
www.cs.helsinki.fi

MLBase, MLLib and
GraphX

2015

Professor Sasu Tarkoma

Same system for
 Exploring data interactively using Spark
 Spark standalone programs
 Spark streaming for problems with live data

Easy and productive data science

More information

 Spark Streaming. Large-scale near-real-time stream
processing. Tathagata Das. Strata Conference. Feb.
26-28.2013. http://tinyurl.com/dstreams

MLBase and MLlib: Vision

Spark RDDs support efficient data sharing

In-memory caching increases performance

 Reported to have performance of up to 100 times
faster than Hadoop in memory or 10 times faster on
disk

High-level programming interface for complex

algorithms

Machine Learning and Spark

MLlib

MLI: An API for Distributed Machine Learning!
Evan Sparks, Ameet Talwalkar, et al.!
International Conference on Data Mining (2013)!
http://arxiv.org/abs/1310.5426

Data Workflows: MLlib

spark.apache.org/docs/latest/mllib-guide.html

val data = // RDD of Vector!
val model = KMeans.train(data, k=10)

Traditional tools
+ Easy to use

+ Good for prototyping

- Non-scalable ad-hoc scripting

- Porting/translating can be challenging

Distributed tools
+ Scalable

+ Open-source libraries

- Difficult to configure and extend

val data = // RDD of Vector
val model = KMeans.train(data, k=10)

MLI: An API for Distributed Machine

Learning
Evan Sparks, Ameet Talwalkar, et al.
International Conference on Data

Mining (2013)
http://arxiv.org/abs/1310.5426

MLBase has been designed for simplifying the development of
machine learning pipelines:

•  MLlib is a machine learning library
•  MLI (ML Developer API) is an API for machine learning

development that aims to abstract low-level details from the
developers

•  MLOpt is a declarative layer that aims to automate the
machine learning pipeline

•  The idea is that the system searches feature extractors and
models best fit for the ML task

Source: Towards an Optimizer for MLbase, Ameet Talwalkar,
Databricks, 2014.

MLBase and MLlib

Single machine

Lapack fortran linear
algebra library

Matlab interface

Spark

MLLib

MLI

ML Optimizer

Matlab
stack

MLBase
stack

ML Pipeline Revisited

Data Feature
Extraction

Model
Training Final Model

Iterative process of continuous refinement

MLBase aims to automate the construction of the pipeline

MLI
 Table computation: MLTable
 Flexibility when loading data and feature extraction
 Linear Algebra: MLSubMatrix
 Optimization Primitives: MLSolve

MLOpt
 A declarative approach to ML
 Users tell the system what they want to accomplish, the
system will implement
 System searches through the model space and chooses the
best models

MLI and MLOpt

Typical Data Analysis Workflow

Load Raw Data

Data Exploration

Feature Extraction

Learning

Evaluation

Deployment Scala

MLI

MLI, MLLib

MLI

Spark, potentially MLI

Spark, MLI

Classification
 logistic regression, linear support vector machines (SVM), naïve
Bayes, least squares, decision trees

Regression
 linear regression, regression trees

Collaborative filtering
 alternating least squares (ALS), non-negative matrix factorization
(NMF)

Clustering
 k-means

Optimization
 stochastic gradient descent (SGD), limited memory BFGS

Dimensionality reduction
 singular value decomposition (SVD), principal component analysis
(PCA)

Algorithms in MLlib v1.0

Summary statistics
Correlations
Stratified sampling
Hypothesis testing
Random data generation

MLLib Basic Statistics

//	
 With	
 MLLib	

val	
 data	
 =	
 sc.textFile(“kmeans.txt”)	

val	
 parsedData	
 =	
 data.map(_.split(‘	

‘).map(_.toDouble()).cache()	

	

val	
 clusters	
 =	
 KMeans.train(parsedData,	

2,	
 numIterations=20)	

	

val	
 cost	
 =	

clusters.computeCost(parsedData)	

	

println(“Sum	
 of	
 squared	
 errors:	
 “	
 +	
 cost)	

Spark K-Means Example

Source: MLlib and Distributing the Singular Value Decomposition, Reza Zadeh, ICME and Databricks, 2014.

