Course Schedule

Tuesday 10.3. Introduction and the Big Data Challenge
Tuesday 17.3. MapReduce and Spark: Overview
Tuesday 31.3. Distributed algorithms for Big Data: Elastic Data Processing and Developing Spark Algorithms.
Tuesday 14.4. MLBase, MLlib, and GraphX. Streaming Spark.
Tuesday 21.4. Industry views to Big Data
Tuesday 28.4. Summary

Four exercise problem sheets
Big Data

• **A massive** volume of structured and unstructured data

• **Cannot** be processed with traditional database and software solutions

• **Traditional** data analysis algorithms run *too slow* over the data

• *High-volume, high-velocity, high-variety*

• **Big Data Pipeline:**
 • Data acquisition, storage, analysis, post-processing, results
Big Data Process

1. Acquisition
2. Extraction
3. Integration
4. Analysis
5. Interpretation
6. Decision
7. Understanding decision and starting from 1.

We have a feedback loop and the process is iterative.
Apache Hadoop Ecosystem

- Analysis
- BI reporting
- RDBMS
- Pig (data flow)
- Hive (SQL)
- Sqoop
- MapReduce and YARN (also Spark)
- HBase
- HDFS
- Avro Serialization
- Zookeeper
- Analysis
- BI reporting
- RDBMS
- Pig (data flow)
- Hive (SQL)
- Sqoop
- MapReduce and YARN (also Spark)
- HBase
- HDFS
- Avro Serialization
- Zookeeper
BDAS, the Berkeley Data Analytics Stack, is an open source software stack that integrates software components being built by the AMPLab to make sense of Big Data.

Released Components

The following BDAS components are available (click on a project title to go to the project homepage):

- **Spark**
 - Streaming: Stream processing
- **GraphX**
 - Graph computation
- **MLlib**
 - User-friendly machine learning
- **SparkSQL**
 - SQL API
- **Hive**
- **BlinkDB**
 - SQL w/ bounded errors/response times
- **Spark**
 - Fast memory-optimized execution engine (Python/Java/Scala APIs)
- **Tachyon**
 - Distributed Memory-Centric Storage System
- **HDFS, S3, GlusterFS**
- **Mesos**
 - Cluster resource manager, multi-tenancy
- **Hadoop MR**
- **Storm**
- **MPI**

BDAS will continue to grow over the life of the AMPLab project, as existing components evolve and mature and new ones are added.

Community

- **Software project Meetups**
 - Help organize monthly developer meetups around BDAS components to demonstrate new and upcoming features.
 - Check out the Spark/Shark meetup group, the Mesos meetup group, and the Tachyon meetup group.

- **AMP Camp**
 - "Big Data Bootcamp" – Two days packed full of software system intros, demos and hands-on exercises. Aims to bring practitioners with no prior experience up to speed and writing real code with real advanced algorithms.

Support

Unlike many research software prototypes that never see production use, we support BDAS software components by actively monitoring and responding on developer and user mailing lists.

For more information, visit [BDAS](https://amplab.cs.berkeley.edu/software/).
Lambda Architecture

All data

New data and its acquisition

Batch processing (analysis) and storage

Real-time data storage and processing

Batch results

Data analysis

Combined results

This is integrated in Spark
MapReduce Model

Google MapReduce introduced in 2004

Apache Hadoop since 2005
 http://hadoop.apache.org/

Apache Hadoop 2.0 introduced in 2012

New cluster resource management layer (YARN)
MapReduce

Automatic distribution and parallelization

Fault-tolerance

Cluster management tools

Abstraction for programmers
Example:
Map: word len as key
Reduce: number of words per word len
MapReduce Summary

Two key functions that need to be implemented:

- **map** (in_key, in_value) → (out_key, intermediate_value) list
- **reduce** (out_key, intermediate_value list) → out_value list

With two optimizations:

- **combine** (key, intermediate_value list) → intermediate_out_value list
- **partition** (key, number of partitions) → partition for key
Partition and Shuffle

Data loading is expensive

Mapper → Partitioner → (intermediates) → Reducer

Shuffling is expensive
Hadoop

Hadoop is an Apache open source framework that implements the MapReduce paradigm. Originally created by Yahoo! Hadoop is based on the HDFS file system. Hadoop has its own RPC protocol. The Hadoop framework includes Apache Pig, Apache Hbase, Apache Hive, Apache Spark, …

Used in production systems by Facebook, Google, Yahoo! And many other companies.

