  =	
  parsedData.randomSplit(Array(0.6,	
  0.4),	
  seed	
  =	
  11L)	
  
val	
  training	
  =	
  splits(0)	
  
val	
  test	
  =	
  splits(1)	
  
	
  
val	
  model	
  =	
  NaiveBayes.train(training,	
  lambda	
  =	
  1.0)	
  
	
  
val	
  predictionAndLabel	
  =	
  test.map(p	
  =>	
  (model.predict(p.features),	
  
p.label))	
  
val	
  accuracy	
  =	
  1.0	
  *	
  predictionAndLabel.filter(x	
  =>	
  x._1	
  ==	
  
x._2).count()	
  /	
  test.count()	
  

http://spark.apache.org/docs/1.2.1/mllib-naive-bayes.html 



Input is a set of items and a set of transactions that contain 
subset of items 

Example: typical items in a shopping cart 
Parameter α determines the threshold for an item to be 

considered frequent  
 
 
 

Frequent Pattern Mining 

Shopping cart Items 
C1 Coffee, Cake, Butter 
C2 Butter, Bread 
C3 Coffee, Cake, Milk 
C4 Bread, Milk, Coffee, Cake 

Assume α  = 70% 
Support for items: {coffee}, {cake} and {coffee, cake} is ¾ 
exceeding example threshold of 70%. 



Naïve approach to find the frequent itemsets is to 
enumerate all the possible itemsets and count them 

Property: for an itemset to be frequent, all its 
subsets must be frequent as well 

The Apriori algorithm determines the frequent itemsets 
in scans that consist of two phases: 
 1. Given a list of candidate itemsets of size n, count 
the items and determine the frequent ones 
 2. Generate candidate list of size n+1  
  All subsets of size n must be frequent  

Bottleneck: candidate-generation-and-test 
 

Frequent Pattern Mining 



MLLib implements the algorithm by Li et al, 2008. 
 Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, and Edward Y. Chang. 
2008. Pfp: parallel fp-growth for query recommendation. In Proceedings 
of the 2008 ACM conference on Recommender systems (RecSys '08). 
http://doi.acm.org/10.1145/1454008.1454027 

A parallelized FP-Growth algorithm: 
1.  Calculate item frequencies and identify frequent 

items 
2.  Use a suffix tree (FP-tree) structure to encode 

transactions without generating candidate sets 
explicitly (improvement over the apriori algorithm) 

3.  Frequent itemsets can be extracted from the FP-
tree.  

Spark Frequent Itemset Mining 



import	
  org.apache.spark.rdd.RDD	
  

import	
  org.apache.spark.mllib.fpm.{FPGrowth,	
  FPGrowthModel}	
  

	
  

val	
  transactions:	
  RDD[Array[String]]	
  =	
  ...	
  

	
  

val	
  fpg	
  =	
  new	
  FPGrowth()	
  

	
  	
  .setMinSupport(0.2)	
  

	
  	
  .setNumPartitions(10)	
  

val	
  model	
  =	
  fpg.run(transactions)	
  

	
  

model.freqItemsets.collect().foreach	
  {	
  itemset	
  =>	
  

	
  	
  println(itemset.items.mkString("[",	
  ",",	
  "]")	
  +	
  ",	
  "	
  +	
  
itemset.freq)	
  

}	
  

https://spark.apache.org/docs/latest/mllib-frequent-pattern-mining.html 



Link analysis algorithm that assigns weights to each vertex in a 
graph by iteratively computing the weight of each vertex 
based on the weight of its inbound neighbours. 

 
The algorithm outputs a probability distribution that presents 

the likelihood that a person randomly clicking on links will 
arrive at any particular web page  

 
Measures the importance of a web page 
 

The PageRank Algorithm 



In relational algebra, PageRank can be expressed as: 
a join followed by an update with two aggregations 
that are repeated until stopping condition: 

 
  The first MapReduce job joins the rank and 
linkage tables and computes the rank contribution 
for each outbound edge  

 
  The second MapReduce job computes the 
aggregate rank of each unique destination URL. 
The Map is the identity and the reducers sum the 
rank contributions of each incoming edge. 