//	
 Without	
 MLLib	

//	
 Initialize	
 K	
 cluster	
 centers	

centers	
 =	
 data.takeSample(false,	
 K,	
 seed)	

While	
 (d	
 >	
 epsilon)	
 {	

	
 //	
 assign	
 each	
 data	
 point	
 to	
 the	
 closest	

cluster	

	
 closest	
 =	
 data.map(
 p	
 =>	

	
 	
 (closestPoint(p,	
 centers),	
 p))	

	
 //	
 assign	
 each	
 center	
 to	
 be	
 the	
 mean	
 of	
 its	

data	
 points	

	
 pointsGroup	
 =	
 closest.groupByKey()	

	
 newCenters	
 =	
 pointsGroup.mapValues(

	
 	
 ps	
 =>	
 average(ps))	

	
 d	
 =	
 distance(centers,	
 newCenters)	
 	
 	

}	

This addresses the MapReduce limitation of reading the whole point
set at each iteration. The MLLib implementation caches the norms of
the points and centers

K-means Clustering Parallel Efficiency

•  Shantenu Jha et al. A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and
Architectures. IEEE BigData Congress. 2014.

1000000 points
 50000 centroids

10000000 points
 5000 centroids

100000000 points
 500 centroids

●
●

●

● ● ●
● ● ●●

●

●

●

●

●

●
●

●

●

●

●

● ● ●
●

● ●● ● ●
●

●

●

● ● ● ● ●

●

● ●
●

● ●
●

● ●
●

●
●

●

● ● ●

1

10

100

1000

10000

0.1

1.0

Tim
e

(in sec)
Effi−

ciency

24 48 96 24 48 96 24 48 96

Number of Cores
 Hadoop MR Mahout Python Scripting Spark Harp MPI

Fig. 2. Runtime of different K-Means Implementations (y axis in log scale): While MPI clearly outperforms the Hadoop-based implementations, the
performance of K-Means can significantly be improved by using hybrid approaches, such as Spark and HARP. By introducing efficient collective and iterative
operations known from HPC to Hadoop, the runtime can be improved while maintaining a high-level abstraction for the end-user.

the Hadoop-based implementation, it must be noted that the
second generation Hadoop frameworks, such as Spark, have
improved performance significantly by adopting techniques
previously only found in HPC, such as effective collective op-
erations. Nonetheless important distinctions remain: Hadoop-
based frameworks still maintain a very high and accessible
level of abstraction, such as data objects, collections etc.,
and are typically written without tight coupling to resource
specifics, e.g., the user can modify some parameters, such as
the HDFS or RDD chunk size, which also controls the par-
allelism. In general, frameworks and tools utilize application-
level scheduling to manage their workloads and provide pow-
erful abstractions for data processing, analytics and machine
learning to the end-user while hiding low-level issues, such re-
source management, data organization, parallelism, etc. HPC
applications operate on low-level, communication operations
and application-specific files that often lack a common runtime
system for efficiently processing these data objects.

Functionalities available in the ABDS ecosystem (more than
110 implementations) typically exceed those available in the
HPC ecosystem, thus reiterating the need for consilience be-
tween the two. Several approaches for convergence of the two
ecosystems have been proposed. Often, these focus on run-
ning Hadoop on top of HPC. However, a lot of the bene-
fits of Hadoop are lost in these approaches, such as data lo-
cality aware scheduling, higher cluster utilization etc. Thus,
we believe that this is not the right path to interoperabil-
ity and integration. Furthermore, YARN has been designed
to address the needs of data-intensive applications and sup-
port application-level scheduling for heterogeneous workloads,
there is some ways to go way before YARN can enable both
HPC applications and data-intensive applications on the range

of resource fabrics found in HPC ecosystem. A possible and
promising approach for interoperability that emerges and will
be investigated is the extension of HPC Pilot-Job abstraction
to YARN, and the usage of Pilot-Data [12] for data-locality
aware scheduling.

Our analysis shows that there are technical reasons that
drive the convergence between the HPC and ABDS paradigms,
e. g. rich and powerful abstractions like collective communi-
cations and direct-memory operations, long the staple of HPC
are steadily making their presence felt in the ABDS. We an-
ticipate the convergence of conceptual abstractions will soon
lead to an integration of tools and technology, e.g., integration
of specific capabilities, especially in the form of interoperable
libraries built upon a common set of abstractions. In fact, we
are working towards such an interoperable library – Scalable
Parallel Interoperable Data-Analytics Library (SPIDAL) – that
will provide many of the rich data-analytics capabilities of the
ABDS ecosystem for use by traditional HPC scientific appli-
cations. This will be an incremental but important step towards
promoting an integrated approach – the high-performance big-
data stack (HPBDS) – that brings the best of both together.
Author Contributions – The experiments were designed primarily by AL
and JQ, in consultation with and input from SJ and GCF. The experiments
were performed by AL, PM and JQ. Data was analyzed by all. SJ and GCF
determined the scope, structure and objective of the paper and wrote the
introduction, applications and conclusion. AL wrote the bulk of the remainder
of the paper.
Acknowledgement This work is primarily funded by NSF OCI-1253644. This
work has also been made possible thanks to computer resources provided by
XRAC award TG-MCB090174 and an Amazon Computing Award to SJ.

