
www.cs.helsinki.fi

Summary of
Big Data Frameworks

Course
 2015

Professor Sasu Tarkoma

Course Schedule

Tuesday 10.3. Introduction and the Big Data Challenge
Tuesday 17.3. MapReduce and Spark: Overview
Tuesday 24.3. MapReduce Optimizations and Algorithms.

Spark Internals.
Tuesday 31.3. Distributed algorithms for Big Data: Elastic

Data Processing and Developing Spark Algorithms.
Tuesday 14.4. MLBase, MLLib, and GraphX. Streaming

Spark.
Tuesday 21.4. Industry views to Big Data
Tuesday 28.4. Summary

Four exercise problem sheets

•  A massive volume of structured and unstructured data

•  Cannot be processed with traditional database and software
solutions

•  Traditional data analysis algorithms run too slow over the
data

•  High-volume, high-velocity, high-variety

•  Big Data Pipeline:
•  Data acquisition, storage, analysis, post-processing, results

Big Data

Big Data Process

1.  Acquisition
2.  Extraction
3.  Integration
4.  Analysis
5.  Interpretation
6.  Decision
7.  Understanding decision and starting from 1.

We have a feedback loop and the process is iterative.

Apache Hadoop Ecosystem

HDFS

HBase

MapReduce and YARN (also Spark)

Pig (data flow) Hive (SQL) Sqoop

BI reporting RDBMS Analysis

Zoo-
keeper

Avro
Seria-
lization

National Science Foundation
Expeditions in Computing

LoginLogin

 Supported Release In Development Related External Project

SoftwareSoftware
BDAS, the Berkeley Data Analytics Stack, is an open source software stack that integrates software components being
built by the AMPLab to make sense of Big Data.

Released ComponentsReleased Components

The following BDAS components are available (click on a project title to go to the project homepage):

RoadmapRoadmap

BDAS will continue to grow over the life of the AMPLab project, as existing components evolve and mature and new ones
are added.

CommunityCommunity

Software project Meetups – Help organize monthly developer meetups around BDAS components to demonstrate
new and upcoming features. Check out the Spark/Shark meetup group, the Mesos meetup group, and the Tachyon
meetup group

AMP Camp “Big Data Bootcamp” – Two days packed full of software system intros, demos and hands-on exercises.
Aims to bring practitioners with no prior experience up to speed and writing real code with real advanced
algorithms.

Support – Unlike many research software prototypes that never see production use, we support BDAS software
components by actively monitoring and responding on developer and user mailing lists.

BlinkDB

SQL w/ bounded errors/response times

Spark
Streaming

Stream processing

GraphX
Graph computation

MLlib
User-friendly machine

learning

SparkSQL
SQL API Hive Storm MPI

Spark
Fast memory-optimized execution engine (Python/Java/Scala APIs)

Hadoop MR

Tachyon Distributed Memory-Centric Storage System

HDFS, S3, GlusterFS

Mesos Cluster resource manager, multi-tenancy

BDAS

https://amplab.cs.berkeley.edu/software/

Lambda Architecture

New data and
its acquisition

Real-time
data storage

and processing

Combined
results Data analysis

All data

Batch
processing

(analysis) and
storage

Batch results

This is integrated in Spark

MapReduce Model
Google MapReduce introduced in 2004

Jeffrey Dean et al. MapReduce: Simplified Data Processing
on Large Clusters. OSDI 2004.

Apache Hadoop since 2005

 http://hadoop.apache.org/

Apache Hadoop 2.0 introduced in 2012

Vinod Kumar Vavilapalli et al. Apache Hadoop YARN: Yet
Another Resource Negotiator, SOCC 2013.

