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Course Schedule 

Tuesday 10.3. Introduction and the Big Data Challenge 
Tuesday 17.3. MapReduce and Spark: Overview 
Tuesday  24.3.  MapReduce Optimizations and Algorithms. 

Spark Internals.  
Tuesday  31.3. Distributed algorithms for Big Data: Elastic 

Data Processing and Developing Spark Algorithms.  
Tuesday  14.4. MLBase, MLLib, and GraphX. Streaming 

Spark. 
Tuesday 21.4. Industry views to Big Data 
Tuesday 28.4. Summary  
 
Four exercise problem sheets 



•  A massive volume of structured and unstructured data 

•  Cannot be processed with traditional database and software 
solutions 

•  Traditional data analysis algorithms run too slow over the 
data 

•  High-volume, high-velocity, high-variety 

•  Big Data Pipeline: 
•  Data acquisition, storage, analysis, post-processing, results 

Big Data 



Big Data Process 

1.  Acquisition 
2.  Extraction 
3.  Integration 
4.  Analysis 
5.  Interpretation 
6.  Decision 
7.  Understanding decision and starting from 1. 

We have a feedback loop and the process is iterative. 



Apache Hadoop Ecosystem 

HDFS 

HBase 

MapReduce and YARN (also Spark) 

Pig (data flow) Hive (SQL) Sqoop 

BI reporting RDBMS Analysis 

Zoo-
keeper 

Avro 
Seria-
lization 



National Science Foundation
Expeditions in Computing

LoginLogin

 Supported Release  In Development  Related External Project

SoftwareSoftware
BDAS, the Berkeley Data Analytics Stack, is an open source software stack that integrates software components being
built by the AMPLab to make sense of Big Data.

Released ComponentsReleased Components

The following BDAS components are available (click on a project title to go to the project homepage):

RoadmapRoadmap

BDAS will continue to grow over the life of the AMPLab project, as existing components evolve and mature and new ones
are added.

CommunityCommunity

Software project Meetups – Help organize monthly developer meetups around BDAS components to demonstrate
new and upcoming features. Check out the Spark/Shark meetup group, the Mesos meetup group, and the Tachyon
meetup group

AMP Camp “Big Data Bootcamp” – Two days packed full of software system intros, demos and hands-on exercises.
Aims to bring practitioners with no prior experience up to speed and writing real code with real advanced
algorithms.

Support – Unlike many research software prototypes that never see production use, we support BDAS software
components by actively monitoring and responding on developer and user mailing lists.

 
BlinkDB

SQL w/ bounded errors/response times

Spark
Streaming

Stream processing

GraphX
Graph computation

MLlib
User-friendly machine

learning

SparkSQL
SQL API Hive Storm MPI

Spark 
Fast memory-optimized execution engine (Python/Java/Scala APIs)

Hadoop MR

Tachyon Distributed Memory-Centric Storage System

HDFS, S3, GlusterFS

Mesos Cluster resource manager, multi-tenancy

BDAS 

https://amplab.cs.berkeley.edu/software/ 



Lambda Architecture 

New data and 
its acquisition 

Real-time 
data storage 

and processing 

Combined 
results Data analysis 

All data 

Batch 
processing 

(analysis) and 
storage 

Batch results 

This is integrated in Spark 



MapReduce Model 
Google MapReduce introduced in 2004 

Jeffrey Dean et al. MapReduce: Simplified Data Processing    
on Large Clusters. OSDI 2004. 

 
Apache Hadoop since 2005 

 http://hadoop.apache.org/ 
 
Apache Hadoop 2.0 introduced in 2012 

Vinod Kumar Vavilapalli et al. Apache Hadoop YARN: Yet  
Another Resource Negotiator, SOCC 2013. 
 
New cluster resource management layer (YARN) 
 

 



Automatic distribution and parallelization 
 
Fault-tolerance 
 
Cluster management tools 
 
Abstraction for programmers 

MapReduce 



Worker

Worker

Worker

Worker

split 0
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split 3

split 4

(3)read

(1)fork

output
file 0(4)

local write

output
file 1

User
program

Master

(1)fork
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map

(6)write
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(5)Remote 
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(1)fork
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Input
files

Map
phase

Intermediate files
(on local disks)

Reduce
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Output
files

MapReduce 

Example:  
Map: word len as key 
Reduce: number of 
words per word len 



Two key functions that need to be implemented: 
•  map (in_key, in_value) à (out_key, intermediate_value) 

list 
•  reduce (out_key, intermediate_value list) à out_value 

list 
With two optimizations: 
•  combine (key, intermediate_value list) à 

intermediate_out_value list 
•  partition (key, number of partitions) à partition for key 
 