REFERENCES

[1] NIST BigData Working Group, http://bigdatawg.nist.gov/usecases.php,
2014.

A set of techniques for automatic recommendations
The goal is to predict the interest of a user for an item and filter

out uninteresting items
The approach is collaborative since it collects preference

information from many users
The idea is that if person A has the same opinion as person B

on a topic, A is more likely to share B’s opinion on a
different issue than share an opinion with a person chosen
randomly

The technique requires a large number of user preferences

Collaborative filtering

Example

Movie A Movie B Movie C
Ann * *** ?
Bob * ** ***
Alice ? *** ***
John * ? **

Involves the construction of an utility (preference) matrix

Columns are items and rows are users

Users are similar if their vectors are close according to a

distance measure (Jaccard, cosine distance, …)

Recommendation for a user is made by examining users that

are most similar. The recommendations are based on the
preferences of these users.

Collaborative filtering

MLlib supports model-based collaborative filtering

Latent factors describe users and products

Predict missing entries

Alternative Least Squares (ALS) algorithm to learn latent

factors

Collaborative Filtering in MLlib

Important parameters
 Rank, lambda (regularization constant) and number
of iterations

Create training examples
 Training, validation, test sets

Train multiple models and select the best one based on
validation set with the Root Mean Squared Error
(RMSE)

Evaluate the best model with the test set

Collaborative Filtering

Broadcast everything
 Master broadcasts data and initial models

 At each iteration updated models are broadcast by master
 Does not scale well due to communication overhead

Data parallel
 Worker loads data
 Master broadcasts initial models

 At each iteration updated models are broadcast by master
 Works for large datasets, because data is available to workers

Fully parallel
 Workers load data and they instantiate the models
 At each iteration, models are shared via join between workers

 Much better scalability

Implementation of ALS: Design
Strategies

MLLib ALS uses block-wise parallel scheme
 Users/products are partitioned into blocks
 A join is based on blocks instead of individual entries

An order of magnitude performance improvement is reported

when compared to Mahout (with 9x scaled Netflix data on a
cluster of 9 nodes). GraphLab is reported to be the fastest
(MLLib within a factor of 2 of GraphLab).

Source: MLlib: Scalable Machine Learning on Spark. Xiangrui
Meng. Databricks.

Implementation of ALS

//	
 parse	
 data	

val	
 data	
 =	
 sc.textFile(“test.data”)	

val	
 ratings	
 =	
 data.map(_.split(‘,’)	
 match	
 {	

case	
 Array(user,item,rate)	
 =>	
 	

Rating(user.toInt,	
 item.toInt,	
 rate.toDouble)	

})	

//	
 recommendation	
 model	

val	
 model	
 =	
 ALS.train(ratings,	
 1,	
 20,	
 0.01)	

//	
 Can	
 be	
 extended	
 to	
 test	
 parameter	
 combinations	
 and	
 choose	

//	
 the	
 best	
 model	
 with	
 the	
 lowest	
 RMSE	
 (computeRmse)	

//	
 evaluate	
 model	

val	
 usersProducts	
 =	
 ratings.map	
 {	
 case	
 Rating(user,	
 product,	

rate)	
 =>	
 (user,	
 product)}	

val	
 predictions	
 =	
 model.predict(usersProducts)	

Example: Alternative Least Squares (ALS)

Source: MLlib and Distributing the Singular Value Decomposition, Reza Zadeh, ICME and Databricks, 2014.

This technique builds a statistical model, the classifier, based
on the given training data

The training data is of the form
 <label, feature1, feature2, …, featureN>

The trained classifier decides on the following
 <?, feature1, feature2, …, featureN>

Classifying a new sample
 Computer posterior value for each label
 The label with the largest posterior value is the suggested
label

Naïve Bayes Classifier

Computes the conditional probability distribution of each feature
given label in a single pass of the data

Applies Bayes’ theorem to compute the conditional probability

distribution of label given an observation and use it for
prediction

MLlib supports multinomial naive Bayes that is typically used for

document classification
 Each observation is a document and each feature represents a
term whose value is the frequency of the term
 Feature values must be nonnegative to represent term
frequencies

MLLib and Naïve Bayes

import	
 org.apache.spark.mllib.classification.NaiveBayes	

import	
 org.apache.spark.mllib.linalg.Vectors	

import	
 org.apache.spark.mllib.regression.LabeledPoint	

	

val	
 data	
 =	
 sc.textFile("data/mllib/sample_naive_bayes_data.txt")	

val	
 parsedData	
 =	
 data.map	
 {	
 line	
 =>	

	
 	
 val	
 parts	
 =	
 line.split(',')	