New cluster resource management layer (YARN)

Automatic distribution and parallelization

Fault-tolerance

Cluster management tools

Abstraction for programmers

MapReduce

Worker

Worker

Worker

Worker

split 0

split 1

split 2

split 3

split 4

(3)read

(1)fork

output
file 0(4)

local write

output
file 1

User
program

Master

(1)fork

(2)assign
map

(6)write

Worker

(5)Remote
read

(1)fork

(2)
assign
reduce

Input
files

Map
phase

Intermediate files
(on local disks)

Reduce
phase

Output
files

MapReduce

Example:
Map: word len as key
Reduce: number of
words per word len

Two key functions that need to be implemented:
•  map (in_key, in_value) à (out_key, intermediate_value)

list
•  reduce (out_key, intermediate_value list) à out_value

list
With two optimizations:
•  combine (key, intermediate_value list) à

intermediate_out_value list
•  partition (key, number of partitions) à partition for key

MapReduce Summary

Partition and Shuffle

Partition And Shuffle

!"##$%

&'()$%*$+'")$,-

!"##$%

&'()$%*$+'")$,-

!"##$%

&'()$%*$+'")$,-

!"##$%

&'()$%*$+'")$,-

.$+/0$% .$+/0$% .$+/0$%

&'()$%*$+'")$,- &'()$%*$+'")$,- &'()$%*$+'")$,-

1"%)')'2($% 1"%)')'2($% 1"%)')'2($% 1"%)')'2($%

,3
/

 5'
(!

Shuffling is
expensive

Data loading is
expensive

Hadoop is an Apache open source framework that
implements the MapReduce paradigm

Originally created by Yahoo!
Hadoop is based on the HDFS file system
Hadoop has its own RPC protocol
The Hadoop framework includes

 Apache Pig, Apache Hbase, Apache Hive, Apache
Spark, …

Used in production systems by Facebook, Google,
Yahoo! And many other companies

h"p://hadoop.apache.org/	

Hadoop

HDFS has a master/slave
architecture

NameNode is the master
server for metadata

DataNodes manage storage
A file is stored as a

sequence of blocks
The blocks are replicated for

fault-tolerance
Common replication

scheme: factor of 3, one
replica local, two in a
remote rack

Rack-aware replica
placement

HDFS Architecture

http://hadoop.apache.org/docs/r1.2.1/images/hdfsarchitecture.gif

Namenode provides information for retrieving blocks
Nearest replica is used to retrieve a block

Inverted Index
Statistics
Sorting
Searching
K-Means
Transitive closure
PageRank
Advanced algorithms

Key algorithms for MapReduce

Map phase
 Each map reads the K centroids and a block from
the input dataset
 Each point is assigned to the closest centroid
 Output: <centroid, point>

Reduce phase
 Obtain all points for a given centroid
 Recompute the new centroid
 Output: <new centroid>

Iteration:
 Compare the old and new set of K centroids
 If they are similar then Stop

 Else Start another iteration unless maximum of
iterations has been reached.

K-Means for MapReduce

MapReduce K-Means

M

M

M

P0

i=i+1

ki - ki+1 < threshold?

Client

done

r

r

P1

P2

= k centroids at iteration i ki

ki

ki

ki

ki+1

Limitation: reads
the whole point set
P at each iteration

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010

Combiners can be used to optimize the distributed
algorithm
 Compute for each centroid the local sums of the
points
 Send to the reducer: <centroid, partial sums>

Use of a single reducer
 Data to reducers is very small
 Single reducer can tell immediately if the
computation has converged
 Creation of a single output file

Optimizing K-Means for
MapReduce

MapReduce cannot express
iteration or recursion

HaLooP modifies Hadoop for
supporting fixpoint
operations, loop-aware task
scheduling, and cache
management

Map – Reduce – Fixpoint model
for recursive languages

HaLoop for iterative MapReduce

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010

For example: the vector of PageRank values of web pages is
the fixed point of a linear transformation derived from the link
structure

HaLoop: Inter-iteration caching

Mapper input cache (MI) for access to non-
local mapper input on later iterations

Mapper output cache (MO)

Reducer input cache (RI) for loop
invariant data without map/shuffle

Reducer output cache (RO)
for access to output of
previous iterations, for
fixpoint evaluation

M

M

M

r

r
…

Loop body

Source: HaLoop presentation, Yyingyi Bu et al. VLDB 2010

Largest gain by caching
loop invariant data

•  Spark is a general-purpose computing framework for iterative
tasks

•  API is provided for Java, Scala and Python

•  The model is based on MapReduce enhanced with new
operations and an engine that supports execution graphs

•  Tools include Spark SQL, MLLlib for machine learning, GraphX
for graph processing and Spark Streaming