MapReduce Summary 



Partition and Shuffle 

Partition And Shuffle
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Shuffling is 
expensive 

Data loading is 
expensive 



Hadoop is an Apache open source framework that 
implements the MapReduce paradigm 

Originally created by Yahoo! 
Hadoop is based on the HDFS file system 
Hadoop has its own RPC protocol 
The Hadoop framework includes  

 Apache Pig, Apache Hbase, Apache Hive, Apache 
Spark, … 

Used in production systems by Facebook, Google, 
Yahoo! And many other companies 

h"p://hadoop.apache.org/	
  
 
 
 

Hadoop 



HDFS has a master/slave 
architecture 

NameNode is the master 
server for metadata 

DataNodes manage storage 
A file is stored as a 

sequence of blocks 
The blocks are replicated for 

fault-tolerance 
Common replication 

scheme: factor of 3, one 
replica local, two in a 
remote rack 

Rack-aware replica 
placement 

 
 

HDFS Architecture 

http://hadoop.apache.org/docs/r1.2.1/images/hdfsarchitecture.gif 

Namenode provides information for retrieving blocks 
Nearest replica is used to retrieve a block 



Inverted Index 
Statistics 
Sorting 
Searching 
K-Means 
Transitive closure 
PageRank  
Advanced algorithms 

Key algorithms for MapReduce 



Map phase   
 Each map reads the K centroids and a block from 
the input dataset 
 Each point is assigned to the closest centroid 
 Output: <centroid, point> 

Reduce phase 
 Obtain all points for a given centroid 
 Recompute the new centroid 
 Output: <new centroid> 

Iteration: 
 Compare the old and new set of K centroids 
 If they are similar then Stop 

  Else Start another iteration unless maximum of 
iterations has been reached.  

 

K-Means for MapReduce 



MapReduce K-Means 
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Limitation: reads 
the whole point set 
P at each iteration 

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010 



Combiners can be used to optimize the distributed 
algorithm 
 Compute for each centroid the local sums of the 
points 
 Send to the reducer: <centroid, partial sums> 

Use of a single reducer   
 Data to reducers is very small 
 Single reducer can tell immediately if the 
computation has converged 
 Creation of a single output file 

Optimizing K-Means for 
MapReduce 



MapReduce cannot express 
iteration or recursion 

HaLooP modifies Hadoop for 
supporting fixpoint 
operations, loop-aware task 
scheduling, and cache 
management 

Map – Reduce – Fixpoint model 
for recursive languages 

 

HaLoop for iterative MapReduce 

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010 

For example: the vector of PageRank values of web pages is 
the fixed point of a linear transformation derived from the link 
structure 



HaLoop: Inter-iteration caching 

Mapper input cache (MI) for access to non-
local mapper input on later iterations

Mapper output cache (MO)

Reducer input cache (RI) for loop 
invariant data without map/shuffle

Reducer output cache (RO) 
for access to output of 
previous iterations, for 
fixpoint evaluation

M 

M 

M 

r 

r 
…

Loop body

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010 

Largest gain by caching 
loop invariant data 



•  Spark is a general-purpose computing framework for iterative 
tasks 

•  API is provided for Java, Scala and Python 

•  The model is based on MapReduce enhanced with new 
operations and an engine that supports execution graphs 

•  Tools include Spark SQL, MLLlib for machine learning, GraphX 
for graph processing and Spark Streaming 

Apache Spark 



Unifies batch, streaming, interactive computing 
 
Making it easy to build sophisticated applications 
 

Spark Aim 



Resilient distributed datasets (RDDs) 
Immutable collections of objects across a cluster 
Built with parallel transformations (map, filter, …) 
Automatically rebuilt when failure is detected 
Allow persistence to be controlled (in-memory operation) 
 

Transformations on RDDs 
 Lazy operations to build RDDs from other RDDs 
 Always creates a new RDD 

 
Actions on RDDs  

 Count, collect, save 
 

Key idea in Spark 



Spark overview 

Driver Program 
 

SparkContext 
 

Spark Scheduler 

Cluster Manager 
 

Spark Scheduler 

Worker Node 
 
 
 
 

 
Executor 

Tasks 
Cache 

 

Worker Node 
 
 
 
 