	
 	
 LabeledPoint(parts(0).toDouble,	
 Vectors.dense(parts(1).split('	

').map(_.toDouble)))	

}	

//	
 Split	
 data	
 into	
 training	
 (60%)	
 and	
 test	
 (40%).	

val	
 splits	
 =	
 parsedData.randomSplit(Array(0.6,	
 0.4),	
 seed	
 =	
 11L)	

val	
 training	
 =	
 splits(0)	

val	
 test	
 =	
 splits(1)	

	

val	
 model	
 =	
 NaiveBayes.train(training,	
 lambda	
 =	
 1.0)	

	

val	
 predictionAndLabel	
 =	
 test.map(p	
 =>	
 (model.predict(p.features),	

p.label))	

val	
 accuracy	
 =	
 1.0	
 *	
 predictionAndLabel.filter(x	
 =>	
 x._1	
 ==	

x._2).count()	
 /	
 test.count()	

http://spark.apache.org/docs/1.2.1/mllib-naive-bayes.html

Input is a set of items and a set of transactions that contain
subset of items

Example: typical items in a shopping cart
Parameter α determines the threshold for an item to be

considered frequent

Frequent Pattern Mining

Shopping cart Items
C1 Coffee, Cake, Butter
C2 Butter, Bread
C3 Coffee, Cake, Milk
C4 Bread, Milk, Coffee, Cake

Assume α = 70%
Support for items: {coffee}, {cake} and {coffee, cake} is ¾
exceeding example threshold of 70%.

Naïve approach to find the frequent itemsets is to
enumerate all the possible itemsets and count them

Property: for an itemset to be frequent, all its
subsets must be frequent as well

The Apriori algorithm determines the frequent itemsets
in scans that consist of two phases:
 1. Given a list of candidate itemsets of size n, count
the items and determine the frequent ones
 2. Generate candidate list of size n+1
 All subsets of size n must be frequent

Bottleneck: candidate-generation-and-test

Frequent Pattern Mining

MLLib implements the algorithm by Li et al, 2008.
 Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, and Edward Y. Chang.
2008. Pfp: parallel fp-growth for query recommendation. In Proceedings
of the 2008 ACM conference on Recommender systems (RecSys '08).
http://doi.acm.org/10.1145/1454008.1454027

A parallelized FP-Growth algorithm:
1.  Calculate item frequencies and identify frequent

items
2.  Use a suffix tree (FP-tree) structure to encode

transactions without generating candidate sets
explicitly (improvement over the apriori algorithm)

3.  Frequent itemsets can be extracted from the FP-
tree.

Spark Frequent Itemset Mining

import	
 org.apache.spark.rdd.RDD	

import	
 org.apache.spark.mllib.fpm.{FPGrowth,	
 FPGrowthModel}	

	

val	
 transactions:	
 RDD[Array[String]]	
 =	
 ...	

	

val	
 fpg	
 =	
 new	
 FPGrowth()	

	
 	
 .setMinSupport(0.2)	

	
 	
 .setNumPartitions(10)	

val	
 model	
 =	
 fpg.run(transactions)	

	

model.freqItemsets.collect().foreach	
 {	
 itemset	
 =>	

	
 	
 println(itemset.items.mkString("[",	
 ",",	
 "]")	
 +	
 ",	
 "	
 +	

itemset.freq)	

}	

https://spark.apache.org/docs/latest/mllib-frequent-pattern-mining.html

Link analysis algorithm that assigns weights to each vertex in a
graph by iteratively computing the weight of each vertex
based on the weight of its inbound neighbours.

The algorithm outputs a probability distribution that presents

the likelihood that a person randomly clicking on links will
arrive at any particular web page

Measures the importance of a web page

The PageRank Algorithm

In relational algebra, PageRank can be expressed as:
a join followed by an update with two aggregations
that are repeated until stopping condition:

 The first MapReduce job joins the rank and
linkage tables and computes the rank contribution
for each outbound edge

 The second MapReduce job computes the
aggregate rank of each unique destination URL.
The Map is the identity and the reducers sum the
rank contributions of each incoming edge.

PageRank and MapReduce

PageRank Algorithm

M

M

M

M

M

r

r

Ri

L-split1

L-split0
M

M

r

r

i=i+1 Converged?