http://hadoop.apache.org/
HDFS has a master/slave architecture
NameNode is the master server for metadata
DataNodes manage storage
A file is stored as a sequence of blocks
The blocks are replicated for fault-tolerance
Common replication scheme: factor of 3, one replica local, two in a remote rack
Rack-aware replica placement

Namnode provides information for retrieving blocks
Nearest replica is used to retrieve a block
Key algorithms for MapReduce

Inverted Index
Statistics
Sorting
K-Means
Transitive closure
PageRank
Advanced algorithms
K-Means for MapReduce

Map phase
Each map reads the K centroids and a block from the input dataset
Each point is assigned to the closest centroid
Output: <centroid, point>

Reduce phase
Obtain all points for a given centroid
Recompute the new centroid
Output: <new centroid>

Iteration:
Compare the old and new set of K centroids
If they are similar then Stop
Else Start another iteration unless maximum of iterations has been reached.
MapReduce K-Means

$k_i = k$ centroids at iteration i

Limitation: reads the whole point set P at each iteration

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010
Optimizing K-Means for MapReduce

Combiners can be used to optimize the distributed algorithm

Compute for each centroid the local sums of the points

Send to the reducer: <centroid, partial sums>

Use of a single **reducer**

Data to reducers is very small

Single reducer can tell immediately if the computation has converged

Creation of a single output file
HaLoop for iterative MapReduce

MapReduce cannot express iteration or recursion

HaLoop modifies Hadoop for supporting fixpoint operations, loop-aware task scheduling, and cache management

Map – Reduce – Fixpoint model for recursive languages

For example: the vector of PageRank values of web pages is the fixed point of a linear transformation derived from the link structure

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010
HaLoop: Inter-iteration caching

Loop body

Mapper output cache (MO)

Mapper input cache (MI) for access to non-local mapper input on later iterations

Reducer output cache (RO) for access to output of previous iterations, for fixpoint evaluation

Reducer input cache (RI) for loop invariant data without map/shuffle

Largest gain by caching loop invariant data

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010
Apache Spark

• Spark is a general-purpose computing framework for iterative tasks

• API is provided for Java, Scala and Python

• The model is based on MapReduce enhanced with new operations and an engine that supports execution graphs

• Tools include Spark SQL, MLLlib for machine learning, GraphX for graph processing and Spark Streaming
Spark Aim

Unifies batch, streaming, interactive computing

Making it easy to build sophisticated applications
Resilient distributed datasets (RDDs)
- Immutable collections of objects across a cluster
- Built with parallel transformations (map, filter, …)
- Automatically rebuilt when failure is detected
- Allow persistence to be controlled (in-memory operation)

Transformations on RDDs
- Lazy operations to build RDDs from other RDDs
- Always creates a new RDD

Actions on RDDs
- Count, collect, save

Key idea in Spark
Spark overview

SparkContext connects to a cluster manager
Obtains executors on cluster nodes
Sends app code to them
Sends task to the executors
MESOS Architecture

- Hadoop scheduler
- MPI scheduler
- Mesos master
- Standby master
- Mesos slave
 - Hadoop executor
 - MPI executor
 - task
 - task

ZooKeeper quorum
Task Scheduler

Supports general task graphs
Pipelines functions where possible
Cache-aware data reuse & locality
Partitioning-aware to avoid shuffles

MESOS provides resource allocation (offer resources to framework, accept/reject by framework scheduler)

Implementing Spark Algorithms

Broadcast everything
- Master broadcasts data and initial models
- At each iteration updated models are broadcast by master (driver program)
- Does not scale well due to communication overhead

Data parallel
- Worker loads data
- Master broadcasts initial models
- At each iteration updated models are broadcast by master
- Works for large datasets, because data is available to workers

Fully parallel
- Workers load data and they instantiate the models
- At each iteration, models are shared via join between workers
- Much better scalability
Spark RDDs support efficient data sharing

In-memory caching increases performance

Reported to have performance of up to 100 times faster than Hadoop in memory or 10 times faster on disk

High-level programming interface for complex algorithms
MLBase has been designed for simplifying the development of machine learning pipelines:

- MLlib is a machine learning library
- MLI (ML Developer API) is an API for machine learning development that aims to abstract low-level details from the developers
- MLOpt is a declarative layer that aims to automate the machine learning pipeline
 - The idea is that the system searches feature extractors and models best fit for the ML task

Source: Towards an Optimizer for MLbase, Ameet Talwalkar, Databricks, 2014.
Graph-Parallel Systems

Graph-based computation depends only on the neighbors of a particular vertex

“Think like a Vertex.” – Pregel (SIGMOD 2010)