 
Executor 

Tasks 
Cache 

 SparkContext connects to a cluster manager 
Obtains executors on cluster nodes 
Sends app code to them 
Sends task to the executors  



MESOS Architecture 



join 

filter 

groupBy 

Stage 3 

Stage 1 

Stage 2 

A: B: 

C: D: E: 

F: 

= cached partition = RDD 

map 

Task Scheduler 
Supports general task graphs 
Pipelines functions where 

possible 
Cache-aware data reuse & 

locality 
Partitioning-aware to avoid 

shuffles 
 
MESOS provides resource 

allocation (offer resources 
to framework, accept/reject 
by framework scheduler) 

 
M.Zaharia. Parallel programming with Spark. O’Reilly Strata Conference. February 2013.  



Broadcast everything   
 Master broadcasts data and initial models 

 At each iteration updated models are broadcast by master (driver program) 
 Does not scale well due to communication overhead   

Data parallel 
 Worker loads data 
 Master broadcasts initial models 

 At each iteration updated models are broadcast by master 
 Works for large datasets, because data is available to workers 

Fully parallel 
 Workers load data and they instantiate the models 
 At each iteration, models are shared via join between workers 

 Much better scalability 
 

 

Implementing Spark Algorithms 



Spark RDDs support efficient data sharing 
 
In-memory caching increases performance 

 Reported to have performance of up to 100 times 
faster than Hadoop in memory or 10 times faster on 
disk  

 
High-level programming interface for complex 

algorithms 
 
 
 

Machine Learning and Spark 



MLBase has been designed for simplifying the development of 
machine learning pipelines: 

•  MLlib is a machine learning library 
•  MLI (ML Developer API) is an API for machine learning 

development that aims to abstract low-level details from the 
developers 

•  MLOpt is a declarative layer that aims to automate the 
machine learning pipeline 

•  The idea is that the system searches feature extractors and 
models best fit for the ML task 

Source: Towards an Optimizer for MLbase, Ameet Talwalkar, 
Databricks, 2014. 

 
  

MLBase and MLlib 

Single machine 

Lapack fortran linear 
algebra library 

Matlab interface 

Spark 

MLLib 

MLI 

ML Optimizer 

Matlab 
stack 

MLBase 
stack 



Graph-based computation depends only on the neighbors of a 
particular vertex 
 “Think like a Vertex.” – Pregel (SIGMOD 2010) 

 
Systems with specialized APIs to simplify graph processing 

 Pregel from Google 
  Push abstraction: Vertex programs interact by 

 sending messages   
  Receive msgs, process, send msgs 
 GraphLab  
  Pull abstraction: Vertex programs access adjacent 
vertices and edges 
  Foreach (j in neighbours) calculate pagerank total for j 
   

 
   

Graph-Parallel Systems 



Separation of system support for each view (table, 
graph) involves expensive data movement and 
duplication 

 
 GraphX makes tables and graphs views of the same 

physical data 
 
The views have their own optimized semantics 

 Table operators inherited from Spark 
 Graph operators form relational algebra 

GraphX 



Spark is reported to be 4x faster than Hadoop  
 
Graphlab is 16x faster than Spark 
 
GraphX is roughly 3x slower than Graphlab 
 
GraphX is reported to compare favourably to Graphlab with 

pipelines (raw -> hyperlink -> pagerank -> top 20) 
 
Graph structure can be exploited for significant 

performance gains 
 
 
 
 
 

Performance Gains for 
PageRank Revisited 



Spark extension of accepting and processing of streaming 
high-throughput live data streams 

Data is accepted from various sources   
 Kafka, Flume, TCP sockets, Twitter, … 

Machine learning algorithms and graph processing algorithms 
can be applied for the streams 

Similar systems 
 Twitter (Storm), Google (MillWheel), Yahoo! (S4) 

 
Discretized Streams: A Fault-Tolerant Model for Scalable 

Stream Processing. Matei Zaharia,Tathagata Das, Haoyuan 
Li, Timothy Hunter, Scott Shenker, Ion Stoica. Berkeley 
EECS (2012-12-14)  

 

Spark Streaming 



Streaming computation is run as a series of very small 
deterministic batch jobs 

 
Live stream is divided into batches of x seconds 
 
Each batch of data is an RDD and RDD operations can be 

used 
 
Results are also returned in batches 
 
Batch size as low as 0.5 seconds, results in approx. one 

second latency 
 
Can combine streaming and batch processing 

Stream Processing: Discretized 



A distributed data operating system is emerging 
 Supported by YARN and MESOS 

 
Various data services on top of this (Hadoop and 

Spark) 
 
Some services are being integrated (for example in 

Spark) for better coherence and performance 
 
Important points 

 Data format (row/column, block size) 
 Network topology and data/code placement 
 Algorithm structure and coordination 
 Scheduling and resource management 

 
 

Discussion 



Big Data Frameworks are evolving 
 
Spark represents unification of streaming, machine 

learning and graphs 
 
Big Data pipeline management is at an early stage 
 
How to achieve better mapping between cluster 

resources, scheduling, and pipelines? 