 
 

PageRank and MapReduce 



PageRank Algorithm 
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L = Linkage table 

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010 



1.  Start each page at a rank of 1 

2.  On each iteration, have page p contribute 
rankp / |neighborsp| to its neighbors (MR phase 1) 

3.  Set each page’s rank to 0.15 + 0.85 × contributions 
(weighting factors)  (MR Phase 2) 

Update ranks in parallel 

Iterate until convergence 
 
 

PageRank Algorithm 

M. Zaharia. Parallel Programming with Spark. Strata Conference, February 2013. 



Scala Implementation 

val	
  links	
  =	
  //	
  RDD	
  of	
  (url,	
  neighbors)	
  pairs	
  

var	
  ranks	
  =	
  //	
  RDD	
  of	
  (url,	
  rank)	
  pairs	
  

	
  

for	
  (i	
  <-­‐	
  1	
  to	
  ITERATIONS)	
  {	
  

	
  	
  //	
  Phase	
  1	
  

	
  	
  val	
  contribs	
  =	
  links.join(ranks).flatMap	
  {	
  

	
  	
  	
  	
  case	
  (url,	
  (links,	
  rank))	
  =>	
  

	
  	
  	
  	
  	
  	
  links.map(dest	
  =>	
  (dest,	
  rank/links.size))	
  

	
  	
  }	
  
	
  //	
  Phase	
  2	
  

	
  	
  ranks	
  =	
  contribs.reduceByKey(_	
  +	
  _)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .mapValues(0.15	
  +	
  0.85	
  *	
  _)	
  

}	
  
	
  
ranks.saveAsTextFile(...)	
  



PageRank repeatedly multiplies sparse matrices with vectors 
 
This requires hashing of page adjacency lists and rank vectors 

in the reduce phase (id, edges) and (id, rank) 
 
Spark uses cache() to keep the neighbour lists in RAM 
 
Uses partitioning to avoid repeated hashing in reduceByKey 

 Data made accessible on the same node 
 Avoids data shuffling in the network 

Spark PageRank 

Source: MLlib and Distributing the Singular Value Decomposition, Reza Zadeh, ICME and Databricks, 2014. 



Hadoop: 171 seconds 
Basic Spark: 72 seconds 
Spark and controlled partitioning: 23 seconds 

Spark PageRank Benchmarks 

Source: MLlib and Distributing the Singular Value Decomposition, Reza Zadeh, ICME and Databricks, 2014. 
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Graph-based computation depends only on the neighbors of a 
particular vertex 
 “Think like a Vertex.” – Pregel (SIGMOD 2010) 

 
Systems with specialized APIs to simplify graph processing 

 Pregel from Google 
  Push abstraction: Vertex programs interact by 

 sending messages   
  Receive msgs, process, send msgs 
 GraphLab  
  Pull abstraction: Vertex programs access adjacent 
vertices and edges 
  Foreach (j in neighbours) calculate pagerank total for j 
   

 
   

Graph-Parallel Systems 



Spark is reported to be 4x faster than Hadoop  
 
Graphlab is 16x faster than Spark 
 
Graph structure can be exploited for significant 

performance gains 
 
 
 

J. Gonzalez et al. GraphX: Unifying Table and Graph Analytics. IPDPS 2014.  

 
 
 

Performance Gains for PageRank 



GraphX unifies graphs and tables 
http://spark.apache.org/docs/latest/graphx-

programming-guide.html 
 

GraphX 



Separation of system support for each view (table, 
graph) involves expensive data movement and 
duplication 

 
 GraphX makes tables and graphs views of the same 

physical data 
 
The views have their own optimized semantics 

 Table operators inherited from Spark 
 Graph operators form relational algebra 

GraphX 



//	
  load	
  graph	
  

val	
  graph	
  =	
  GraphBuilder.text(“hdfs://web.txt”)	
  

val	
  prGraph	
  =	
  graph.joinVertices(graph.outDegrees)	
  

//	
  Run	
  PageRank	
  

val	
  pageRank	
  =	
  	
  

prGraph.pregel(initialMessage	
  =	
  0.0,	
  iter	
  =	
  10)	
  (	
  

	
  	
  (oldV,	
  msgSum)	
  =>	
  0.15	
  +	
  0.85*msgSum,	
  

	
  	
  triplet	
  =>	
  triplet.src.pr	
  /	
  triplet.src.deg,	
  

	
  (msgA,	
  msgB)	
  =>	
  msgA	
  +	
  msgB)	
  

 
 

J. Gonzalez et al. GraphX: Unifying Table and Graph Analytics. IPDPS 2014.  

 

PageRank from Pregel in GraphX 



Spark is reported to be 4x faster than Hadoop  
 
Graphlab is 16x faster than Spark 
 
GraphX is roughly 3x slower than Graphlab 
 
GraphX is reported to compare favourably to Graphlab with 

pipelines (raw -> hyperlink -> pagerank -> top 20) 
 
Graph structure can be exploited for significant 

performance gains 
 
 
 
 
 

Performance Gains for 
PageRank Revisited 