Apache Spark

Unifies batch, streaming, interactive computing

Making it easy to build sophisticated applications

Spark Aim

Resilient distributed datasets (RDDs)
Immutable collections of objects across a cluster
Built with parallel transformations (map, filter, …)
Automatically rebuilt when failure is detected
Allow persistence to be controlled (in-memory operation)

Transformations on RDDs
 Lazy operations to build RDDs from other RDDs
 Always creates a new RDD

Actions on RDDs

 Count, collect, save

Key idea in Spark

Spark overview

Driver Program

SparkContext

Spark Scheduler

Cluster Manager

Spark Scheduler

Worker Node

Executor

Tasks
Cache

Worker Node

Executor

Tasks
Cache

 SparkContext connects to a cluster manager
Obtains executors on cluster nodes
Sends app code to them
Sends task to the executors

MESOS Architecture

join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

= cached partition = RDD

map

Task Scheduler
Supports general task graphs
Pipelines functions where

possible
Cache-aware data reuse &

locality
Partitioning-aware to avoid

shuffles

MESOS provides resource

allocation (offer resources
to framework, accept/reject
by framework scheduler)

M.Zaharia. Parallel programming with Spark. O’Reilly Strata Conference. February 2013.

Broadcast everything
 Master broadcasts data and initial models

 At each iteration updated models are broadcast by master (driver program)
 Does not scale well due to communication overhead

Data parallel
 Worker loads data
 Master broadcasts initial models

 At each iteration updated models are broadcast by master
 Works for large datasets, because data is available to workers

Fully parallel
 Workers load data and they instantiate the models
 At each iteration, models are shared via join between workers

 Much better scalability

Implementing Spark Algorithms

Spark RDDs support efficient data sharing

In-memory caching increases performance

 Reported to have performance of up to 100 times
faster than Hadoop in memory or 10 times faster on
disk

High-level programming interface for complex

algorithms

Machine Learning and Spark

MLBase has been designed for simplifying the development of
machine learning pipelines:

•  MLlib is a machine learning library
•  MLI (ML Developer API) is an API for machine learning

development that aims to abstract low-level details from the
developers

•  MLOpt is a declarative layer that aims to automate the
machine learning pipeline

•  The idea is that the system searches feature extractors and
models best fit for the ML task

Source: Towards an Optimizer for MLbase, Ameet Talwalkar,
Databricks, 2014.

MLBase and MLlib

Single machine

Lapack fortran linear
algebra library

Matlab interface

Spark

MLLib

MLI

ML Optimizer

Matlab
stack

MLBase
stack

Graph-based computation depends only on the neighbors of a
particular vertex
 “Think like a Vertex.” – Pregel (SIGMOD 2010)

Systems with specialized APIs to simplify graph processing

 Pregel from Google
 Push abstraction: Vertex programs interact by

 sending messages
 Receive msgs, process, send msgs
 GraphLab
 Pull abstraction: Vertex programs access adjacent
vertices and edges
 Foreach (j in neighbours) calculate pagerank total for j

Graph-Parallel Systems

Separation of system support for each view (table,
graph) involves expensive data movement and
duplication

 GraphX makes tables and graphs views of the same

physical data

The views have their own optimized semantics

 Table operators inherited from Spark
 Graph operators form relational algebra

GraphX

Spark is reported to be 4x faster than Hadoop

Graphlab is 16x faster than Spark

GraphX is roughly 3x slower than Graphlab

GraphX is reported to compare favourably to Graphlab with

pipelines (raw -> hyperlink -> pagerank -> top 20)

Graph structure can be exploited for significant

performance gains

Performance Gains for
PageRank Revisited

Spark extension of accepting and processing of streaming
high-throughput live data streams

Data is accepted from various sources
 Kafka, Flume, TCP sockets, Twitter, …

Machine learning algorithms and graph processing algorithms
can be applied for the streams

Similar systems
 Twitter (Storm), Google (MillWheel), Yahoo! (S4)

Discretized Streams: A Fault-Tolerant Model for Scalable

Stream Processing. Matei Zaharia,Tathagata Das, Haoyuan
Li, Timothy Hunter, Scott Shenker, Ion Stoica. Berkeley
EECS (2012-12-14)