Outlook 



Exam material (in addition to slides and 
exercises) 

Articles (part of the exam material): 

1.  Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data 
Processing on Large Clusters. Originally OSDI 2004.  CACM Volume 51 
Issue 1, January 2008. http://dl.acm.org/citation.cfm?id=1327492  

2.  Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory 
Cluster Computing. Matei Zaharia et al. NSDI (2012)  usenix.org/system/
files/conference/nsdi12/nsdi12-final138.pdf  

3.  HaLoop: Efficient Iterative Data Processing on Large Clusters by Yingyi 
Bu et al. In VLDB'10: The 36th International Conference on Very Large 
Data Bases, Singapore, 24-30 September, 2010. 

4.  MLbase: A Distributed Machine-learning System. Tim Kraska et al. CIDR 
2013. http://www.cs.ucla.edu/~ameet/mlbase.pdf 

Additional material (not part of the exam): 

http://spark.apache.org 

http://spark.apache.org/docs/latest/programming-guide.html 

www.databricks.com 



Grading 

Course grading will be based on the final exam and the 
assignments/exercises.   

 
Exam 60% and exercises 40% of the grade. 
 
–  Exam 
– Friday 8.5. 9:00 at B123 
– Exam will have essay questions 
– 4 questions, answer 3 



Main theme Prerequisites Approaches learning goals Meets learning goals Deepens learning 
goals 

Big Data 
Frameworks: 
definitions and 
systems 

Basics of data 
communications and 
distributed systems 
(Introduction to Data 
Communications, Distributed 
Systems) 

Knowledge of how to define the 
concepts of MapReduce and 
variants and state their central 
features 
 
Ability to describe at least one 
system in detail 

Ability of being able to 
compare different Big Data 
frameworks in a qualitative 
manner 
 
Ability to assess the suitability 
of different systems to 
different use cases 

Ability to give one’s own 
definition of the central 
concepts and discuss 
the key design and 
deployment issues 

Internal operation 
and implementation 
of a Big Data 
framework 

Basics of data 
communications and 
distributed systems 
(Introduction to Data 
Communications, Distributed 
Systems) 
Big-O-notation and basics of 
algorithmic complexity 
Basics of reliability in 
distributed systems 
 

Knowledge of the design and 
implementation level concepts of 
Big Data frameworks, specifically 
Hadoop and Spark.  
 
Knowledge of how distributed 
state is maintained and 
synchronized.  
 
Understanding of the 
communication and 
computational costs in Big Data 
processing. 
 
Ability to describe at least one 
algorithm in detail 

Ability of being able to 
compare different Big Data 
frameworks based on their 
design and implementation. 
 
Ability of designing distributed  
Big Data systems building on 
existing frameworks for batch 
and streaming processing.  
Knowledge of key 
performance issues and the 
ability to analyze these 
systems 
 
Knowledge of the most 
important factors pertaining to 
reliability 
 

The knowledge of  
designing a Big Data 
platform for a given 
problem  
 
Familiarity with the state 
of the art 

Distributed 
algorithms for Big 
Data frameworks 

Basics of algorithm design 
and machine learning 

Knowledge of the basic  design 
of a distributed algorithm for 
MapReduce and Spark.  
Ability to use graph processing 
and machine learning in a 
distributed cluster environment 

Ability to design and 
implement a solution that 
uses distributed algorithms for 
a large dataset 
Ability to create both batch 
and streaming solutions 

Design and 
implementation of a new 
machine learning 
algorithm for Big Data 
Familiarity with the state 
of the art 

Data Science 
applications 

- Knowledge of the basic Data 
Science use cases based on Big 
Data frameworks 
 

Knowledge of at least two 
Data Science use cases and 
how they use the Big Data 
framework 
Knowledge of Data Science 
pipelines 

Familiarity with the state 
of the art 
Automation of Data 
Science pipelines 