Systems with specialized APIs to simplify graph processing

Pregel from Google

Push abstraction: Vertex programs interact by sending messages

Receive msgs, process, send msgs

GraphLab

Pull abstraction: Vertex programs access adjacent vertices and edges

Foreach (j in neighbours) calculate pagerank total for j
GraphX

Separation of system support for each view (table, graph) involves expensive data movement and duplication

GraphX makes tables and graphs views of the same physical data

The views have their own optimized semantics

Table operators inherited from Spark

Graph operators form relational algebra
Performance Gains for PageRank Revisited

Spark is reported to be 4x faster than Hadoop

Graphlab is 16x faster than Spark

GraphX is roughly 3x slower than Graphlab

GraphX is reported to compare favourably to Graphlab with pipelines (raw -> hyperlink -> pagerank -> top 20)

Graph structure can be exploited for significant performance gains
Spark Streaming

Spark extension of accepting and processing of streaming high-throughput live data streams

*Data is accepted from various sources

Kafka, Flume, TCP sockets, Twitter, …

Machine learning algorithms and graph processing algorithms can be applied for the streams

*Similar systems

Twitter (Storm), Google (MillWheel), Yahoo! (S4)

Stream Processing: Discretized

Streaming computation is run as a series of very small deterministic batch jobs

Live stream is divided into **batches of x seconds**

Each batch of data is an RDD and RDD operations can be used

Results are also returned in batches

Batch size as low as 0.5 seconds, results in approx. one second latency

Can combine streaming and batch processing
A distributed data operating system is emerging. Supported by YARN and MESOS.

Various data services on top of this (Hadoop and Spark) are being integrated (for example in Spark) for better coherence and performance.

Important points:
- Data format (row/column, block size)
- Network topology and data/code placement
- Algorithm structure and coordination
- Scheduling and resource management
Outlook

Big Data Frameworks are evolving

Spark represents unification of streaming, machine learning and graphs

Big Data pipeline management is at an early stage

How to achieve better mapping between cluster resources, scheduling, and pipelines?
Exam material (in addition to slides and exercises):

Articles (part of the exam material):

Additional material (not part of the exam):

http://spark.apache.org
http://spark.apache.org/docs/latest/programming-guide.html
www.databricks.com
Grading

Course grading will be based on the final exam and the assignments/exercises.

Exam 60% and exercises 40% of the grade.

- Exam
 - Friday 8.5. 9:00 at B123
 - Exam will have essay questions
 - 4 questions, answer 3
<table>
<thead>
<tr>
<th>Main theme</th>
<th>Prerequisites</th>
<th>Approaches learning goals</th>
<th>Meets learning goals</th>
<th>Deepens learning goals</th>
</tr>
</thead>
</table>
| Big Data Frameworks: definitions and systems | Basics of data communications and distributed systems (Introduction to Data Communications, Distributed Systems) | Knowledge of how to define the concepts of MapReduce and variants and state their central features
Ability to describe at least one system in detail | Ability of being able to compare different Big Data frameworks in a qualitative manner
Ability to assess the suitability of different systems to different use cases | Ability to give one’s own definition of the central concepts and discuss the key design and deployment issues |
| Internal operation and implementation of a Big Data framework | Basics of data communications and distributed systems (Introduction to Data Communications, Distributed Systems)
Big-O-notation and basics of algorithmic complexity
Basics of reliability in distributed systems | Knowledge of the design and implementation level concepts of Big Data frameworks, specifically Hadoop and Spark.
Knowledge of how distributed state is maintained and synchronized.
Understanding of the communication and computational costs in Big Data processing.
Ability to describe at least one algorithm in detail | Ability of being able to compare different Big Data frameworks based on their design and implementation.
Ability of designing distributed Big Data systems building on existing frameworks for batch and streaming processing.
Knowledge of key performance issues and the ability to analyze these systems
Knowledge of the most important factors pertaining to reliability | The knowledge of designing a Big Data platform for a given problem
Familiarity with the state of the art |
| Distributed algorithms for Big Data frameworks | Basics of algorithm design and machine learning | Knowledge of the basic design of a distributed algorithm for MapReduce and Spark.
Ability to use graph processing and machine learning in a distributed cluster environment | Ability to design and implement a solution that uses distributed algorithms for a large dataset
Ability to create both batch and streaming solutions | Design and implementation of a new machine learning algorithm for Big Data
Familiarity with the state of the art |
| Data Science applications | - | Knowledge of the basic Data Science use cases based on Big Data frameworks | Knowledge of at least two Data Science use cases and how they use the Big Data framework
Knowledge of Data Science pipelines | Familiarity with the state of the art
Automation of Data Science pipelines |