Join & compute rank
Aggregate fixpoint evaluation

Client

done

r

r

R = Rank table
L = Linkage table

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010

1.  Start each page at a rank of 1

2.  On each iteration, have page p contribute
rankp / |neighborsp| to its neighbors (MR phase 1)

3.  Set each page’s rank to 0.15 + 0.85 × contributions
(weighting factors) (MR Phase 2)

Update ranks in parallel

Iterate until convergence

PageRank Algorithm

M. Zaharia. Parallel Programming with Spark. Strata Conference, February 2013.

Scala Implementation

val	
 links	
 =	
 //	
 RDD	
 of	
 (url,	
 neighbors)	
 pairs	

var	
 ranks	
 =	
 //	
 RDD	
 of	
 (url,	
 rank)	
 pairs	

	

for	
 (i	
 <-­‐	
 1	
 to	
 ITERATIONS)	
 {	

	
 	
 //	
 Phase	
 1	

	
 	
 val	
 contribs	
 =	
 links.join(ranks).flatMap	
 {	

	
 	
 	
 	
 case	
 (url,	
 (links,	
 rank))	
 =>	

	
 	
 	
 	
 	
 	
 links.map(dest	
 =>	
 (dest,	
 rank/links.size))	

	
 	
 }	

	
 //	
 Phase	
 2	

	
 	
 ranks	
 =	
 contribs.reduceByKey(_	
 +	
 _)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .mapValues(0.15	
 +	
 0.85	
 *	
 _)	

}	

	

ranks.saveAsTextFile(...)	

PageRank repeatedly multiplies sparse matrices with vectors

This requires hashing of page adjacency lists and rank vectors

in the reduce phase (id, edges) and (id, rank)

Spark uses cache() to keep the neighbour lists in RAM

Uses partitioning to avoid repeated hashing in reduceByKey

 Data made accessible on the same node
 Avoids data shuffling in the network

Spark PageRank

Source: MLlib and Distributing the Singular Value Decomposition, Reza Zadeh, ICME and Databricks, 2014.

Hadoop: 171 seconds
Basic Spark: 72 seconds
Spark and controlled partitioning: 23 seconds

Spark PageRank Benchmarks

Source: MLlib and Distributing the Singular Value Decomposition, Reza Zadeh, ICME and Databricks, 2014.

17
1

80

23

14

0
20
40
60
80

100
120
140
160
180
200

30 60

Ite
ra

tio
n

tim
e

(s
)

Number of machines

Hadoop Spark

Graph-based computation depends only on the neighbors of a
particular vertex
 “Think like a Vertex.” – Pregel (SIGMOD 2010)

Systems with specialized APIs to simplify graph processing

 Pregel from Google
 Push abstraction: Vertex programs interact by

 sending messages
 Receive msgs, process, send msgs
 GraphLab
 Pull abstraction: Vertex programs access adjacent
vertices and edges
 Foreach (j in neighbours) calculate pagerank total for j

Graph-Parallel Systems

Spark is reported to be 4x faster than Hadoop

Graphlab is 16x faster than Spark

Graph structure can be exploited for significant

performance gains

J. Gonzalez et al. GraphX: Unifying Table and Graph Analytics. IPDPS 2014.

Performance Gains for PageRank

GraphX unifies graphs and tables
http://spark.apache.org/docs/latest/graphx-

programming-guide.html

GraphX

Separation of system support for each view (table,
graph) involves expensive data movement and
duplication

 GraphX makes tables and graphs views of the same

physical data

The views have their own optimized semantics

 Table operators inherited from Spark
 Graph operators form relational algebra

GraphX

//	
 load	
 graph	

val	
 graph	
 =	
 GraphBuilder.text(“hdfs://web.txt”)	

val	
 prGraph	
 =	
 graph.joinVertices(graph.outDegrees)	

//	
 Run	
 PageRank	

val	
 pageRank	
 =	
 	

prGraph.pregel(initialMessage	
 =	
 0.0,	
 iter	
 =	
 10)	
 (

	
 	
 (oldV,	
 msgSum)	
 =>	
 0.15	
 +	
 0.85*msgSum,	

	
 	
 triplet	
 =>	
 triplet.src.pr	
 /	
 triplet.src.deg,	

	
 (msgA,	
 msgB)	
 =>	
 msgA	
 +	
 msgB)	

J. Gonzalez et al. GraphX: Unifying Table and Graph Analytics. IPDPS 2014.

PageRank from Pregel in GraphX

Spark is reported to be 4x faster than Hadoop

Graphlab is 16x faster than Spark

GraphX is roughly 3x slower than Graphlab

GraphX is reported to compare favourably to Graphlab with

pipelines (raw -> hyperlink -> pagerank -> top 20)

Graph structure can be exploited for significant

performance gains

Performance Gains for
PageRank Revisited