Spark Streaming

Streaming computation is run as a series of very small
deterministic batch jobs

Live stream is divided into batches of x seconds

Each batch of data is an RDD and RDD operations can be

used

Results are also returned in batches

Batch size as low as 0.5 seconds, results in approx. one

second latency

Can combine streaming and batch processing

Stream Processing: Discretized

A distributed data operating system is emerging
 Supported by YARN and MESOS

Various data services on top of this (Hadoop and

Spark)

Some services are being integrated (for example in

Spark) for better coherence and performance

Important points

 Data format (row/column, block size)
 Network topology and data/code placement
 Algorithm structure and coordination
 Scheduling and resource management

Discussion

Big Data Frameworks are evolving

Spark represents unification of streaming, machine

learning and graphs

Big Data pipeline management is at an early stage

How to achieve better mapping between cluster

resources, scheduling, and pipelines?

Outlook

Exam material (in addition to slides and
exercises)

Articles (part of the exam material):

1.  Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Originally OSDI 2004. CACM Volume 51
Issue 1, January 2008. http://dl.acm.org/citation.cfm?id=1327492

2.  Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory
Cluster Computing. Matei Zaharia et al. NSDI (2012) usenix.org/system/
files/conference/nsdi12/nsdi12-final138.pdf

3.  HaLoop: Efficient Iterative Data Processing on Large Clusters by Yingyi
Bu et al. In VLDB'10: The 36th International Conference on Very Large
Data Bases, Singapore, 24-30 September, 2010.

4.  MLbase: A Distributed Machine-learning System. Tim Kraska et al. CIDR
2013. http://www.cs.ucla.edu/~ameet/mlbase.pdf

Additional material (not part of the exam):

http://spark.apache.org

http://spark.apache.org/docs/latest/programming-guide.html

www.databricks.com

Grading

Course grading will be based on the final exam and the
assignments/exercises.

Exam 60% and exercises 40% of the grade.

–  Exam
– Friday 8.5. 9:00 at B123
– Exam will have essay questions
– 4 questions, answer 3

Main theme Prerequisites Approaches learning goals Meets learning goals Deepens learning
goals

Big Data
Frameworks:
definitions and
systems

Basics of data
communications and
distributed systems
(Introduction to Data
Communications, Distributed
Systems)

Knowledge of how to define the
concepts of MapReduce and
variants and state their central
features

Ability to describe at least one
system in detail

Ability of being able to
compare different Big Data
frameworks in a qualitative
manner

Ability to assess the suitability
of different systems to
different use cases

Ability to give one’s own
definition of the central
concepts and discuss
the key design and
deployment issues

Internal operation
and implementation
of a Big Data
framework

Basics of data
communications and
distributed systems
(Introduction to Data
Communications, Distributed
Systems)
Big-O-notation and basics of
algorithmic complexity
Basics of reliability in
distributed systems

Knowledge of the design and
implementation level concepts of
Big Data frameworks, specifically
Hadoop and Spark.

Knowledge of how distributed
state is maintained and
synchronized.

Understanding of the
communication and
computational costs in Big Data
processing.

Ability to describe at least one
algorithm in detail

Ability of being able to
compare different Big Data
frameworks based on their
design and implementation.

Ability of designing distributed
Big Data systems building on
existing frameworks for batch
and streaming processing.
Knowledge of key
performance issues and the
ability to analyze these
systems

Knowledge of the most
important factors pertaining to
reliability

The knowledge of
designing a Big Data
platform for a given
problem

Familiarity with the state
of the art

Distributed
algorithms for Big
Data frameworks

Basics of algorithm design
and machine learning

Knowledge of the basic design
of a distributed algorithm for
MapReduce and Spark.
Ability to use graph processing
and machine learning in a
distributed cluster environment

Ability to design and
implement a solution that
uses distributed algorithms for
a large dataset
Ability to create both batch
and streaming solutions

Design and
implementation of a new
machine learning
algorithm for Big Data
Familiarity with the state
of the art

Data Science
applications

- Knowledge of the basic Data
Science use cases based on Big
Data frameworks

Knowledge of at least two
Data Science use cases and
how they use the Big Data
framework
Knowledge of Data Science
pipelines

Familiarity with the state
of the art
Automation of Data
Science pipelines

